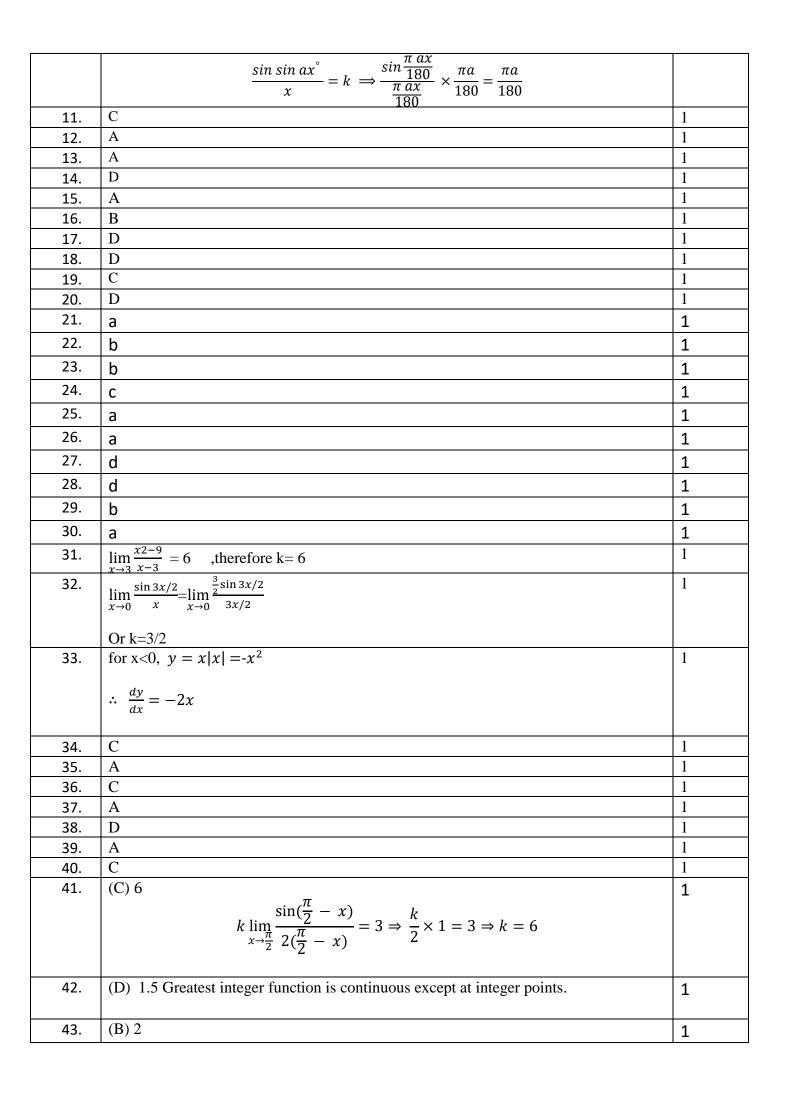
CHAPTER-5 CONTINUITY & DIFFERENTIABILITY 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	The function $f(x) = \{\frac{x^2 - 9}{x - 3}, x \neq 35, x = 3\}$	
	(a) is continuous at $x = 3$ (b) has removable discontinuity at $x = 3$	
	(c) has discontinuity of first kind at $x = 3$ (d) has discontinuity of second kind at $x = 3$	1
2.	The function $f(x) = \{x + 3, if x \le 2$	
۷.	$x + 4, if \ x > 2$	
	(a) is continuous at $x = 2$ (b) has removable discontinuity at $x = 2$	1
	(c) has discontinuity of first kind at $x = 2$	
	d) has discontinuity of second kind at $x = 2$	
3.		
	The greatest integer function $f(x) = [x]$, at integer points,	1
	(a) is continuous (b) has removable of first kind	1
	(c) has removable discontinuity (d) has discontinuity of second kind.	
4.	The function $f(x) = \{(x-1)^n \sin \sin \left(\frac{1}{x-1}\right), x \neq 1 $ 0, $x = 1$ is	
	continuous at $x = 1$	
		1
	(a) for all value of n (b) for $n > 0$ (c) $n = 0$ only (d) for $n < 0$	
-		
5.	The function $f(x) = \{\cos \cos \frac{1}{x}, x \neq 0 \ 0, x = 0$	
	(a) is continuous at $x = 0$ (b) has discontinuity of second kind at $x = 0$ (c) has removable discontinuity at $x = 0$	1
	(d) has discontinuity of first kind at $x = 0$	1
6.	The number of points of discontinuity of $f(x) = [x]$ in [3, 7] is	
0.	(a) 4 (b) 5 (c) 6 (d) 8	
		1
7.	Let f and g be two real functions continuous at $x = a$, then $f + g$	
	(a) is continuous at $x = a$ (b) may or may not be continuous at $x = a$	1
	(c) is discontinuous at $x = a$ (d) is continuous at $f(a) + g(a)$.	1
8.	If and g are two real functions continuous at a and $f(a)$ respectively, then	
	(a) g of is continuous at $f(a)$ (b) g of is continuous at a	1
	(c) fog is continuous at a (d) fog is continuous at $f(a)$	
9.	If $f(x) = \{\frac{e^x - 1}{\ln(1 + 2x)}, x \neq 0 k$, $x = 0$ is continuous at $x = o$, then $k =$	
	-1n(1+2x)	

	(a) $\frac{2}{3}$ (b) 3 (c) 2 (d) $\frac{3}{2}$	1
10.	The function $f(x) = \{\frac{\sin ax^{\circ}}{x}, x \neq 0 k$, $x = 0$ is continuous at $x = 0$, if $k =$	
	(a) $\frac{\pi}{180}$ (b) $\frac{a \pi}{180}$ (c) $\frac{\pi}{180 a}$ (d) $\frac{180 a}{\pi}$	1
11.	What value of k, the function $\begin{cases} kx^2 , \text{ if } x \le 2 \\ 3, \text{ if } x > 2 \end{cases}$ is continuous at x=2.	1
	(a)0 (b)1 (c) $3/4$ (d) $3/2$	1
12.	The relationship between "a" and "b" so that the function 'f' defined by: $f(x) = \begin{cases} ax + 1 & \text{if } x \le 3 \\ bx + 3 & \text{if } x > 3 \end{cases}$ is continuous at x=3. (a) $a - b = 2/3$ (b) $a = -b$ (c) $a - b = 3$ (d) none of these	1
13.	(c) $a - b = 3$ (d) none of these	
	$x = a\cos^{3}\theta \text{ and } y = a\sin^{3}\theta, \text{ then find the value of } \frac{d^{2}y}{dx^{2}}at\theta = \frac{\pi}{6}$	1
14.	(a)1 (b) 0 (c) 7 (d) none of these If $y = \left(1 + \frac{1}{x}\right)^x$, then $\frac{dy}{dx} =$ (a) $\left(1 + \frac{1}{x}\right)^x [\log(1 + \frac{1}{x}) - \frac{1}{x+1}]$ (b) $\left(1 + \frac{1}{x}\right)^x [\log(1 + \frac{1}{x})]$ (c) 0 (d) 1	1
15.	(c) 0 (d) 1 The differential coefficient of $f(logx)$ with respect to x , where $f(x) = logx$ is (a) $\frac{x}{logx}$ (c) $\frac{logx}{x}$ (b) $(xlogx)^{-1}$ (d) none of these	1
16.	Choose correct option If $f(x) = t^5$ then $\frac{dy}{dx}$ is (a) $5t^4$ (c) $5t^5$ (b) $\frac{t^6}{6}$ (d) none of these	1
17.	Choose correct option If $y = x^6 \operatorname{find} \frac{dy}{dt}$ (a) $6x^5$ (c) 0 (b) 1 (d) none of these	1
18.	 In the given question, a statement of Assertion (A) is followed by a statement of reason (R) Choose the correct answer out of the fallowing choice (a) Both A and B are true and R is the correct explanation of A (b) Both A and B are true and R is not the correct explanation of A (c) A is true but R is false 	1

	Reason (R) $f(x)$ is continuous at a point, then $\frac{1}{f(x)}$ is also continuous at the point	
19.	In the given question, a statement of Assertion (A) is followed by a statement of reason (R)	1
19.	Choose the correct answer out of the fallowing choice	1
	(a) Both A and B are true and R is the correct explanation of A	
	(b) Both A and B are true and R is not the correct explanation of A	
	(c) A is true but R is false	
	(d)A is false but R is true	
	Assertion (A): Modulus function is continuous function	
20.	REASON (R): Modulus function is differentiable function The function $f(x) = \cot x$ is discontinuous on the set	1
20.		1
	a) { $x = n\pi : n \in Z$ } b) { $x = 2n\pi : n \in Z$ } c) { $x = (2n+1)\frac{\pi}{2} : n \in Z$ } d) { $x = \frac{n\pi}{2} : n \in Z$ }	
21.	$\frac{c}{Let f(x) = sin x }.$ Then	1
21.	a) f is everywhere differentiable	1
	b) f is everywhere continuous but not differentiable at $x = n\pi$, $n \in \mathbb{Z}$	
	c) f is everywhere continuous but not differentiable at $x = (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$	
	d) none of these	
22.	If $y = \log(\frac{1-x^2}{1+x^2})$, then $\frac{dy}{dx}$ is equal to	1
	a) $\frac{4x^3}{1-x^4}$ b) $\frac{-4x}{1-x^4}$	
	c) $\frac{1}{4-x^4}$ d) $\frac{-4x^3}{1-x^4}$	
23.	c) $\frac{1}{4-x^4}$ d) $\frac{-4x^3}{1-x^4}$ If $f(x) = mx + 1$, if $x \le \frac{\pi}{2}$	1
	$\sin x + n$, if $x > \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$, then	
	· · · ·	
	c) $n = \frac{m \pi}{2}$ If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx}$ is equal to $\cos x$	
24.	If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dy}$ is equal to	1
	a) $\frac{\cos x}{2y-1}$ b) $\frac{\cos x}{1-2y}$	
	a) $\frac{\cos x}{2y-1}$ b) $\frac{\cos x}{1-2y}$ c) $\frac{\sin x}{1-2y}$ d) $\frac{\sin x}{2y-1}$	
	c) $\frac{1}{1-2y}$ d) $\frac{1}{2y-1}$	
25.	The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t. $\cos^{-1} x$ is	1
	a) 2 b) $\frac{-1}{2\sqrt{1-x^2}}$	
	c) $\frac{2}{3}$ d) $1 - x^2$	
26.	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at	1
	a) 4 b) -2 c) 1 d) 1.5	-
27.	The number of points at which the function $f(x) = \frac{1}{x - [x]}$ is not continuous is	1
	a) 1 b) 2 c) 3 d) none of these	
28.	a) 1b) 2c) 3d) none of theseThe set of points where the function f given by $f(x) = x - 3 \cos x$ is differentiable is	1
-	a) R b) $R - \{3\}$ c) $(0,\infty)$ d) none of these	-
29.	If $y = a \operatorname{sinmx} + b \operatorname{cosmx}$, then $\frac{d^2 y}{dx^2}$ is equal to	1
	a) $-m^2y$ b) m^2y c) $-my$ d) my	
30.	If the function <i>f</i> defined as	1
	$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ k, & x = 3 \end{cases}$	1

	is continuous at x=3, find the value of k.	
31.	If the following functions $f(x)$ is continuous at $x = 0$, then write the value of k.	1
	ar 3r	
	$f(x) = \begin{cases} \frac{\sin \frac{3x}{2}}{x} , & x \neq 0 \\ k , & x = 0 \end{cases}$	
	$f(x) = \begin{bmatrix} x \\ x \end{bmatrix}$, $x \neq 0$	
	k , $x = 0$	
32.	If $y = x x $, find dy/dx for x<0.	1
33.	If $y = x x $, find dy/dx for x<0. The value of 'k' for which the function $f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at x=0 is A) 0 B) -1 C) 1 D) 2	1
	$\frac{1-\cos 4x}{1-\cos 4x} \text{if } x \neq 0$	-
	$f(x) = \begin{cases} 8x^2 & \text{if } x = 0 \\ y & \text{if } x = 0 \end{cases}$ is continuous at x=0 is	
	$\begin{pmatrix} k, l \end{pmatrix} x = 0$	
	B) -1	
	C) 1	
	D) 2	
34.	If $y = sin^{-1}x$, the $(1-x^2)y_2$ is equal to	1
	A) B)	
	B)	
	C) x ²	
35.	If a function defined by	1
55.	$k\cos x = \pi$	1
	$\frac{\pi}{\pi-2r}$, if $x \neq \frac{\pi}{2}$	
	$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$	
	$3 \text{if } x = \frac{1}{2}$	
	is continuous at $x = \frac{\pi}{2}$, then the value of k is:	
	A) 2	
	B) 3	
	C) 6	
	D) -6	
36.	The function $f(x) = \cot x$ is discontinuous on the set:	1
	(A) $\{x = n\pi; n \in Z\}$ (B) $\{x = 2n\pi; n \in Z\}$	
	(C) $\left\{ x = (2n+1)\frac{\pi}{2}; n \in \mathbb{Z} \right\}$	
	$(\mathbf{D}) \left\{ x = \frac{n\pi}{2}; n \in \mathbb{Z} \right\}$	
	(D) $\left\{x = \frac{n\pi}{2}; n \in \mathbb{Z}\right\}$	
		1
37.	If $y = log_e\left(\frac{x^2}{e^2}\right)$, then $\frac{d^2y}{dx^2}$ equals	1
	A) -1/x	
	B) $-1/x^2$	
	C) $2/x^2$	
	$-2/x^2$	1
38.	A) Both A and R are true, and R is the correct explanation of A.	1


	B) Both A and R are true, and R is not the correct explanation of A.C) A is true but R is false.D) A is false but R is true.	
	Assertion(A): Let $y=t^{10} + 1$ and $x=t^8 + 1$, then $\frac{d^2y}{dx^2} = 20t^8$.	
39.	$\frac{\text{Reason(R):}}{\text{A) Both}} \frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \frac{dx}{dt} \frac{d}{dt} \frac{d}$	1
	Assertion(A): If $f(x)=x^n$, $n \neq 0$ is differentiable for all x, then x can be any element of the interval $[1, \infty)$. Reason(R): If $f(x)=x^n$, $n \neq 0$ is differentiable for all x, then x can be any element of the interval $(1, \infty)$.	
40.	If function defined by $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then the value of k is	1
	(A) 2 (B) 3 (C) 6 (D) -6	
41.	The function $f(x) = [x]$, denotes the greatest integer function, is continuous at (A)4 (B) -2 (C) 1 (D) 1.5	1
42.	The function $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at $= \frac{\pi}{2}$, then the value of k is. (A) 3 (B) 2 (C) 1 (D) 1.5	1
43.	The function $f(x) = x + x - 1 $ is (A) Continuous at $x = 0$ as well as at $x = 1$ (B) Continuous at $x = 1$ but not at $x = 0$ (C) Discontinuous at $x = 0$ as well as at $x = 1$ (D) Continuous at $x = 0$ but not at $x = 1$	1
44.	The function $f(x) = \begin{cases} \frac{e^{3x} - e^{-5x}}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at $x = 0$, then value of k is (A)3 (B) 5 (C) 6 (D) 8	1
45.	The function $f(x) = tan x$ is discontinuous on the set (A){ $n\pi : n \in Z$ } (B){ $2n\pi : n \in Z$ } (C){ $(2n+1)\frac{\pi}{2} : n \in Z$ } (D){ $\frac{n\pi}{2} : n \in Z$ }	1
46.	The set of points where the function f given by $f(x) = 2x - 1 \sin x$ is differentiable in (A) R (B) $R - \{\frac{1}{2}\}$ (C) $(0, \infty)$ (D) none of these	1

47.	If $x = 2\cos\theta - \cos 2\theta$ and $y = 2\sin\theta - \sin 2\theta$, then $\frac{dy}{dx}$ is: (A) $\frac{\cos\theta + \cos 2\theta}{\sin\theta - \sin 2\theta}$ (B) $\frac{\cos\theta - \cos 2\theta}{\sin 2\theta - \sin \theta}$ (C) $\frac{\cos\theta - \cos 2\theta}{\sin\theta - \sin 2\theta}$ (D) $\frac{\cos 2\theta - \cos \theta}{\sin 2\theta + \sin \theta}$	1
48.	If $y = \log_e \left(\frac{x^2}{e^2}\right)$, then $\frac{d^2 y}{dx^2}$ is equal to: (A) $-\frac{1}{x}$ (B) $-\frac{1}{x^2}$ (C) $\frac{2}{x^2}$ (D) $-\frac{2}{x^2}$	1
49.	If $\sin y = x \cos(a + y)$, then $\frac{dx}{dy}$ is: (A) $\frac{\cos a}{\cos^2(a+y)}$ (B) $\frac{-\cos a}{\cos^2(a+y)}$ (C) $\frac{\cos a}{\sin^2 y}$ (D) $\frac{-\cos a}{\sin^2 y}$	1
50.	if $f(x) = \frac{acosx-cosbx}{x^2}$, $x \neq 0$ and $f(0) = 4$ is continuous at x=0, then the ordered pair (a,b) is (a) $(\pm 1,3)$ (b) $(1,\pm 3)$ (c) $(-1,-3)$ (d) $(-1,3)$	1
51.	<pre>let A={9,10,11,12,13} and f:A→N be a function defined as f(x) = Highest prime factor of x. Then number of elements in the range of f(x) is (a) 5 (b)4 (c)3 (d)None of these</pre>	1
52.	which of the statements(s) is/are incorrect (a) if f+g is continuous at x+ a, then f and g are continuous at x=a (b) if $\lim_{x\to a} (fg)$ exists, then $\lim_{x\to a} f$ and $\lim_{x\to a} g$ both exists (c) Discontinuity at x = a implies that non existences of limit (d) All functions defined on a closed interval attain maximum or a minimum value in its interval	1
53.	The derivative of f(tanx) w.r.t g(secx) at $x=\frac{\pi}{4}$, where f'(1) = 2 and g'($\sqrt{2}$) = 4, is (a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{2}$ (c) 1 (d) 0	1
54.	If $y^2 = ax^2 + bx + c$, then $\frac{d}{dx}(y^3y_2) =$ (a) 1 (b)-1 (c) $\frac{4ac-b^2}{a^2}$ (d)0	1
55.	If u = $x^2 + y^2$ and x = s+3t, y = 2s - t, then $\frac{d^2u}{dx^2}$ is equal to (a)12 (b)32 (c)36 (d)10	1
56.	The function f(x) = [x], where [x] is greatest integer function, is continuous at (a)4 (b)-2 (c)1 (d)1.5	1
57.	The number of points at which the function $f(x) = \frac{1}{x - [x]}$ is not continous is (a)1 (b)2 (c)3 (d) none of these	1
58.	If $u = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ and $v = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then $\frac{du}{dv}$ is (a) 2 (b)x (c) -1 (d)1	1

59.	If $y = \log(\frac{1-x^2}{1+x^2})$, then $\frac{dy}{dx}$ is equal to	1
	(a) $\frac{4x^3}{1-x^4}$ (b) $\frac{-4x}{1-x^4}$ (c) $\frac{1}{4-x^4}$ (d) $\frac{-4x^3}{1-x^4}$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	(Ans. (b) We find the find that $\frac{x^2-9}{x-3} = (x+3) = 6 \neq f(3)$	1
	So, $f(x)$ has removable discontinuity at $x = 3$	
2.	(Ans. (c): We find that $= and f(x) f(x) = x + 4 = 6$.	1
	$\therefore f(x) \neq f(x)$	
	Hence, $f(x)$ has discontinuity of first kind at $x = 2$.	
3.	Ans. (b): At any integer k, we find that	1
	f(x) = f(k-h) = [k-h] = k-1	
	and $f(x) = f(k+h) = [k+h] = k$	
	\therefore $f(x) \neq f(x)$. So, $f(x)$ has discontinuity of first kind at $x = k$	
4.	(Ans. (b) : We find that	1
	$f(x) = (x-1)^n \sin \sin \left(\frac{1}{x-1}\right)$	
	$= 0 \times (An \ oscillating \ number \ between - 1 \ and \ 1) = 0, if \ n > 0$	
	= f(0), if n = 0.	
	Hence, $f(x)$ is continuous at $x = 1$ for all $n > 0$.	
5.		1
	Ans. (b) : We find that $f(x) = \cos \cos \frac{1}{x}$ = An oscillating number between -1 and 1.	
	So, $f(x)$ does not exist. Hence, $f(x)$ has discontinuity of first kind at $x = 0$.	
6.	(Ans. (a): The function $f(x) = [x]$ is discontinuous at $x = 4, 5, 6$ in [3, 7]. It is right	1
	continuous at $x = 3$ and left discontinuous $x = 7$. Hence, there are four points of	
	discontinuity.	
7.	Ans. (a): The sum of continuous functions is continuous function. Therefore, $f + g$ if	1
	continuous at $x = a$.	1
8.	Ans. (b): The composition of continuous functions is a continuous function. Therefore, <i>gof</i> is	1
	continuous at $x = a$.	
9.	Ans. (d): If $f(x)$ is continuous at $x = 0$, then	1
	$f(x) = f(0) \ \frac{e^{3x} - 1}{1n(1+2x)} = k \ \Longrightarrow \frac{3^{3x} - 1}{3x} \times \frac{2x}{1n(1+2x)} \times \frac{3}{2} = k \Longrightarrow \frac{3}{2} = k$	
10.	(Ans. (b): If $f(x)$ is continuous at $x = 0$, then	1

	sin x	
	$\lim_{x \to 0} \frac{\sin x}{x} + \lim_{x \to 0} \cos x = k \Rightarrow 1 + 1 = k \Rightarrow k = 2$	
44.	(A) Continuous at $x = 0$ as well as at $x = 1$	1
45.	(D) 8 $\lim_{x \to 0} \frac{e^{8x-5x} - e^{-5x}}{x} = k \implies 8 \times \lim_{x \to 0} e^{-5x} \times \lim_{x \to 0} \frac{e^{8x} - 1}{8x} = k \implies k = 8$	1
46.	$(C)\left\{(2n+1)\frac{\pi}{2}:n \in Z\right\}$	1
47.	(B) $R - \{\frac{1}{2}\}$	1
48.	(B) $\frac{\cos\theta - \cos 2\theta}{\sin 2\theta - \sin \theta}$ $\frac{dx}{d\theta} = -2\sin\theta + 2\sin 2\theta \text{ and } \frac{dy}{d\theta} = 2\cos\theta - 2\cos 2\theta$	1
49.	$(D) - \frac{2}{x^2}$ $y = 2\log_e x - \log_e e^2 \implies y = 2\log_e x - 2$	1
50.	(A) $\frac{\cos a}{\cos^2(a+y)}$	1
	$\frac{dx}{dy} = \frac{\cos(a+y)\cos y + \sin y\sin(a+y)}{\cos^2(a+y)}$ $\frac{dx}{dy} = \frac{\cos[(a+y)-y])}{\cos^2(a+y)} \Rightarrow \frac{dx}{dy} = \frac{\cos a}{\cos^2(a+y)}$	
51.	b	1
52.	b	1
53.	a,b,c,d	1
54.	b	1
55.	d	1
56.	d	1
57.	d	1
58.	d	1
59.	d	1
60.	b	1