NAVODAYA VIDYALAYA SAMITI

PRE-BOARD I EXAMINATION

MARKING SCHEME

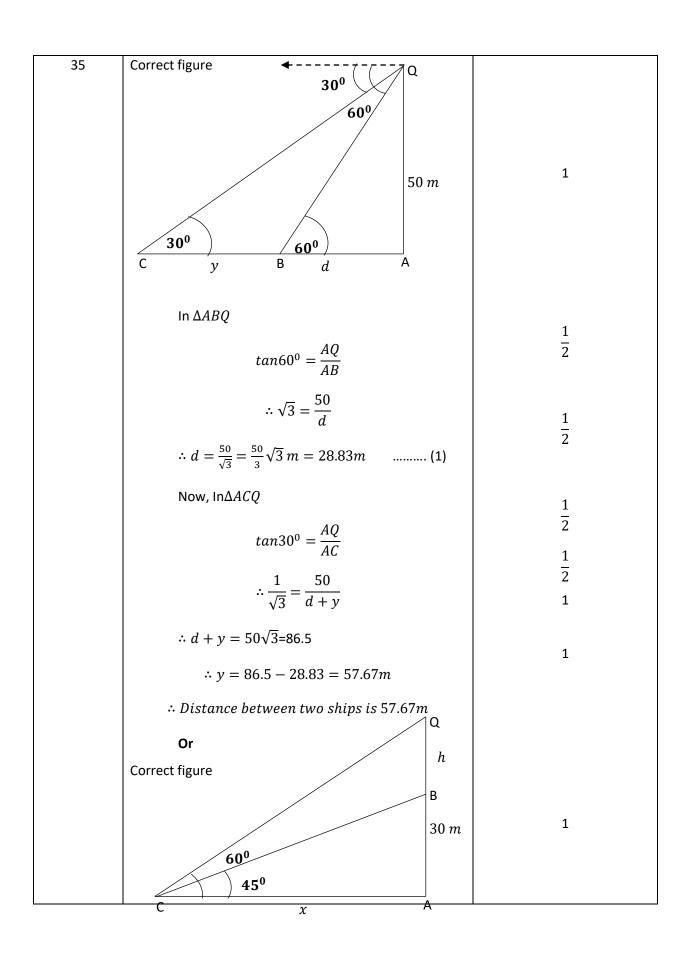
CLASS X

SUBJECT: MATHEMATICS BASIC (241)

QUESTION NUMBER	ANSWER/HINTS	MARKS
1	(c) 4	1
2	(a) $4 = b$	1
3	(b) 5	1
4	(b) 9cm	1
5	$(c) \pm 6$	1
6	(b) $\frac{17}{13}$	1
7	(b) 7 unit	1
8	$(c)130^{0}$	1
9	(d) 3:1	1
10	(b) 21	1
11	(a) 3cm	1
12	(d) $\frac{25}{9}$	1
13	(c) 88°	1
14	(b) -20	1
15	$(c)\frac{1}{13}$	1
16	(a) 30°	1
17	(d) increases by 5	1
18	(d) x + y = 1	1
19	(a)	1
20	(d)	1
21	$96 = 2^5 \times 3^1$	$\frac{1}{2}$
	$120 = 2^3 \times 3^1 \times 5^1$	$\frac{1}{2}$
	$HCF(96, 120) = 2^3 \times 3^1 = 24$	$\frac{\overline{2}}{1}$
	$LCM(96, 120) = 2^5 \times 3^1 \times 5^1 = 480$	$\frac{1}{2}$
22	LetP(0, y) be point on y-axis divide line segment	
	joining $(5,-6)$ and $(-1,-4)$ in the ratio k : 1	

	$(kx_2 + x_1 \ ky_2 + y_1)$	
	$(0,y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$	$\frac{1}{2}$
	$=\left(\frac{-k+5}{k+1}, \frac{-4k-6}{k+1}\right)$	$\frac{1}{2}$
		$\overline{2}$
	-k + 5 $-4k - 6$	
	$0 = \frac{-k+5}{k+1}, \qquad y = \frac{-4k-6}{k+1}$	$\frac{1}{2}$
	$\therefore k = 5:1$	_
	$y = \frac{-20 - 6}{5 + 1} = -\frac{13}{3}$	$\frac{1}{2}$
	OR	
	$AP = BP : AP^2 = BP^2$	$\frac{1}{2}$
	$\therefore 10x + 2y = 2x + 10y$	$ \begin{array}{r} $
	$\therefore x = y$	$\frac{1}{2}$
		$\frac{1}{2}$
23	D(3,x)	1
	$Mid\ point\ of\ AC\ =\ Mid\ point\ of\ BD$	$\frac{1}{2}$
	$\left(\frac{1+6}{2}, \frac{2+6}{2}\right) = \left(\frac{4+3}{2}, \frac{3+x}{2}\right)$	$\frac{1}{2}$
	$\frac{2+6}{2} = \frac{3+x}{2}$	$\frac{1}{2}$
	$ \therefore x = 5, \\ D \equiv (3, 5) $	$\frac{1}{2}$
24	AP = AS $BP = BQ$ $CR = CQ$ $DR = DS$ A S D R C	1

	10 . 00 . 00 . 00 . 00 . 00	1
	AP + BP + CR + DR = AS + BQ + CQ + DS	$\frac{1}{2}$
	AB + CD = AD + BC	1
		$\frac{\overline{2}}{2}$
25	L. H. S. = $\sin(A + B) = \sin 90^0 = 1$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$
	R.H.S. = sinA cosB + cosA sinB	2
	$= \sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ}$	$\frac{1}{2}$
	$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = 1$	1
	Or	
	$\sin\theta + \sin^2\theta = 1$	
	$sin\theta = 1 - sin^2\theta = cos^2\theta$	$\frac{1}{2}$
	$\therefore \cos^2\theta + \cos^4\theta = \cos^2\theta + (\cos^2\theta)^2$	1
	$= \cos^2\theta + \sin^2\theta = 1$	$\frac{1}{2}$
26	Let $3 + 2\sqrt{5}$ is not an irrational number.	
	$\therefore 3 + 2\sqrt{5}$ is a rational number.	_
	$\therefore 3 + 2\sqrt{5} = \frac{p}{q} \qquad \dots \text{ Where p and q are co-prime}$	$\frac{1}{2}$
	$\therefore 2\sqrt{5} = \frac{p}{q} - 3$	
	$\therefore 2\sqrt{5} = \frac{p}{q} - 3$	$\frac{1}{2}$
	$\therefore \sqrt{5} = \frac{p - 3q}{2a}$	2
	But p and q integers.	$\frac{1}{2}$
	$\therefore \frac{p-3q}{2q} \text{ is a rational number.}$	2
	$3 \cdot \sqrt{5}$ is rational number	$\frac{1}{2}$
	But this is contradiction to the fact	2
	that $\sqrt{5}$ is an irrational number.	1
	\therefore Our assumption that $3 + 2\sqrt{5}$ is not an	$\frac{1}{2}$
	irrational number is wrong	$\frac{1}{2}$
		2


	$\therefore 3 + 2\sqrt{5}$ is an irrational number	
27	Let three consecutive terms of A.P. be $a-d$, a , $a+d$	
21	$\therefore (a-d) + a + (a+d) = 30$	$\frac{1}{2}$
	$\therefore a = 10$	$\frac{1}{2}$
	Now $(a-d) \times a \times (a+d) = 910$	$\frac{1}{2}$
	$\therefore 10(10-d)(10+d) = 910$	2
	$\therefore 100 - d^2 = 91$ $\therefore d = \pm 3$	$\frac{1}{2}$
	If $d = 3$ then three terms are: 7, 10, 13	$\frac{1}{2}$
	If $\[\cdot : d = -3 \]$ then three terms are: 13, 10, 7	$\frac{1}{2}$
	a = 65, d = -4	$\frac{1}{2}$
	Let $a_n < 0$	1
	$\therefore a + (n-1)d < 0$	$\frac{1}{2}$
	$\therefore 65 + (n-1)(-4) < 0$	$\frac{1}{2}$
	$\therefore (n-1)(-4) < -65$ $\therefore (n-1) > \frac{65}{4}$	$\frac{1}{2}$
	$\therefore n > 17\frac{1}{4}$	$\frac{1}{2}$
	\therefore 18 th term is first negative term.	$\frac{1}{2}$
28	In $\triangle BEP$ and $\triangle CDP$,	_
	$\angle BEP = \angle CDP$ (: each 90°)	$\frac{1}{2}$
	$\angle BPE = \angle CPD$ (:	1
	vertically opp. angles) AREP ACOR	1
	$\therefore \Delta BEP \sim \Delta CDP(\because AA similarity)$	

	DD ED	1
	$\because \frac{BP}{CP} = \frac{EP}{PD}$	$\frac{1}{2}$
	CP PD	
	$\therefore BP \times PD = EP \times CP$	$\frac{1}{2}$
	_	_
29	Correct table for both equations	1
	Correct graph	1
	Correct solution from graph	1
	OR	_
	Let money with him be $\overline{\epsilon}x$	
	And number of persons be y	
	x - 12y = -6(1)	
	x - 9y = 42(2)	1
	∴ <i>x</i> = ₹186	1
	∴ <i>y</i> = 18	1
30	LHS = (cosecA - sinA)(secA - cosA)(tanA)	
	+ <i>cotA</i>)	1
	$=\left(\frac{1}{\sin A} - \sin A\right)\left(\frac{1}{\cos A} - \cos A\right)\left(\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}\right)$	1
	$-(\sin A)$ $\cos A$ $\cos A$ $\cos A$ $\sin A$	1
		$\overline{2}$
	$=\frac{\cos^2 A}{\cos A}\cdot\frac{\sin^2 A}{\sin A}\left(\frac{\sin^2 A + \cos^2 A}{\sin A \cdot \cos A}\right)$	
	, ,	1
	$= sinA. cosA \times \frac{1}{sinA. cosA} = 1$	1
	SINA.COSA	$\frac{1}{2}$
	=R.H.S.	<u></u>

31	Correct cummulati	ive frequency tabl	e	
	Class interval	Frequency (f)	Cummulative freq. (cf)	
	120.130	2	2	1
	130-140	8	10	
	140-150	12	22	
	150-160	20	42	
	160-170	8	50	
	TOTAL	50		
	Median class	= 150 – 160, :	l = 150, cf = 22,	
				$\frac{1}{2}$
	$\int f$	= 20, n = 50, h =	= 10	2
	media	$n = l + \left(\frac{\frac{n}{2} - 1}{f}\right)$	$\left(\frac{cf}{dt}\right) \times h$	$\frac{1}{2}$
		\ f)	1
				$\frac{1}{2}$
	median =	$= 150 + \left(\frac{25 - 2}{2}\right)$	$\left(\frac{-22}{0}\right) \times 10$	
	те	edian = 151.5	5 cm	$\frac{1}{2}$
32	Correct given and	figure		1
	To prove			$\frac{1}{2}$
	Construction			$\frac{1}{2}$
	Proof			2
	Answer of related	problem		1

33.	Let the uniformspeed of train be x km/hr. ∴reduced Speed is $x - 8$ km/hr $\therefore \frac{480}{x - 8} - \frac{480}{x} = 3$	1
	$\therefore \frac{480(x-x+8)}{x(x-8)} = 3$	$\frac{\frac{1}{2}}{\frac{1}{2}}$
	$\therefore x^2 - 8x - 1280 = 0$	1
	$\therefore (x+32)(x-40) = 0$ $\therefore x = -32 \text{ or } x = 40$	$\frac{1}{2}$
	But $x \neq -32$	$\frac{1}{2}$
	$ \therefore x = 40 $ Hence speed of train is 40 km/hr	1
	Or	
	Let the pipe with smaller diameter takes $oldsymbol{x}$ hours to fill	
	the tank.	1
	\therefore Time taken by pipe with larger diameter is $x-9$	$\frac{1}{2}$
	hours.	$\frac{1}{2}$
	$\therefore \frac{1}{x} + \frac{1}{x - 9} = \frac{1}{6}$	$\frac{1}{2}$
	$\therefore \frac{(x-9+x)}{x(x-9)} = \frac{1}{6}$	$\frac{1}{2}$ $\frac{1}{2}$
	$\therefore x^2 - 21x + 54 = 0$	
	$\therefore x^2 - 18x - 3x + 54 = 0$	$\frac{1}{2}$

	T	1
	$\therefore x(x - 18) - 3(x - 18) = 0$	$\frac{1}{2}$
	$\therefore (x-18)(x-3)=0$	$\frac{1}{2}$
	$\therefore x = 18 \ or \ x = 3$	_
	But x cannot beless than 6	$\frac{1}{2}$
	$\therefore x = 18 \text{hr.}$	$\frac{1}{2}$
	∴ Tap with smaller diameter takes 18 hours and tap with larger diameter takes 9 hours to fill the tank separately.	
34	Given: side of square field (a)=20m, $r=7m$	$\frac{1}{2}$
	Area of field horse can graze	1
	= area of quadrant of circle	$\frac{1}{2}$
	$= \frac{1}{4} \times \frac{22}{7} \times 7 \times 7$	1
	$=\frac{77}{2}=38.5 \ sq. m.$	$\frac{1}{2}$
	If $r = 14m$ then	
	Area of field horse can graze	
	= area of quadrant of circle	1
	$=\frac{1}{4}\times\frac{22}{7}\times14\times14$	$\frac{1}{2}$
	= 154 sq. m	2
	Increased in grazing area = 154 – 38.5	1
	= 115.5 sq. m	

	T	T
	In Δ <i>ABC</i>	$\frac{1}{2}$
	$tan45^{0} = \frac{AB}{BC}$	
	$\therefore 1 = \frac{20}{x}$ $\therefore x = 20 \ m \qquad \dots \dots$	$\frac{1}{2}$
	Now, In ΔACQ	$\frac{1}{2}$
	$tan60^{0} = \frac{AQ}{AC}$ $= 20 + h$	$\frac{1}{2}$
	$\therefore \sqrt{3} = \frac{20 + h}{x}$ $\therefore \sqrt{3}x = 20 + h$	1
	h = 34.6 - 20 = 14.6m	1
	∴ height of tower if 14.6m	
36	(i) volume of material used in making mallet = $\pi r^2 h$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$
	$= 3.14 \times 2^2 \times 10 = 125.6 \ cub. \ cm$	$\frac{1}{2}$
	(ii) inner surface area of bowl = $2\pi r^2$ = $2 \times 3.14 \times 5^2 = 157 \text{ sq. cm}$	$\frac{\overline{2}}{1}$
	(iii) volume of metal used to make bowl =	1
	$= \frac{2}{3} \times 3.14 \times 6^3 - \frac{2}{3} \times 3.14 \times 5^3$	1
	= 190.49 cub.cm	1

$T.S.A of mallet = 2\pi r(h+r)$ $= 2 \times 3.14 \times 2 \times (10+2) = 150.72 sq. cm$ $37 \qquad \text{Number of all possible outcomes n(S)} = 1000$ $(i) P(favourite colour being white) = \frac{120}{360} = \frac{1}{3}$ $(ii) P(favourite colour being blue or greed) = \frac{60+60}{360}$ $= \frac{1}{3}$ 1	
Number of all possible outcomes n(S) = 1000 (i) $P(favourite\ colour\ being\ white}) = \frac{120}{360} = \frac{1}{3}$ (ii) $P(favourite\ colour\ being\ blue\ or\ greed}) = \frac{60+60}{360}$	
(i) $P(favourite\ colour\ being\ white}) = \frac{120}{360} = \frac{1}{3}$ (ii) $P(favourite\ colour\ being\ blue\ or\ greed}) = \frac{60+60}{360}$	
(i) $P(favourite\ colour\ being\ white}) = \frac{1}{360} = \frac{1}{3}$ (ii) $P(favourite\ colour\ being\ blue\ or\ greed}) = \frac{60+60}{360}$ $= \frac{1}{3}$	
$=\frac{1}{2}$	
$=\frac{1}{3}$	
(ii) $\frac{90}{360} = \frac{15}{number\ of\ students\ participated}$	
\therefore number of students participated = 60 OR	
(iii) $P(favourite\ colour\ being\ red\ or\ blue) = 60 + 30$	
360	
$=\frac{1}{4}=0.25$	
38 (i) The graph $y = f(x)$ intersect x-axis in two distict $\frac{1}{x}$	
points. $\frac{\overline{2}}{1}$	
y = f(x) has two zeroes.	
(ii) If graph of $y = f(x)$ do not intersect x-axis then it	
has no zeroes $\frac{1}{2}$	
(iii) $p(x) = x^2 + (a+1)x + b$ $\frac{1}{2}$	
$\therefore p(2) = 0, \qquad p(3) = 0 \qquad \qquad \frac{1}{2}$	
has no zeroes	

a = -6, b = 6	
OR	
(iii)4 is zero of $x^2 + 2x - (7p + 3)$.	
$\therefore 4^2 + 2 \times 4 - (7p + 3) = 0$	1
$\therefore p = 3$	1