CHAPTER-8 BINOMIAL THEOREMS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	(1) The coefficient of y in the expansion of $(y^2 + c/y)^5$ is	1
	(a) $10c$ (b) $10c^2$	
	(c) $10c^3$ (d) None of these	
2.	$(1.1)^{10000}$ is 1000	1
	(a)greater than (b) less than	
	(c) equal to (d) None of these	
3.	(a) $-1670x^9y^3$	1
	The fourth term in the expansion $(x - 2y)^{12}$ is	
	(c) $-1760x^9y^3$	
	(d) $-1607x^{9}y^{3}$	
4.	If <i>n</i> is a Positive integer then	1
	$(\sqrt{3}+1)^{2n+1} + (\sqrt{3}-1)^{2n+1}$ is	
	(a) an even positive integer	
	(b) a rational number	
	(c) an odd positive integer	
	(d) an irrational number.	
5.	If the third term in the binomial expansion of $(1 + x)^m$ is $(-1/8)u^2$ then the rational value	1
	of m is	
	(a) 2 (b) $1/2$ (c) 3 (d) 4	
6.	The greatest coefficient in the expansion of $(1 + x)^{10}$ is	1
	(a) $10!/(5!)$ (b) $10!/(5!)^{-1}$	
7	(c) $10!/(5! \times 4!)$ (d) $10!/(5! \times 4!)$ The coefficient of x^n in the expansion of $(1 - 2x + 2x^2 - 4x^3 +)^{-n}$ is	1
7.	The coefficient of x in the expansion of $(1 - 2x + 5x - 4x + \cdots)$ is	1
	(a) $(2n)!/(n!)$ (b) $(2n)!/(n!)$	
8	(c) $(2n)$; $\{2 \land (n;)\}$ (d) None of these The value of <i>n</i> in the term expansion of $(a \pm b)^n$ if the first three terms of the expansion	1
0.	are 729 7290 and 30375 respectively.	1
	(a) 2 (b) 4	
	(c) = (c)	
9.	If $\alpha \& \beta$ are the noots of the equation $x^2 - x + 1 = 0$ then the value of $\alpha^{2009} + \beta^{2009}$ is	1
	(a) 0 (b) 1 (c) -1 (d) 10	
10.	The general term of the expansion $(a + b)^n$ is	1
	(a) $T_{r+1} = {}^n C_r a^r \cdot b^r$	
	(b) $T_{r+1} = {}^n C_r a^r b^{n-r}$	
	(c) $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{n-r}$	
	(d) $T_{r+1} = {}^n C_r a^{n-r} b^r$	
11.	Which term will not be a function of x in the expansion of $\left(x^2 + \frac{3}{2}\right)^4 x \neq 0$	1
	$\frac{1}{x^2} + \frac{1}{x^2} + \frac{1}$	

	a) 1 st term	
	b) 2 nd term	
	c) 3 rd term	
	d) 4 th term	
12.	Which of the following is an incorrect statement?	1
	a) $(1.01)^{1000000} - 1 > 10000$	
	b) $(1.01)^{1000000} + 1 > 10000$	
	c) $(1.01)^{1000000} > 10000$	
	d) $(101)^{1000000} < 10001$	
13.	The remainder when $9^{n+1} - 8n$ $n \in N$ is divided by 64 is	1
	a) 1	-
	b) 9	
	d = 10	
	u) 10	
14	The sum of coefficients of $(a \pm b)^9$ is	1
	(a + b) is	1
	a) 230	
	$\begin{array}{c} \text{J} \\ \text{J} \\ \text{J} \\ \text{J} \end{array}$	
	() 52 $()$ 52	
	u) 512	
15	The number of terms in the expansion of $[(1 \pm 2r^2)^4]^2$ are	1
15.	(1 + 2x) $(1 + 2x)$	1
	u) 9	
16	$\int f(2 + 3y)^n - \sum^n y - 2^a 3^b y^c \text{ then}$	1
10.	$(2+3y) = \sum_{r=0}^{n} n_{C_r} 2 - 3 - y$, then	1
	a) $a = b = c = r$	
	b) $a = b = r, c = n - r$	
	c) $a = n - r, b = c = r$	
	d) $a = b = n - r, c = r$	
17	Consider the statements:	1
17.	Consider the statements.	T
	ASSERTION: The total number of terms in expansion of $(x^3 + y^3)^3$ is 6.	
	REASON: The total number of terms in expansion of $(x + y)^{\prime\prime}$ is n+1.	
	a) Both A and R are true and R is the correct explanation of A	
	b) Both A and R are true but R is not the correct explanation of A	
	c) A is true but R is false	
	d) A is false but R is true	
18.	Up to how many terms in expansion, the approximate value of $(0.99)^5$ is 0.951	1
	a) 1	

	b) 4	
	c) 3	
	d) 2	
19.	The last two digits of $(102)^{100}$ are	1
	a) 01	
	b) 24	
	c) 02	
	d) 76	
20.	Consider the statements:	1
	ASSERTION: The value of $\sum_{r=0}^{n} n_{C_r} 6^r = 6^n$	
	REASON: The value of $\sum_{r=0}^{n} n_{C_r} x^r = (1+x)^n$	
	a) Both A and R are true and R is the correct explanation of A	
	b) Both A and R are true but R is not the correct explanation of A	
	c) A is true but R is false	
	d) A is false but R is true	
21.	The value of C (8,0) +C (8,1) +C (8,2) + +C (8,8) is	1
	a)128 b)256 c) 512 d)1024	
22.	Find the number of terms in the expansion of $(1 - 2x + x^2)^{20}$.	1
	a)20 b)21 c)41 d)44	
22	Find the number of terms in the expansion of $(a \pm b \pm c)^{50}$	1
25.	Find the number of terms in the expansion of $(a + b + c)$.	
	a)50 b)51 c)101 d)1326	
24.	The number of terms in the expansion $(a+b)^{10} + (a-b)^{10}$ is	1
	a)22 b)12 c)11 d)6	
25		1
25.	Expanding $(x + \frac{1}{x})^{\circ}$ using binomial theorem, if we find the independent term in the expansion, it will be	
	a)15 b)20 c)6 d) none	
26.	If $\frac{T_2}{T_3}$ in the expansion of $(a + b)^n$ and $\frac{T_3}{T_4}$ in the expansion of $(a + b)^{n+3}$ are equal then n =	1
	a) 3 b)4 c)5 d)6	
27.	The value of $C(n,0)-C(n,1)+C(n,2)-\dots+(-1)^n C(n,0)$ is	1
	a)2 ⁿ b)1 c)0 d)n	
28.	What is the fifth term from the last in the expansion of $(a + b)^n$?	1
	a)C(n,3) $b)C(n,4)$ $c)C(n,5)$ $d)C(n,n-5)$	
29.	Given, $2^{3n} - 7n - 1$ is divisible by n^2 , $n \in N$. Then the value of n will be	1
	a) 2 b)4 c)7 d)8	

30.	Who first gave the idea of binomial expansion in the form $(a + b)^n$?	1
	a)(case Newton b)(e)baitz c)Eibonacci d)Arvabbata	
31.	The approximation of $(0.99)^5$ is	1
	(a) 0.951 (b) 0.195 (c) 0.591 (d) 0.519	_
32.	The total number of terms in the expansion of $(x+a)^{100} + (x-a)^{100}$ after simplification is	1
	(a)50 (b)202 (c) 51 (d)none of these	
33.	The number of terms in the expansion of $(1+2x+x^2)^{20}$ is	1
	(a) 40 (b)41 (c) 42 (d)43	
34.	If in the expansion of $(a+b)^n$ and $(a+b)^{n+3}$, the ratio of the coefficients of second and third	1
	terms, and third and fourth terms are respectively are equal then n is	
	(a) 3 (b) 4 (c) 5 (d) 6	
35.	The coefficients of 2^{nd} , 3^{rd} and the 4^{th} terms in the expansion of $(1+x)^n$ are in A.P, then the	1
	value of n is	
20	(a) 2 (b) 7 (c)11 (d)14	1
30.	The two successive terms in the expansion of $(1+x)^{-1}$ whose coefficients are in the ratio 1:4	1
	are (a) 3^{rd} and 4^{th} (b) 4^{th} and 5^{th} (c) 5^{th} and 6^{th} (d) 6^{th} and 7^{th}	
37.	The number of terms in the expansion of $(1-3r+3r^2-r^3)^8$ is	1
	(a) 23 (b) 24 (c) 25 (d) 26	-
38.	If the 17 th and 18 th terms in the expansion of $(2+a)^{50}$ are equal then 'a' is	1
	(a) 2 (b) 1 (c) 3 (d)4	
39.	If the coefficient of x^2 in the expansion of $(1+x)^m$ is 6 then the value of 'm' is	1
	(a) 4 (b) 5 (c) 6 (d)7	
40.	The coefficient of x^3 in the expansion of $(1+x+x^2)^3$ is	1
	(a) 6 (b) 7 (c) 8 (d)9	
41.	The power of x occurring in the 7th term in the expansion of $\left(\frac{4x}{4x} - \frac{8}{3x}\right)^9$ is	1
	(a) = 5 (b) 5	
	$(a) - 3 \qquad (b) - 3 \qquad (c) - 3 \qquad (d) - 3$	
42.	The number of terms in the expansion of	1
	$(a + b + c)^n$, where $n \in N$ is	
	(A) $\frac{(n+1)(n+2)}{(B)(n+1)}$ (B) n + 1	
	$\binom{2}{(n+2)} (n+1) n$	
43.	The coefficient of x ⁿ in the expansion of $(1 + x)^{2n}$ and	1
	$(1 + x)^{2n-1}$ are in the ratio.	_
	(A) 1 : 2 (B) 1 : 3	
	(C) 3 : 1 (D) 2 : 1	
44.	In the binomial expansion of	1
	$(a-b)^n$, $n \ge 5$, the sum of 5th and 6th terms is zero, then $\frac{a}{b}$ equals	
	(a) $\frac{5}{-1}$ (b) $\frac{6}{-1}$	
	$\binom{n-4}{n-5}$ (d) $\frac{n-5}{n-4}$	
/ [$(3)_{6}$ $(3)_{5}$	1
45.	If $\binom{v}{r} - \binom{v}{3} = \binom{v}{2}$, then r is equal to	*
	(a) $(b) 4$ (c) $(c) (c) (c) (c) (c) (c) (c) (c) (c) (c) $	1
40.	I ne greatest term in the expansion of $(1 + 3x)^{-1}$,	T

	where $x = 1/3$ is	
	(a) T ₂₈ (b) T ₂₅ (c) T ₂₆ (d) T ₂₄	
47.	In the expansion of $(3x + 2)^4$, the coefficient of middle term is (a) 36 (b) 216 (c) 54 (d) 81	1
48.	$(\sqrt{3}+1)^4 + (\sqrt{3}-1)^4$ is equal to	1
	(a) a rational number	
	(b) a negative integer	
	(c) an irrational number	
	(d) None of these	
49.	The sum of the binomial coefficient in the expansion of	1
	$(1+x)^{7}$ is	-
	(1, 7, 7) is (a) 256 (b) 64 (c) 128 (d) 0	
50	The total number of terms in the expansion of $(x + a)^{51} - (x - a)^{51}$ after simplification is	1
50.	(a) 102 (b) 25	1
	(c) 26 (d) None of these	
51.	The coefficient of y in the expansion of $(y^2+c/y)^5$ is	1
	(a)10	
	(b)10c	
	$(c)10c^2$	
	(d)10c ³	
52.		1
	$(1.2)^{10000}$ is1000	
	(a) Creater than	
	(a) Orealer than (b) Smaller than	
	(c) equal to	
	(d)None	
53.	The 2nd term of $(x-2y)^{12}$ is	1
	$(a)-12x^{11}y^{2}$	
	$(b)-24x^{11}y1$	
	$(c)-24x^{11}y^2$	
	(d)None	
E A	16 1 1 1 1 1 1 1 1 1 1	1
54.	If n is positive integer than $(\sqrt{2}+1)^{2n+1} + (\sqrt{2}+1)^{2n+1}$ is	1
	(a)Even positive integer (b)Irrational number	
	(c)Odd positive integer	
	(d)rational number	
55.	Coefficient of x^5 in the expansion of $(x^2+3/x)^4$ is	1
	(a)-12	
	(b)6	
	(c)12	
	(d)None	
56.	Coefficient of x^n in the expansion of $(1+x+x^2+)^{-n}$ is	1
	(a)2n	
	(0)(-1)	
	(d)None	
57	The greatest coefficient in the expansion of $(1+x)^{10}$ is	1
	(a)(10!)/(4!)	
	(b)(10!)/(5!)	

	$(c)(10!)/(5!)^2$	
	(d)None	
58.	Calculate the value of ${}^{8}C_{5}$.	1
	(a) 76	
	(b) 41	
	(c) 110	
	(d) 56	
59.	Determine the independent term of x^7 in the expansion of $(3x^2 + 4)^{12}$.	1
	(a) $210 * 4^6$	
	(b) 232	
	(c) 548* 4!	
	(d) $220 * 3^6 * 4^6$	
60.	The last digit of the number $((\sqrt{51}+1)^{51} - (\sqrt{51}-1)^{51}$ is	1
	(a) 16	
	(b) 8	
	(c) 50	
	(d) 1	

ANSWERS:

1. $(c)10c^3$ 12.(a)greater than13. $(c) -1760x^3y^3$ 14.(d) An irrational Number.15.(b) $\frac{1}{2}$ 16.(b) 10!/(5!)^217.(b) (2n)!/(n!)^218.(c) 619.(b) 1110.(d) $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$.111.C112.D113.B114.D115.D116.C117.A118.C119.D119.D120.D121.1.b) $2^n = 256$ 122.2.c)Given expression= $(1-x)^{40}$. Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125.b.b(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}126.c)5127.c)Given expression= $(1-1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	Q. NO	ANSWER	MARKS
2. (a)greater than 1 3. (c) $-1760x^9y^3$ 1 4. (d) An irrational Number. 1 5. (b) $\frac{1}{z}$ 1 6. (b) $10!/(5!)^2$ 1 7. (b) $(2n)!/(n!)^2$ 1 8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^n C_r a^{n-r} b^r$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{5^{13/52}}{1^2} = 1326$ 1 24. 4.d)6 1 25. 5.b)(x + $\frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15 \frac{1}{x^2} + 6 \frac{1}{x^4} + \frac{1}{x^6}}$ <	1.	$(c)10c^{3}$	1
3. (c) $-1760x^9y^3$ 1 4. (d) An irrational Number. 1 5. (b) $\frac{1}{2}$ 1 6. (b) $10!/(5!)^2$ 1 7. (b) $(2n)!/(n!)^2$ 1 8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^nC_ra^{n-r}b^r$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 12. 1. 1. 13. 3. 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. D 1 21. 1.	2.	(a)greater than	1
4. (d) An irrational Number. 1 5. (b) $\frac{1}{2}$ 1 6. (b) 10!/(5!) ² 1 7. (b) (2n)!/(n!) ² 1 8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 12. 2. 2. 13. 1 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. 1 1 21. 1. 1. 22. 2.	3.	(c) $-1760x^9y^3$	1
5. (b) $\frac{1}{2}$ 1 6. (b) $10!/(5!)^2$ 1 7. (b) $(2n)!/(n!)^2$ 1 8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^n C_r a^{n-r} b^r$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 11. 1 1 12. 2. 1 13. 1 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. 1 1 21. 1b) $2^8 = 256$ 1 22. 2.0/Given expression= $(1 $	4.	(d) An irrational Number.	1
6. (b) $10!/(5!)^2$ 1 7. (b) $(2n)!/(n!)^2$ 1 8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^n C_r a^{n-r} b^r$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. D 1 19. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15 \frac{1}{x^2} + 6 \frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 2 26. c)5 1 2 27. c)Given expression= $(1 - 1)^n =$	5.	(b) $\frac{1}{2}$	1
7. (b) $(2n)!/(n!)^2$ 1 8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^n C_r a^{n-r} b^r$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51x^2}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b)(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15 \frac{1}{x^2} + 6 \frac{1}{x^4} + \frac{1}{x^6} 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1	6.	(b) $10!/(5!)^2$	1
8. (c) 6 1 9. (b) 1 1 10. (d) $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$. 1 11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. D 1 21. 1.b) $2^{8} = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 5^{2}}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b) $(x + \frac{1}{x})^{6} = x^{6} + 6x^{4} + 15x^{2} + 20 + 15\frac{1}{x^{2}} + 6\frac{1}{x^{4}} + \frac{1}{x^{6}}$ 1 26. c)5 1 1 27. c)Given expression= $(1 - 1)^{n} = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	7.	(b) $(2n)!/(n!)^2$	1
9.(b) 1110.(d) $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$.111.C112.D113.B114.D115.D116.C117.A118.C120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1 - x)^{40}$.Therefore, number of terms=41123.3.d) $\frac{51\times52}{2} = 1326$ 124.4.d)6125.5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 126.c)5127.c)Given expression= $(1 - 1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	8.	(c) 6	1
10.(d) $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}.$ 111.C112.D113.B114.D115.D116.C117.A118.C119.D120.D121.1.b) $2^{8} = 256$ 122.2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125.5.b) $(x + \frac{1}{x})^{6} = x^{6} + 6x^{4} + 15x^{2} + 20 + 15\frac{1}{x^{2}} + 6\frac{1}{x^{4}} + \frac{1}{x^{6}}$ 126.c)5127.c)Given expression= $(1 - 1)^{n} = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	9.	(b) 1	1
11. C 1 12. D 1 13. B 1 14. D 1 15. D 1 16. C 1 17. A 1 18. C 1 19. D 1 20. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	10.	$(d) T_{r+1} = {}^n C_r a^{n-r} b^r.$	1
12.D113.B114.D115.D116.C117.A118.C119.D120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1 - x)^{40}$.Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125.5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 126.c)5127.c)Given expression= $(1 - 1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	11.	С	1
13.B114.D115.D116.C117.A118.C119.D120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1-x)^{40}$.Therefore, number of terms=41123. $3.d)$ $\frac{51 \times 52}{2} = 1326$ 124.4.d)61125. $5.b)(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 126.c)51127.c)Given expression= $(1-1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	12.	D	1
14.D115.D116.C117.A118.C119.D120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125.5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 126.c)5127.c)Given expression= $(1 - 1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	13.	В	1
15.D116.C117.A118.C119.D120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125.5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}}{50, independent term is 20}$ 126.c)5127.c)Given expression= $(1 - 1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	14.	D	1
16.C117.A118.C119.D120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125.5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 126.c)5127.c)Given expression= $(1 - 1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	15.	D	1
17.A118.C119.D120.D121.1.b) $2^8 = 256$ 122.2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41123.3.d) $\frac{51 \times 52}{2} = 1326$ 124.4.d)6125. $5.b)(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 126.c)5127.c)Given expression= $(1 - 1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	16.	С	1
18. C 1 19. D 1 20. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	17.	Α	1
19. D 1 20. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	18.	С	1
20. D 1 21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	19.	D	1
21. 1.b) $2^8 = 256$ 1 22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 25. 5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	20.	D	1
22. 2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41 1 23. 3.d) $\frac{51 \times 52}{2} = 1326$ 1 24. 4.d)6 1 25. $5.b)(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	21.	1.b) $2^8 = 256$	1
23. $3.d$) $\frac{51 \times 52}{2} = 1326$ 1 24. $4.d$)6 1 25. $5.b$) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. c)5 1 27. c)Given expression= $(1 - 1)^n = 0$ 1 28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	22.	2.c)Given expression= $(1 - x)^{40}$. Therefore, number of terms=41	1
24. 4.d)6 1 25. $5.b)(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. $c)5$ 1 27. $c)$ Given expression= $(1 - 1)^n = 0$ 1 28. $b)C(n,4)$ as coefficients equidistant from the beginning and from the end are equal. 1 29. $c)7$ 1	23.	3.d) $\frac{51 \times 52}{2} = 1326$	1
25. $5.b)(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ 1 26. $c)5$ 1 27. $c)$ Given expression= $(1 - 1)^n = 0$ 1 28. $b)C(n,4)$ as coefficients equidistant from the beginning and from the end are equal. 1 29. $c)7$ 1	24.	4.d)6	1
26.c)5127.c)Given expression= $(1-1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	25.	5.b) $(x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + 15\frac{1}{x^2} + 6\frac{1}{x^4} + \frac{1}{x^6}$ So independent term is 20	1
27.c)Given expression= $(1-1)^n = 0$ 128.b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.129.c)71	26.	c)5	1
28. b)C(n,4) as coefficients equidistant from the beginning and from the end are equal. 1 29. c)7 1	27.	c)Given expression= $(1-1)^n = 0$	1
29. c)7 1	28.	b)C(n,4) as coefficients equidistant from the beginning and from the end are equal.	1
	29.	c)7	1

30.	a)Isaac Newton	1
31.	a) 0.951	1
32.	c) 51	1
33.	b) 41	1
34.	c) 5	1
35.	(b) 7	1
36.	(c)5 th and 6 th	1
37.	c) 25	1
38.	(b) 1	1
39.	a) 4	1
40.	(b) 7	1
41.	C	1
42.	Α	1
43.	D	1
44.	D	1
45.	А	1
46.	А	1
47.	В	1
48.	Α	1
49.	C	1
50.	C	1
51.	d	1
52.	a	1
53.	b	1
54.	b	1
55.	c	1
56.	b	1
57.	c	1
58.	d	1
59.	d	1
60.	b	1