CHAPTER-8 APPLICATION OF INTEGRALS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	The area of the region bounded by $y = \cos x$ between $x=0$ and $x=\pi$ is	1
	a) 2sq unit	
	b) 4sq unit	
	c) 6sq unit	
	d) Isq unit	
2.	The area of the region bounded by the parabola $y^2 = x$ and the straight line $y = x/2$ is	1
	a) 1/3 sq unit	
	b) 2/3 sq unit	
	c) $3/3$ sq unit	
	d) 4/3 sq unit	
3.	The area bounded by the curve $y^2 = 4ax$ and axis between $y = -a$ and $y = a$ is	1
	a) A^2	
	b) $6a^2$	
	c) $A^2/6$	
	d) $A^2/2$	
4.	The area of the region bounded by the curve $x=2y+3$ and the line $y=1$ and $y=-1$ is	1
	a) 2 sq unit	
	b) 4 sq unit	
	c) 6 sq unit	
	d) 8 sq unit	
5.	The area bounded by the curve $y=x^2 - 1$ and the straight line $x + y=3$	1
	a) $\frac{\sqrt{17}}{7}$ sq unit	
	_	
	b) $\frac{7\sqrt{17}}{6}$ sq unit	
	c) $\frac{17\sqrt{17}}{50}$ sq unit	
	6 Squint	
	d) 4 sq unit	
6	The area of the region bounded by $y = x-2 + x=1$ and $x=3$ and x -axis is	1
0.	a) 4 sq unit	1
	b) 3sq unit	
	c) 2sq unit	
	d) 1 sq unit	
7.	Area of the triangle whose vertices formed from the x-axis and the line 3- x is	1
	a) $\frac{9}{2}$ sq. unit	
	$\begin{pmatrix} 2 \\ b \end{pmatrix} = \frac{3}{2}$	
	$\frac{1}{2}$ sq. unit	
	c) Ysq. unit	

	d) 3 sq unit	
8.	Find the area of the region $\{(x, y) : x^2 \le y \le x\}$. a) $\frac{1}{3}$ sq. unit b) $\frac{1}{2}$ sq. unit c) $\frac{1}{6}$ sq. unit d) $\frac{1}{9}$ sq. unit	1
9.	If $y=2 \sin x + \sin 2x$ for $0 \le x \le 2\pi$ then area enclosed by the curve and the x-axis is a) $\frac{9}{2}$ sq. unit b) 8sq. unit c) 12sq. unit d) 4sq. unit	1
10.	The area of the region bounded by the curves $y=x$, $x=e$ and $y=\frac{1}{x}$ and all the positive x-axis is a) $\frac{1}{2}$ sq. unit b) $\frac{3}{2}$ sq. unit c) 1sq. unit d) $\frac{5}{2}$ sq. unit	1
11.	The area of the region bounded by the circle $x^2 + y^2 = 1$ is(a) 2π sq. units(b) π sq. units(c) 3π sq. units(d) 4π sq. units	1
12.	The area of the region bounded by the curve $y = x + 1$ and the lines $x = 2$ and $x = 3$ is (a) $\frac{7}{2}$ sq. units (b) $\frac{9}{2}$ sq. units (c) $\frac{11}{2}$ sq. units (d) $\frac{13}{2}$ sq. units	1
13.	The area of the region bounded by the curve $y^2 = 4x$, y-axis and the line $y = 3$ is (a) 2 (b) $\frac{9}{4}$ (c) $\frac{9}{3}$ (d) $\frac{9}{2}$	1
14.	The area bounded by $y = 2 - x^2$ and $x + y = 0$ is (a) $\frac{7}{2}$ (b) $\frac{9}{2}$ (c) 9 (d) none of these	1
15.	The area bounded by the parabola $x = 4 - y^2$ and y-axis, in square units, is (a) $\frac{3}{32}$ (b) $\frac{32}{3}$ (c) $\frac{33}{2}$ (d) $\frac{16}{3}$	1
16.	Area lying between the curve $y^2 = 4x$ and $y = 2x$ is (a) $\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{3}{4}$	1

17.	The area bounded by the parabola $y^2 = 4ax$, latus rectum and x-axis is	
	(a) 0 (b) $\frac{4}{3}a^2$ (c) $\frac{2}{3}a^2$ (d) $\frac{a^2}{3}$	1
18.	The area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
	(a) πab (b) $\pi a^2 b^2$ (c) $2\pi ab$ (d) ab	1
19.	The area of the region bounded by the circle $x^2 + y^2 = a^2$	
	(a) $2\pi a$ (b) πa^2 (c) $2\pi a^2$ (d) None of these	1
20.	The area of the region bounded by the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$	1
	(a) 6π (b) 36π (c) 18π (d) None of these	
21.	The area enclosed between the curve $y=x^2$ and $y=\sqrt{x}$ is	1
	A) ¼ sg. unit B) ½ sg. unit	
	C) 4 sq. unit D) 1/3 sq. unit	
22.	The area enclosed among the curves 2x-3y=0, X axis, X=3 and X= 5 is	1
	A) 16 sq. units B) 8 sq. units	
	C) 4 sd. units D) 16/3 sq. units	
23.	Area bounded by the lines y=2+x, y= 2-x and x=2 is	1
	A) 3 sq. units B) 4 sq. units	
24	C) 8 sq. units D) 16sq. units	
24.	Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$, and the lines x=0 and x=2 is	1
	A) π B) $\pi/4$	
	C) π/3 D) π/2	
25.	The area of the region bounded by the curve $y^2=4x$, Y axis and the line y=3 is	1
	A) 2 B)9/4	
	C)9/3 D) 9/2	
26.	The area bounded by the curves y ² =4ax and its latus rectum is	1
	A) 4/3 a ² sq. Units B) 8/3 a ² sq. Units	
	C) 16/3a ² sq. Units D)None of these	
27.	Area bounded by the curve y = sinx between the ordinates x=0 and x= π is	1
	A) 2sq. Units B) 4 sq. Units	
	C) 3 sq. Units D) 1 sq. Units	
28.	Assertion (A): The area bounded by the circle $x^2+y^2= 16$ is 16π sq. Units.	1
	Reason (R): We have $x^2+y^2= 16$, which is circle having center at (0,0) and radius	
	4 units.	
	(A) Both A and R are true and R is the correct explanation of A	
	(B) Both A and R are true but R is not the correct explanation of A.	
L		1

	(C) A is true but R is false.	
	(D) A is false but R is true.	
29.	Assertion (A): The area bounded by $v^2=8x$ and $x^2=8y$ is 64/3 sq. units.	1
	Reason (B): The area bounded by y^2 =4ax and x^2 =4by is 16ab/3 sq. units. The	
	correct answer is	
	(Λ) Both Λ and R are true and R is the correct explanation of Λ	
	(R) Both A and R are true but R is not the correct explanation of A	
	(C) A is true but R is false	
	(C) A is false but R is false.	
20	The energy of the single $y^2 + y^2 + f$ extension to the neural element f (y)	1
50.	The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is	L L
	A) $4/3(4\pi-\sqrt{3})$ B) $4/3(4\pi+\sqrt{3})$	
	C) $4/3(8\pi-\sqrt{3})$ D) $4/3(8\pi+\sqrt{3})$	
31.	Area (in square unit) lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the line x=0, x=2 is (a) π	1
	(b) $\frac{\pi}{2}$	
	(c) $\frac{\pi}{2}$	
	(d) $\frac{3\pi}{4}$	
	Ϋ́Υ.	
	Area of the region bounded by the sum $x^2 - 4x$ is out and the line $x - 2$ is (in equal to	1
32.	(a) 2	1
	(b) 9/4	
	(c) 9/5	
33.	Area of the region bounded by the curve $y^2 = 4x$ and $y = 2x$ is	1
	(a) 2/3	
	(b) 1/3 (c) 1/4	
	(d) 3/4	
34.	The area enclosed between the curve $y^2 = x$ and $y = x $ is	1
_	(a) 1/6	
	(b) 1/3 (c) 2/3	
	(d) 1	
35.	The area enclosed between the curve $y = x$ and	1
	$y = 2x - x^2$ (in square units) is	
	(a) 1/2 (b) 1/6	
	(c) 1/3	
	(d) 1/4	
36.	The area enclosed between the curve $y = ax^2$ and $y = ax^2 (x + y)$ is 1 areas with the state value of a in	1
	$x = ay^2$, $(a > 0)$ is 1 square unit then the value of a is	
	$\begin{pmatrix} (a) \\ \sqrt{3} \\ (b) \end{pmatrix}^{-1}$	
	$(0) \frac{1}{2}$	
	(c) = (d)	
	· ′ 3	
37.	The area (in square units) bounded by the curves $v = \sqrt{x} \cdot 2v - x + 3 = 0$. x- axis and lying in the first	1
	quadrant is	

	(a) 9	
	(b) 36 (c) 18	
	(d) 27/4	
38.	The area enclosed between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is (in Square units)	1
	(a) 4/3	
	(b) $\frac{1}{3}$ (c) $\frac{16}{3}$	
	(d) 8/3	
39.	Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$ is	1
	(a) $2(\pi - 2)$ (b) $\pi - 2$	
	(b) $n - 2$ (c) $2\pi - 1$	
	(d) $(d)2(\pi+2)$	
40.	The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to	1
	(a) $\pi^2 ab$	
	(b) πab (c) $\pi a^2 b$	
	(d) $\pi a b^2$	
41.	The area bounded by the parabola $y^2 = 8x$, the x-axis and the latus rectum is	1
	(a) $16/3$ (b) $23/3$ (c) $32/3$ (d) $16\sqrt{2}/3$	
42.		1
	If the area bounded by y-axis and curves $y = \cos x$ and $y = \sin x$, $0 \le x \le b$ is $(\sqrt{2} - 1)$ sq.	
	units then the value of b is	
	(a) π (b) $\pi/2$ (c) $\pi/4$ (d) none of these	
	$(c) \pi 4$ $(d) none of these$	
43.	The area bounded by the curve $y^2 = x - 4$ and the lines $y = 0$ and $y = 5$ is	1
	(a) $\frac{38}{3}$ (b) $\frac{76}{3}$ (c) $\frac{19}{3}$ (d) $\frac{57}{3}$	1
44.	The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units	1
	(a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2 sq. units	
45.	Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is:	1
	(a) $\pi b^2 / 2$ (b) $\pi b / 2$	
	(c) $\pi b / 4$ (d) $\pi b^2 / 4$	1
46.	The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is	1
	(a) $\pi/4$ (b) $1 + \pi/4$	
	(c) $1 - \pi/4$ (d) none of these	
47.	If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq.	1
	units, then the value of a is	
	(a) $1/2$ (b) 1 (c) $1/2$ (d) none of these	
48	The area of the region bounded by the curve	1
10.	x = 2y + 3, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units, then the value of b is	1
	(a) $b=0$ (b) $b=1$ (c) $b=-1$ (d) none of these	
	2	
49.	The area of the region bounded by the curve $y = x^3$, the x-axis and the ordinates $x = a$, and x	1
	= 1 is $1//4$ then value of a is	

	(a) $a = -2$ (b) $a=2$	
	(c) a=1 (d) none of these	
50.	If the curve $y = f(x)$ crosses x-axis into 3 times and areas A1,A2 and A3 are formed, then the	1
	area between the curve and the ordinates $x = a$ and $x = b$ is given by	
	y = f(x)	
	A. Main x	
	X'O a X. A b	
	(a) $A1 - A2 + A3$ (c) $A1 + A2 - A3$	
	(b) $A1 - A2 - A3$ (d) $A1 + A2 + A3$	
51.	The area bounded by the curve y = sin x, x = 0 and x= π is	1
	(a) 2 sq. unit (b) 4 sq. unit	
	(c) 3 sq. unit (d) 1 sq. unit	
52.	Area bounded by the curve $y = f(x)$, x-axis and the lines $x=a$ and $x = b$ is:	1
	(a) $\int_{a}^{b} x dy$ (b) $\int_{a}^{b} y dx$ (c) $\int_{a}^{b} x^{2} dy$ (d) $\int_{a}^{b} y^{2} dx$	
53.	The area bounded by the curve $y^2 = 4ax$ and its latus rectum is	1
	(a) $\frac{4}{3}a^2$ sq. units (b) $\frac{8}{3}a^2$ sq. units	
	(c) $\frac{16}{2}$ a ² sq. units (d) None of these	
54.	The area enclosed between y = x, x = 1, x = 3 and x-axis is	1
	(a) 2 sq. units (b) 9/2 sq. units	
	(c) 4 sq. units (d) None of these	
55.	The area between the curve $y = x^2$, x-axis and the lines $x = 0$ and $x = 2$ is	1
	(a) $\frac{2}{3}$ sq unit (b) $\frac{6}{3}$ sq unit (c) $\frac{8}{3}$ sq unit (d) $\frac{4}{3}$ sq unit	
56.	The area of the region bounded by the curve $y^2 = x$ and the lines $x = 1$ and $x = 4$ is (in sq.	1
	units):	
	(a) $\frac{15}{2}$ (b) $\frac{14}{2}$ (c) 7 (d) None of these	
57.	The area enclosed between x-axis and the curve $y = \cos x$ when $0 \le x \le 2\pi$ is	1
	(a) 0 sq. unit (b) 2 sq. units (c) 3 sq. units (d) 4 sq. units	
58.	Find the area of the region bounded by the curve $y = x^2$ and the line $y = 16$ is	1
	(a) $\frac{32}{2}$ (b) $\frac{256}{2}$ (c) $\frac{64}{2}$ (d) $\frac{128}{2}$	
59.	The area bounded by the curve $y = 4 \sin x$. x-axis from $x = 0$ to $x = \pi$ is equal to:	1
	(a) 1 sq unit (b) 2 sq unit (c) 4 sq unit (d) 8 sq unit	
60.	The area bounded by the parabola $y^2 = x$ and the straight line $2y = x$ is	1
	(a) $\frac{4}{2}$ sq. units (b) 1 sq. unit (c) $\frac{2}{2}$ sq. unit (d) $\frac{1}{2}$ sq. unit	
61.	The area of the region bounded three roads and the equation of roads is given by the curve	1
	y = x + 1 and the line x=2 and x=3 is	
	(a) $\frac{7}{2}$ sq units	
	$(b) = \frac{4}{3} sa units$	
	11 .	
	(c) $\frac{1}{2}$ sq units	
	(d) $\frac{13}{2}$ sq units	
62.	Using integration, find the area of cake which is cut in the shape of the quadrant of the circle	1

	of radius 2 units and center (0.0).	
	(a) 2π	
	(b) 4π	
	(c) 3π	
	(d) π	
63.	The area of the region bounded by parabola $y^2 = x$ and the straight line $2y = x$ is	1
	(a) $\frac{1}{2}$ sq unit	
	(b) $\frac{3}{2}$ sq unit	
	$(c) \stackrel{4}{=} sq unit$	
	$(d) = \frac{1}{3} sq unit$	
64.	A Cable hangs in the form of parabola with its axis vertical. The cable is 10m high and 5m	1
	wide at the base	
	- 5	
	(a) $y^2 = \frac{3}{8}x$	
	(b) $y^2 = -\frac{5}{2}x$	
	(c) $x^{-} = \frac{1}{8}y$	
	(d) $x^2 = -\frac{5}{8}y$	
65.	A parking lot in JNU CAMPAS has an area equals to the smaller part of the circle x^2 +	1
	$y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$. This area is allotted for car owners who practices car	
	pooling. On the basis of above information, find the area used for car pooling.	
	(a) $\frac{a^2(\pi-2)}{2}$ sq units	
	a^2	
	(b) $\frac{\alpha}{4}$ sq units	
	(c) $\frac{a^2(\pi-2)}{2}$ sq units	
	$\frac{4}{(1-2)}$	
	(d) $-\frac{1}{5}$ sq units	
66.	The area bounded by the curve $y = x $, the x-axis and between $x = -2$ to $x = 0$ is	1
	(a) 4 sq units	
	(b) $\frac{3}{2}$ sq units	
	(c) 1 sq units	
	(d) 2 sq units	
67.	Ram and Aman both draw parabolas. Ram draw a parabola on positive y-axis whose equation	1
	is $y^2 = 4ax$ and Aman draw a parabola on positive x-axis whose equation is $x^2 = 4ay$ on	
	the same xy-plane, then her teacher told them to find the area bounded by these two	
	parabolas.	
	+ /	
	y Y	
	$x^2 = 4ay$	
	$y^2 = 4ax$	

	(a) $\frac{8a^2}{3}$ (b) $\frac{16a^2}{3}$ (c) $\frac{32a^2}{3}$ (d) $\frac{64a^2}{3}$	
68.	Mohit draw three lines and give the equation of lines as $3x - y - 3 = 0$, $2x + y - 12$ and $x - 2y - 1 = 0$ and told his brother to find the area bounded by these lines	1
	(a) 8 sq. units (b) 9 sq. units (d) 11 sq. units	
69	(c) 10 sq. units (d) 11 sq. units The area of region bounded by the line $2r + y = 8$ the Y-axis and the lines $y-2$ and $y-4$ is	1
05.	(a) 5 sq. units (b) 6 sq. units (c) 12 sq. units (d) 7 sq. units	1
70.	The area bonded by the parabola $y^2 = 16x$ and its latusrectum is	1
	(a) $\frac{25}{2}$ sq. units (b) $\frac{16}{2}$ sq. units	
	(c) $\frac{\frac{3}{64}}{3}$ sq. units (d) $\frac{\frac{32}{3}}{3}$ sq. units	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	a) 2 sq unit	1
2.	e) 4/3 sq unit	1
3.	a) A $^2/6$ sq unit	1
4.	b) 6 sq unit	1
5.	c) $\frac{17\sqrt{17}}{c}$ sq unit	1
	6	
6.	d) 1 sq unit	1
7.	b) 9sq. unit	1
8.	c) 9sq. unit	1
9.	c) 12 sq. unit	1
10.	b) $\frac{3}{2}$ sq. unit	1
11.	b	1
12.	a	1
13.	b	1
14.	b	1
15.	b	1
16.	b	1
17.	b	1
18.	a	1
19.	b	1
20.	a	1
21.	C	1
22.	d	1
23.	b	1
24.	а	1
25.	b	1
26.	b	1
27.	a	1
28.	a	1
29.	a	1
30		1
30.		1
32.	a h	1
33.	h	1
34.	b	1
35.	b	1
36.	a	1

37.	а	1
38.	а	1
39.	b	1
40.	b	1
41.	Option – c	1
42.	Option – b	1
43.	Option – b	1
44.	Option – a	1
45.	Option – d	1
46.	Option – c	1
47.	Option – a	1
48.	Option – b	1
49.	Option – a	1
50.	Option – d	1
51.	a	1
52.	С	1
53.	b	1
54.	С	1
55.	С	1
56.	b	1
57.	d	1
58.	b	1
59.	d	1
60.	а	1
61.	(a) $\frac{7}{2}$ sq units	1
62.	(d) π	1
63.	$(c)\frac{4}{3}$ sq unit	1
64.	$(c)x^2 = \frac{5}{8}y$	1
65.	(c) $\frac{a^2(\pi-2)}{4}$ sq units	1
66.	(d) 2 sq units	1
67.	$(b)\frac{16a^2}{3}$	1
68.	(d) 11 <i>sq.units</i>	1
69.	(a) 5 <i>sq. units</i>	1
70.	$(c)\frac{64}{3}$ sq. units	1