

THE NANDYAL PUBLIC SCHOOL:: NANDYAL

Series TNPS/11/03

SET – 3

ROLL No.

Q.P Code 09/11/03

Candidates must write the Q.P Code on the title page of the Answer book.

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 38 questions. All questions are compulsory.
- (ii) This question paper is divided into five Sections A, B, C, D and E.
- (iii) In **Section A**, Question numbers 1 to 18 are multiple choice questions (MCQs) and question numbers 19 and 20 are Assertion Reason based questions of 1 mark each.
- (iv) In **Section B**, Question numbers **21** to **25** are very short answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section C**, Question numbers **26** to **31** are short answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D**, Question numbers 32 to 35 are long answer (LA) type questions carrying 5 marks each.
- (vii) In Section E, Question numbers 36 to 38 are case-study based integrated questions carrying 4 marks each. Internal choice is provided in 2 marks question in each case-study.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section \mathbf{B} , 2 questions in Section \mathbf{C} , 2 questions in Section \mathbf{D} and 3 questions of 2 marks in Section \mathbf{E} .
- (ix) Draw neat diagrams wherever required. Take $\pi = \frac{22}{7}$ wherever required, if not stated.
- (x) Use of calculators is **NOT allowed.**

गणित (मानक) MATHEMATICS (STANDARD)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 80 Time allowed : 3 hours Maximum Marks : 80

<u>SECTION – A</u>

Questions 1 to 20 carry 1 mark each.

- 1. The value of $(\sqrt{5} + \sqrt{2})^2$ is:

- (a) $7+2\sqrt{5}$ (b) $1+5\sqrt{2}$ (c) $7+2\sqrt{10}$ (d) $7-2\sqrt{10}$
- **2.** The value of $9^{\frac{1}{2}}$ is :
 - (a) 18
- (b) 27
- (c) 18
- (d) $\frac{1}{27}$
- 3. If $\left(\frac{3}{4}\right)^6 \times \left(\frac{16}{9}\right)^5 = \left(\frac{4}{3}\right)^{x+2}$, then the value of x is

- (d) 6
- **4.** The value of $p(x) = 5x 4x^2 + 3$ for x = -1 is:
- (b) -6
- (d) 3
- **5.** In fig. $\angle POR$ and $\angle QOR$ form a linear pair if $a b = 80^{\circ}$ then values of a and b respectively

- (a) 130^0 and 50^0 (b) 50^0 and 130^0
- c) 60° and 120°
- (d) 40^0 and 140^0
- **6.** On dividing $x^3 + 3x^2 + 3x + 1$ by 5 + 2x we get remainder:
 - (a) $\frac{8}{27}$
- (b) $\frac{27}{8}$
- (c) $-\frac{27}{8}$
- (d) $-\frac{8}{27}$
- 7. How many linear equations in x and y can be satisfied by x = 1 and y = 2?
 - (a) only one
- (b) two
- (c) infinitely many
- **8.** x = 5, y = 2 is a solution of the linear equation

 - (a) x + 2y = 7 (b) 5x + 2y = 7 (c) x + y = 7
- (d) 5x + y = 7

- 9. The graph of the linear equation 2x + 3y = 6 is a line which meets the x axis at the point (a) (2, 0) (b) (0, 3) (c) (3, 0) (d) (0, 2)
- **10.** In fig., AB || CD, \angle APQ = 50°, \angle PRD = 127°, then the value of x and y respectively are (a) 50° and 77° (b) 40° and 85° c) 60° and 90° (d) 85° and 75°

- ${f 11.}$ An angle is ${f 20^0}$ more than three times the given angle. If the two angles are supplementary the angles are
 - (a) 20^0 and 160^0 (b) 40^0 and 140^0
- c) 60° and 120°
- (d) 70^0 and 110^0
- **12.** In the given figure, O is the centre of the circle. The value of x is
 - (a) 140°
- (b) 70°
- (c) 290°
- (d) 210°

- **13.** In the given figure, the value of ∠OPR is
 - (a) 65°
- (b) 10°
- (c) 20°
- (d) 50°

- **14.** $\triangle ABC$ is right triangle in which $\angle A = 90^{\circ}$ and AB = AC. The values of $\angle B$ and $\angle D$ will be
 - (a) $\angle B = \angle C = 60^{\circ}$
- (b) $\angle B = \angle C = 30^{\circ}$
- (c) $\angle B = \angle C = 45^{\circ}$
- (d) $\angle B = \angle C = 50^{\circ}$
- **15.** Three angles of a quadrilateral are 75°, 90° and 75°. The fourth angle is
 - (a) 90°
- (b) 95°
- (c) 105^0
- (d) 120°
- **16.** If the area of an equilateral triangle is $16\sqrt{3}$ cm², then the perimeter of the triangle is:
 - (a) 64 cm
- (b) 60 cm
- (c) 36 cm
- (d) none of these
- 17. The area of the triangle whose sides are 42 cm, 34 cm and 20 cm in length is
 - (a) 150 cm²
- (b) 336 cm²
- (c) 300 cm²
- (d) none of these
- **18.** In a frequency distribution, the mid-value of a class is 10 and width of each class is 6. The lower limit of the class is
 - (a) 6
- (b) 7
- (c) 8
- (d) 12

DIRECTION: In the question number 19 and 20, a statement of **Assertion (A)** is followed by a statement of **Reason (R)**.

Choose the correct option

19. Assertion (A): Supplement of angle is one fourth of itself. The measure of the angle is 144⁰. **Reason (R):** Two angles are said to be supplementary if their sum of measure of angles is 180⁰.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.
- **20.** Assertion (A): In $\triangle ABC$, AB = AC and $\angle B = 50^{\circ}$, then $\angle C$ is 50° .

Reason (R): Angles opposite to equal sides of a triangle are equal.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.

SECTION - B

Questions 21 to 25 carry 2 marks each.

21. Simplify:
$$(256)^{(-4^{\frac{-3}{2}})}$$

OR

Show that $1.\overline{235}$ can be expressed in the form of $\frac{p}{\sqrt{25}}$, where p and q are integers and $q \neq 0$.

- **22.** Expand: $(4a b + 2c)^2$
- **23.** In the below figure, if PQ \parallel RS, \angle MXQ = 135° and \angle MYR = 40°, find \angle XMY.

- **24.** In \triangle ABC, the bisector AD of \angle A is perpendicular to side BC. Show that AB = AC and \triangle ABC is isosceles.
- 25. A right triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about the side 12 cm. Find the volume of the solid so obtained.

OR

A hemispherical bowl has a radius of 3.5 cm. What would be the volume of water it would contain?

 $\frac{SECTION-C}{\text{Questions 26 to 31 carry 3 marks each.}}$

26. Factorise: (i)
$$6x^2 + 7x - 3$$
 (ii) $2x^2 - 7x - 15$

Factorise: (i)
$$27v^3 + 125z^3$$
 (ii) $64m^3 - 343n^3$

27. If
$$a + b + c = 9$$
 and $ab + bc + ca = 26$, find $a^2 + b^2 + c^2$.

- 28. Write the statement of Euclid's fifth postulate. How would you rewrite Euclid's fifth postulate so that it would be easier to understand?
- **29.** Find the value of k, if x = 3, y = 2 is a solution of the equation 2x + 3y = k. Find the points where the graph of the above equation cuts the x-axis and the y-axis.
- 30. If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.
- 31. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see below figure). Show that:
 - (i) \triangle ABM \cong \triangle PQN (ii) \triangle ABC \cong \triangle PQR

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see below figure). Show that:

- (i) \triangle AMC \cong \triangle BMD
- (ii) ∠ DBC is a right angle.
- (iii) \triangle DBC \cong \triangle ACB

$\underline{SECTION-D}$ Questions 32 to 35 carry 5 marks each.

32. Evaluate:
$$\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \dots + \frac{1}{\sqrt{9}+\sqrt{8}}$$

33. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see below figure). Show that:

- (i) \triangle APD \cong \triangle CQB
- (iv) AQ = CP
- (ii) AP = CQ
- (iii) \triangle AQB \cong \triangle CPD
- (v) APCQ is a parallelogram

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

34. Draw histogram and frequency polygon for the following distribution:

C. I.	0 - 50	50 - 100	100 - 150	150 - 200	200 - 250	250 - 300
F	4	8	16	13	6	3

35. At a Ramzan Mela, a stall keeper in one of the food stalls has a large cylindrical vessel of base radius 15 cm filled up to a height of 32 cm with orange juice. The juice is filled in small cylindrical glasses (see below figure) of radius 3 cm up to a height of 8 cm, and sold for Rs 3 each. How much money does the stall keeper receive by selling the juice completely?

OR

Monica has a piece of canvas whose area is 551 m^2 . She uses it to have a conical tent made, with a base radius of 7 m. Assuming that all the stitching margins and the wastage incurred while cutting, amounts to approximately 1 m2, find the volume of the tent that can be made with it.

<u>SECTION – E(Case Study Based Questions)</u>

Questions 36 to 38 carry 4 marks each.

36. Case Study - 1

Temperature can be measured in both Fahrenheit and Celsius scale. Both are the standard units for measuring temperature. There is a conversion formula by which Fahrenheit temperature can be converted into Celsius temperature. This formula is in the form of a linear equation:

$$F = \left(\frac{9}{2}\right)C + 32$$
, where, F and C are the temperatures in Fahrenheit and Celsius.

- (i) If Celsius scale is taken on x-axis, then what is the point on X-axis, where this linear equation cuts the X-axis. [1]
- (ii) At what point does this linear equation, cut the Y-axis? [1]
- (iii) If the temperature is 30° C, then what is the temperature in Fahrenheit? [2] OR
- (iii) If the temperature is 95°F, what is the temperature in Celsius? [2]

37. Case Study - 2

Triangles are used in bridges because they evenly distribute weight without changing their proportions. When force is applied on a shape like a rectangle it would flatten out. Before triangles were used in bridges, they were weak and could not be very big. To solve that problem engineers would put a post in the middle of a square and make it more sturdy. Isosceles triangles were used to construct a bridge in which the base (unequal side) of an isosceles triangle is 4 m and its perimeter is 20 m.

- (i) What is the length of equal sides? [1]
- (ii) In a \triangle ABC it is given that base = 12 m and height = 5 m. Find its area. [1]
- (iii) What is the area of the given isosceles triangle? [2]

OR

(iii) Find the cost of covering the sheet for one isosceles triangle at the rate of Rs 200 per metre. [2]

38. Case Study - 3

Aditya is a Class IX student residing in a village. One day, he went to a city Hospital along with his grandfather for general checkup. From there he visited three places - School, Library and Police Station. After returning to his village, he plotted a graph by taking Hospital as origin and marked three places on the graph as per his direction of movement and distance. The graph is shown below:

Answer the following questions:

- (i) What are the coordinates of Library? [1]
- (ii) In which quadrant the point (-1, 4) lies? [1]
- (iii) What are the coordinates of School and Police Station? Find the distance between school and police station. [2]

OR

(iii) Find the distance between Hospital and Library. [2]