CHAPTER-9 DIFFERENTIAL EQUATIONS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Solution of differential equation $xdy - ydx = Q$ represents:	1
	(a) a rectangular hyperbola	
	(b) parabola whose vertex is at the origin	
	(c) straight line passing through the origin	
	(d) a circle whose centre is at the origin	
2.	Given the differential equation $\frac{dy}{dx} = \frac{6x^2}{2y + cosy}$ $y(1) = \pi$	1
	(a) Solution is $y^2 - siny = -2x^3 + c$	
	(b) Solution of $y^2 + siny = 2x^3 + c$	
	(c) $C = \pi^2 + 2$ (d) $C = \pi^2 - 2$	
3.	The differential equation of all parabolas whose axis of symmetry is along the axis of the x- axis is of order $(x)^2$	1
	(a) 3 (b) 1	
	(c) 1 (c) 2	
	(d) none of these	
4.	The degree of the equation satisfying the relation	1
	$\sqrt{1+x^2} + \sqrt{1+y^2} = \lambda x (\sqrt{1+y^2} - y(\sqrt{1+x^2}))$	
	(a) 1	
	(b) 2 (C) 2	
	(C) 3 (d)4	
	(u)4	
5.	The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^{\frac{1}{4}} + x^{\frac{1}{5}} = 0$	1
	Respectively are	
	(a) 2 and not defined	
	(b) 2 and 2	
	(c)2 and 3 (1)2 and 2	
6.	(d)3 and 3 Integrating factor of the differential equation $\frac{dy}{dx} + ytanx - secx = 0$ is	1
	(a) $\cos x$	
	(b) secx	
	(c) $e^{\cos x}$	
	(d) e^{secx}	
7.	The number of arbitrary constants in the particular solution of a differential equation of third	1
	order is:	
	(a) 3	
	(b) 2	

	(c) 1 (d) 0	
8.	The differential equation satisfied by $y = \frac{A}{x} + B$ is (A, B are parameters) (a) $x^2y_1 = y$ (b) $xy_1 + 2y_2 = 0$ (c) $xy_2 + 2y_1 = 0$ (d) none	1
9.	The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is: (a)Ellipse (b)Parabola (C) Circle (d) Rectangular hyperbola	1
10.	The order of differential equations of all circles of given radius 4 (a) 3 (b) 2 (c) 1 (d) 0	1
11.	The differentilequation y log y dx – xdy =0 is (i) variable separable differential equation (ii) homogeneous differential equation (iii)First order linear differential equation (iv) none of these	1
12.	The integrating factor of the differential equation $x\frac{dy}{dx} + y = x^3$ (i) x (ii) logx (iii) i/x (iv0 none of these	1
13.	The degree of the differential equation $x^2 + (\frac{dy}{dx})^2 = 5$ i (i) 2 (ii) 3 iii) 1 (iv)none of these	1
14.	A solution of the differential equation $(\frac{dy}{dx})^2 - x\frac{dy}{dx} + y = 0$ is (i)y=2 (ii) y=2x (iii) y=2x-4 (iv)none of these	1
15.	The integrating factor of $\frac{dy}{dx}$ - y=1 is (i) e ^x (ii) e ^{-x} (iii) -e ^{-x} (iv) none of these	1
16.	The sum of the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3$ = siny is (i)1 (ii)2 (iii) 3 (iv) 4	1
17.	What is the product of the order and degree of the differential equation $\frac{d^2y}{dx^2}siny + \left(\frac{dy}{dx}\right)^3 cosy = \sqrt{y}$	1

	(i)3 (ii) 2 (iii) 6 (iv) not defined	
18.	The solution of the differential equation $2x \frac{dy}{dx}$, y = 3 represents a family of (i) Straight lines (ii) circles (iii) parabolas (iv) ellipses	1
19.	The general solution of the differential equation $xdy -(1+x^2) dx=x$ is (i)y= 2x+ x ³ /3 + C (ii) y= 2logx+ x ³ /2 + C (iii)y= 2x+ x ² /3 + C y= x ² /2 + C (iv) none of these	1
20.	The solution of $\frac{dy}{dx}$, $y = 1$, $y(0) = 1$ is given by (i)xy=-e(ii)xy=-e ^{-x} (iii)xy=-1 (iv) y=2e ^x - 1	1
21.	The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$, is a)3 b)2 c)1 b)2 d)not defined	1
22.	The degree of the differential equation $x=1 + \frac{dy}{dx} + \frac{1}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{1}{3!} \left(\frac{dy}{dx}\right)^3 + \dots, \text{is}$ a)3 b)1 c)not defined d)none of these	1
23.	The order of the differential equation $\left(\frac{d^2r}{dt^2}\right)^2 + 3\left(\frac{dr}{dt}\right)^3 + 4 = 0$ is a)2 b)1 c)3 d)4	1
24.	The differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} = \left(y + \frac{dy}{dx}\right)^{\frac{1}{2}}$ is of a)second order ,fourth degree b)first order, fourth degree c)second order, third degree d)second order ,second degree	1
25.	The number of arbitrary constants in the general solution of a differential equation of fourth order area)0b)2c)3d)4	1
26.	The order of the differential equation whose general solution is given by $y=(c_1+c_2)\sin(x+c_3) - c_4e^{x+c_5}$ is	1
	a)5 b)4 c)3 d)2	
27.	The solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ is	1

	a) $\tan^{-1} x + \cot^{-1} x = C$ b) $\sin^{-1} x + \sin^{-1} y = C$	
	c) $\sec^{-1}x + \csc^{-1}x = C$	
	d) none of these	
28.	The number of arbitrary constants in the particular solution of a differential equation of third	1
	order are	
	a)3 b)2 c)1 d)0	
29.	Which of the following is a homogeneous differential equation?	1
	(A) $(4x+6y+5) dy-(3y+2x+4) dx=0$	
	(B) $(xy)dx - (x^3 + y^3) dy = 0$	
	(C) $(x^3 + 2y^2) dx + 2xy dy = 0$	
	(D) $y^2 dx + (x^2 - xy - y^2) dy = 0$	
30.	The Integrating Factor of the differential equation	1
	$x\frac{dy}{dx} - y = 2x^2$ is	1
	$\begin{array}{c} A \\ A \\ e^{-x} \end{array} \qquad (B) e^{-y} \end{array}$	
	(C) $1/x$ (D) x.	
31.	The sum of order and degree of the differential equation $x^3 \left(\frac{d^2y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^4 = 0$ is	1
	(a) 6 (b) 2 (c) 4 (c) 4 (d) 2	
32.	(a) 6 (b) 2 (c) 4 (d) 3 The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} + x^{1/5} = 0$ respectively are	1
02.	The order and degree of the differential equation $\frac{dy}{dx^2} + \left(\frac{dy}{dx}\right) + x^{1/5} = 0$ respectively are	1
	(a) 2 and 4 (b) 2 and 2 (c) 2 and 3 (d) 3 and 3	
33.	Which of the following is a second order differential equation?	1
	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$	
34.	$(c)y + (y)^2 + y = 0$ (d) $y = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth	1
54.	order are:	L T
	(a) 0 (b) 2 (c) 3 (d) 4	
35.	The numbers of arbitrary constant in the particular solution of a differential equation of	1
	second order are:	
	(a) 0 (b) 2 (c) 3 (d) 4	
36.	(a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function	1
	of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential	
	equation of degree :	
	(a) 0 (b) 1 (c) 2 (d) not defined	
37.	The integrating factor of differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is	1
	(a) cos x (b) tan x (c) sec x (d) sin x	
38.	The solution of differential equation x dy-y dx=0 represents	1
	(a) a rectangular hyperbola (b) parabola whose vertex is at origin (c) straight	
	line passing through origin (d) a circle whose centre is at origin	
39.	A function $F(x,y)$ is a homogeneous function of degree n, if	1
	(a) $f(x, y) = x^n f\left(\frac{y}{x}\right)$ (b) $f(x, y) = y^n g\left(\frac{x}{y}\right)$	1

	(c) Both a and b (d) $f(x, y) = x^{-n} f\left(\frac{y}{x}\right)$	
40.	For what value of n is the following a homogeneous differential equation : $\frac{dy}{dx} = \frac{x^3 - y^n}{x^2 y + xy^2}$	1
	(a) 4 (b) 3 (c) 2 (d) 1	
41.	The order and degree of the differential equation $x^2 \frac{d^2 y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^4$ is A. 1, 1	1
	B. 2, 4 C. 2, 1 1, 4	
42.	The order and degree of the differential equation $x^3 \left(\frac{d^2y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^4 = 0$ is A. 2, 1 B. 2, 2 C. 4, 2	1
43.	The degree of the differential equation $\frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 = 2x^2 \log\left(\frac{d^2y}{dx^2}\right)$ is A. 2 B. 1 C. Not Defined 3	1
44.	The order and degree of the differential equation $\left(\frac{d^4y}{dx^4}\right)^2 = \left\{x + \left(\frac{dy}{dx}\right)^2\right\}^3$ is A. 2, 2 B. 2, 4 C. 2, 6 4, 2	1
45.	The sum of the degree and the order of the following differential equation: $\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0$ is A. 6 B. 3 C. 5 4	1
46.	The sum of the order and degree of the following differential equation: $y = x \left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx^2}$ is A. 5 B. 4 C. 3 2	1
47.	The integrating factor of the differential equation $x \frac{dy}{dx} - 2y = 2x^2$ is A. $\frac{1}{x}$ B. $\frac{1}{x^2}$ C. lnx e^x	1
48.	The integrating factor of the differential equation $(y - x)dy = (1 + y^2)dx$ is A. $e^{\tan^{-1}x}$ B. $e^{\tan^{-1}y}$ C. $\tan^{-1}x$ $\tan^{-1}y$	1
	The number of arbitrary constants in the general solution of a fourth order differential	I

	,· ·	
	equation is	
	A. 0 B. 2	
	B. 2 C. 3	
50.	The number of arbitrary constants in the particular solution of a fourth order differential	1
50.	equation is	1
	A. 0	
	B. 2	
	C. 3	
	4	
51.	Determine the order of differential equation	1
		-
	$\frac{d^4y}{dx^4} + \tan(y^{\prime\prime}) = 5$	
	(A)4 (B) 2 (C) 1 (D) Not Defined	
52.		1
	Check which of the given function is a solution of the following differential	
	equation	
	v'' - v' = 0	
	y - y = 0	
	(A) $y = \sqrt{1 + x^2}$	
	(B) $y = e^x + 1$	
	(C) $xy = \log y + C$	
	$(D)y - \cos y = x$	
53.	The number of arbitrary constants in the general solution of a differential	1
	equation of third order are	
	0 (B) 2 (C) 4 (D) 3	
54.	Find the degree of the following differential equation	1
	$\left(\frac{d^2 y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$	
	$\left(\frac{dx^2}{dx^2}\right) + \cos\left(\frac{dx}{dx}\right) = 0$	
	(A) = (B) + (C) + (D) Note $D = 5$ and	
	(A) 2 (B) 1 (C) (D) Not Defined	
55.	A homogeneous differential equation of the form	1
	$\frac{dy}{dx} = f(\frac{y}{x})$ can be solved by making the substitution	
	(A) y = vx	
	(B) $v = yx$	
	(C) $x = vy$	
	(D)y = v	
56.	The Integrating factor of the differential equation	1
	$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$	
	is	
	(A) $1 - x^2$	
·	·	

	1	
	$(B)\frac{1}{1+x^2}$	
	(c) $1 + x^2$	
	(D) e^{1+x^2}	
57.		1
57.	The general solution of the differential equation	1
	$e^x dy + (ye^x + 2x)dx = 0$ is	
	$(A)xe^{y} + x^{2} = C$	
	$(B) x e^y + y^2 = C$	
	(C) $ye^{x} + x^{2} = C$	
	(D) $ye^{y} + x^{2} = C$	
58.	The Integrating factor of the differential equation	1
	$x \frac{dy}{dx} - y = 2x^2$ is	
	$x \frac{dx}{dx} - y = 2x^2$ is	
	(A) e^{-x}	
	(B) e^{-y}	
	(C) $\frac{1}{x}$	
	(D) <i>x</i>	
59.	The general solution of the differential equation	1
	$\frac{dy}{dx} = e^{x+y}$ is	
	(A) $e^{x} + e^{y} = C$ (B) $e^{x} + e^{y} = C$	
	(C) $e^{-x} + e^{y} = C$	
	(D) $e^{-x} + e^{-y} = C$	
60.	The number of arbitrary constants in the particular solution of a differential	1
	equation of fifth order are	
	5 (B) 2 (C) 3 (D) 0	
61.	The order of the differential equation	1
	$2x^2d^2y/dx^2$ -3dy/dx+y=0 is	
	(a)2	
	(b)1	
	(c)0 (d)not defined	
62.	The degree of differential equation	1
02.	$1 + (\frac{dy}{dx})^2 = x$ is	
	(a)1 (b)2	
	(b)2 (c)3	
	(d)not defined	
63.	The order and degree of the differential equation	1
_	$X\sqrt{1-y^2}dx + y\sqrt{1-x^2}dy$	
	= 0 are respectively.	
	(a)1 and 1	
	(b)1 and 2	

	(c)2 and 1	
	(d)1 and 3	
64.	The order and degree (if defined) of the differential equation	1
	$d^{2}y/dx^{2} + x(d\frac{dy}{dx})^{2} = 2x^{2}\log(d^{2}y/dx^{2})$	
	(a)2 and 3	
	(b)2 and 1	
	(c)2 and not defined	
	(d) None of these	
65.	The number of arbitrary constants in the particular solution of a differential equation of	
	second order is(are)	1
	(a)0	
	(b)1	
	(c)2	
	(d)3	
66.	The differential equation	1
	$Y \frac{dy}{dx} + x = C$ represents	
	(a) family of hyperbolas	
	(b)family of parabolas	
	(c)family of ellipses	
	(d)family of circles	
67.	Which of the following is not a homogeneous function of x and y	1
	$(a)x^2+2xy$	
	(b)2x - y	
	$(c)\cos^2(\frac{y}{r}) + \frac{y}{r}$	
	(d)sinx -cosy	
68.	If the slope of the tangent to the curve at any point $P(x,y)$ is $\frac{y}{r} - \cos^2 \frac{y}{r}$, then the equation of a	1
	curve passing through $(1, \frac{\pi}{4})$	
	is a second s	
	$(a)\tan(\frac{y}{x}) + \log x = 1$	
	$(b)\tan(\frac{y}{r}) + \log y = 1$	
		1
	$(c)\tan(\frac{x}{y}) + \log x = 1$	
	$(d)\tan(\frac{x}{y}) + \log y = 1$	
69.	The integrating factor of	1
	$(\sin x)\frac{dy}{dx}$ +(2cosx)y=sinxcosx is	
	(a)secx	
	$(b)(sinx)^2$	
	$(c)(cosecx)^2$	
	$(d)(tanx)^2$	
70.	The general solution of the differential equation	1
	$e^{2x}\frac{dy}{dx} + 3e^{2x}y = 1$ is	
	$\int_{a}^{ax} (a)ye^{3x} = e^x + C$	
	$(b)ye^{3x} = e^{-x} + C$	
	$(c)ye^{3x} = -e^x + C$	
	$(d)ye^{x} = e^{3x} + C$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	с	1
2.	b	1
3.	c	1
4.	a	1
5.	a	1
6.	b	1
7.	d	1
8.	c	1
9.	d	1
10.	b	1
11.	i	1
12.	i iii	1
13.	iii	1
14. 15.	ii	1
15. 16.	iii	1
10.	ii	1
17.	i	1
19.	iv	1
20.	iv	1
21.	D	1
22.	С	1
23.	A	1
24.	A	1
25.	D	1
26.	С	1
27.	В	1
28.	D	1
29.	D	1
30.	С	1
31.	С	1
32.	Α	1
33.	В	1
34.	D	1
35.	Α	1
36.	В	1
37.	С	1
38.	C	1
39.	C	1
40.	В	1
41.	Order = 2, Degree = 1	1
42.	Order = 2, $Degree = 2$	1
43.	Degree = Not Defined	1

44.	Order = 4, $Degree = 2$	1
45.	$\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0$	1
	$\implies 4. \left(\frac{d^2 y}{dx^2}\right)^3. \frac{d^3 y}{dx^3} = 0$	
	$\implies \left(\frac{d^2y}{dx^2}\right)^3 \frac{d^3y}{dx^3} = 0$	
	Order = 3, $Degree = 1$	
	Order + Degree = 3 + 1 = 4 Order + Degree = 2 + 1 = 3	
46.		1
47.	$x\frac{dy}{dx} - 2y = 2x^{2}$ $\Rightarrow \frac{dy}{dx} - \frac{2y}{x} = 2x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$	1
	$\frac{dy}{dt} + Py = 0 \dots (ii)$	
	dx dx dx dx dx dx dx dx	
	On comparison, we get	
	$P = -\frac{2}{x}, Q = 2x$	
	Integrating Factor (I. F) = $e^{\int p dx} = e^{\int \frac{-2dx}{x}} = e^{-2\log x } = e^{\log \frac{1}{x^2} } = \frac{1}{x^2}$	
48.	$(\tan^{-1} y - x)dy = (1 + y^2)dx$	1
	$\Rightarrow (\tan^{-1} y - x) = (1 + y^2) \frac{dx}{dy}$	
	$\Rightarrow \frac{dx}{dy} = \frac{(\tan^{-1}y - x)}{(1 + y^2)}$ $\Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{\tan^{-1}y}{1 + y^2} \dots (i)$ $\frac{dx}{dy} + Px = Q \dots (ii)$ On comparison, we get $P = \frac{1}{1 + y^2}, Q = \frac{\tan^{-1}y}{1 + y^2}$ Integrating Factor (I. F) = $e^{\int pdy} = e^{\int \frac{dy}{1 + y^2}} = e^{\tan^{-1}y}$	
		1
49. 50.	4 0	1
50.	0 A	1
52.	B	1
53.	D	1
54.	D	1
55.	A	1
55.	C	1
57.	C	1
57.	C	1
58.	A	1
60.	D	1
00.	ען	1

61.	(a)	1
62.	(b)	1
63.	(a)	1
64.	(c)	1
65.	(a)	1
66.	(d)	1
67.	(d)	1
68.	(a)	1
69.	(b)	1
70.	(a)	1