CHAPTER-10 VECTORS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	If points A (60 î+ 3 ĵ), (40 î– 8 ĵ) and C (aî- 52ĵ) are collinear, then 'a' is equal to	1
	a) 40 b) -40 c) 20 d) -20	
2.	The value of î. (ĵx \hat{k}) + ĵ. (îx \hat{k}) + \hat{k} . (îx ĵ) is	1
	a) 0 b) -1 c) 1 d) 3	
3.	If $ \vec{a} = 2$, $ \vec{b} = 5$ and $ \vec{a} \times \vec{b} = 8$, find \vec{a} . \vec{b}	1
	a) 6 b)1 c)7 d)0	
4.	Find the area of the gm whose adjacent sides are represented by the vectors	1
	$\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}, \ \vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$	
	a)10 b) 10v3 c)8 d)12	
5.	\vec{a} is a unit vector and $(\vec{x} - \vec{a}) (\vec{x} + \vec{a}) = 8$, then find $ \vec{x} $	1
	a)2 b)5 c)3 d)1	-
6.	If $ \vec{a} \times \vec{b} = 4$, $ \vec{a} \cdot \vec{b} = 2$, then $ \vec{a} $	1
	2 b ⁻	
	2	
	is	
	a) 6 b) 2 c) 20 d) 8	
7.	If $ \vec{a} = 2$, $ \vec{b} = 7$ and $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \vec{a} and \vec{b}	1
	a) $\pi/6$ b) π c) 0 d) none	
8.	Find a vector of magnitude $3\sqrt{2}$ units which makes an angle of $\pi/4$, $\pi/2$ with y and	1
	z-axes, respectively.	
	a) ± 3î+ 3ĵ b) 3î- 3ĵ c) ± 5î+ 3ĵ d) none	
9.	If points A (60 î+ 3 ĵ), (40 î– 8 ĵ) and C (aî- 52ĵ) are collinear, then 'a' is equal to	1
	a) 40 b) -40 c) 20 d) -20	
10.	If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is	1
	perpendicular to \vec{c} , then find the value of λ .	
	a)9 b)8 c)5 d)1	
11.	Let $\vec{a} = 2\hat{i} + 3\hat{j} + c\hat{k}$. The value of c if $ \vec{a} = 5$ is	1
	(a)0 (b) $2\sqrt{3}$ (c) 1 (d)12	
12.		1
	$(a)\frac{1}{5}$ $(b)\frac{1}{\sqrt{3}}$ $(c)\frac{1}{3\sqrt{5}}$ $(d)\frac{1}{5\sqrt{3}}$	
	5 $\sqrt{3}$ $\sqrt{3}$ $\sqrt{5}$ $\sqrt{5}\sqrt{3}$	
10		
13.	If $\overrightarrow{AB} = (2\hat{\imath} + \hat{\jmath} - 3\hat{k})$ and A(1,2,-1) is the given point, then the coordinates of B are	1
	(a) $(3,-3,4)$ (b) $(3,3,4)$ (c) $(-3,-3,-4)$ (d) $(3,3,-4)$ If $ \vec{a} \times \vec{b} = 4$, $\vec{a} \cdot \vec{b} = 2$, then $ \vec{a} ^2 \vec{b} ^2 =$	
14.	If $ \vec{a} \times \vec{b} = 4$, $\vec{a} \cdot \vec{b} = 2$, then $ \vec{a} ^2 \vec{b} ^2 =$	1
	(a)6 (b)20 (c)8 (d)2	
15.	(a)6(b)20(c)8(d)2If \vec{a} is any vector, then $\vec{a} \cdot \vec{a}$ is	1
	$ (a)0 (b)\neq 0 (c)0 (d) \vec{a} ^2$	
16.	If \vec{a} and \vec{b} are two vectors of magnitude 3 and $\frac{2}{3}$ respectively such that $\vec{a} \times \vec{b}$ is a unit vector,	1
	then the angle between \vec{a} and \vec{b} is	
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{8}$	_
17.	A vector of magnitude 9 units in the direction of the vector	1
	$(-2\hat{\imath}+\hat{j}+2\hat{k})$ is	

	(a) $(-3\hat{\imath}+6\hat{j}+6\hat{k})$ (b) $(-6\hat{\imath}+3\hat{j}+3\hat{k})$	
10	$\frac{(c)(-6\hat{\imath}+3\hat{\jmath}+6\hat{k})}{(d)(6\hat{\imath}+6\hat{\jmath}-3\hat{k})}$	1
18.		
19.	(a)-1 (b) 1 (c) -2 (d) 2 · If $ \vec{a} \times \vec{b} ^2 + \vec{a}.\vec{b} ^2 = 144$ and $ \vec{a} = 4$, then $ \vec{b} $ is equal to	
15.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
20.	If \vec{a} and \vec{b} are two collinear vectors, then which of the following is incorrect?	1
	(a) $\vec{b} = h\vec{a}$, for som scalar h	-
	(a) $\vec{b} = h\vec{a}$, for some scalar \vec{h} (b) $\vec{a} = \pm \vec{b}$	
	(c) $\vec{u} = \pm \vec{b}$ (c) the respective components of \vec{a} and \vec{b} are proportional	
	(d)both the vector \vec{a} and \vec{b} have same direction, but different magnitudes.	
21.	The vector in the direction of the vector $\vec{a}=\hat{i}-\hat{2}_J+2\hat{k}$ that has a magnitude 9 is:	1
	(a) $\hat{i} - \hat{2}\hat{i} + 2\hat{k}$ (b) $\hat{-}(\hat{i} - \hat{2}\hat{i} + 2\hat{k})$	-
	$ (a) 2(\hat{i} - \hat{j}) + 2\hat{k} $ $ (b) 3(\hat{i} - \hat{j}) + 2\hat{k} $ $ (c) 3(\hat{i} - \hat{j}) + 2\hat{k} $	
22.	(a) $\hat{\imath} - \hat{2}_{j} + 2\hat{k}$ (b) $\frac{1}{3}(\hat{\imath} - \hat{2}_{j} + 2\hat{k})$ (c) $3(\hat{\imath} - \hat{2}_{j} + 2\hat{k})$ (d)9 $\hat{\imath} - \hat{2}_{j} + 2\hat{k}$ The position vectors of the points A, B, C are $2\hat{\imath} + \hat{\jmath} - \hat{k}, 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$ and $\hat{\imath} + 4\hat{\jmath} - \hat{k}$	1
22.	$3\hat{k}$ respectively. These points :	–
	(a) form an isosceles triangle (b) form a right triangle	
	(c) are collinear (d) form a scalene triangle	
23.	(c) are collinear(d) form a scalene triangleThe projection of the vector $\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ on $\vec{b} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$ is:	1
	$\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$	
	(a) $\frac{\sqrt{5}}{2}$ (b) $\frac{5}{\sqrt{2}}$ (c) $\frac{\sqrt{5}}{6}$ (d) $\frac{\sqrt{6}}{5}$ If θ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a} \times \vec{b} = \vec{a}.\vec{b} $ when θ is:	
24.	If θ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a} \times \vec{b} = \vec{a}, \vec{b} $ when θ is:	1
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) none of these	
25.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) none of theseIf $\hat{a}, \hat{b}, \hat{c}$ are mutually perpendicular unit vectors, then value of $ \hat{a} + \hat{b} + \hat{c} $ is:	1
26.	(a) 1 (b) $\sqrt{2}$ (c) $\sqrt{3}$ (d) 2 The vector $\vec{b} = 3\hat{\imath} + 4\hat{k}$ is to be written as the sum of a vector α parallel to $\vec{a} = \hat{\imath} + \hat{\jmath}$ and a vector	1
	The vector $\vec{b} = -5t + 4k$ is to be written as the sum of a vector \vec{u} parametric $\vec{u} = t + f$ and a vector \vec{k} perpendicular to \vec{a} . Then \vec{a} is:	-
	$(a)^{\frac{3}{2}}(\hat{i} + \hat{i}) \qquad (b)^{\frac{2}{2}}(\hat{i} + \hat{i}) \qquad (c)^{\frac{1}{2}}(\hat{i} + \hat{i}) \qquad (d)^{\frac{1}{2}}(\hat{i} + \hat{i})$	
27.	$\vec{\beta} \text{ perpendicular to } \vec{a}. \text{ Then } \vec{\alpha} \text{ is:}$ (a) $\frac{3}{2}(\hat{i}+\hat{j})$ (b) $\frac{2}{3}(\hat{i}+\hat{j})$ (c) $\frac{1}{2}(\hat{i}+\hat{j})$ (d) $\frac{1}{3}(\hat{i}+\hat{j})$ If the position vectors of <i>P</i> and <i>Q</i> are $\hat{i}+3\hat{j}-7\hat{k}$ and $5\hat{i}-2\hat{j}+4\hat{k}$ then cosine of the angle	1
۷۲.		1
	between \overrightarrow{PQ} and y-axis is:	
	(a) $\frac{5}{\sqrt{162}}$ (b) $\frac{4}{\sqrt{162}}$ (c) $\frac{11}{\sqrt{162}}$ (d) $-\frac{5}{\sqrt{162}}$	
28.	\vec{a} and \vec{b} are two unit vectors and θ is the angle between them then $\cos\frac{\theta}{2} =$	1
	(a) $\frac{1}{2} \vec{a} + \vec{b} $ (b) $ \vec{a} + \vec{b} $ c) $ \vec{a} - \vec{b} $ (d) $\frac{1}{2} \vec{a} - \vec{b} $	
29.	$(a)\frac{1}{2} \vec{a} + \vec{b} \qquad (b) \vec{a} + \vec{b} \qquad c) \vec{a} - \vec{b} \qquad (d)\frac{1}{2} \vec{a} - \vec{b} $ $\vec{a}, \vec{b}, \text{ and } \vec{c} \text{ are three unit vectors such that } \vec{a} + \vec{b} + \vec{c} = \vec{0}, \text{ then } \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} =$	1
	3 (b) $-\frac{3}{2}$ (c) $\frac{3}{2}$ (d) 3	
30.	In the following questions, a statement of assertion followed by a statement of reason is	1
	given. Choose the correct answer out of the following choice as follows:	1
	a) Assertion and reason both are correct statements and reason is correct explanation	
	for assertion.	
	b) Assertion and reason both are correct statements but reason is not correct	

34.35.36.	Let $\vec{a} = \hat{\imath} + 2\hat{\jmath}$ and $\vec{b} = 2\hat{\imath} + \hat{\jmath}$. Is $ \vec{a} = \vec{b} $? Are the vectors equal ? Find the projection of the vector $7\hat{\imath} + \hat{\jmath} - 4\hat{k}$ on $2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}$. Find the value of p for which the vectors $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 9\hat{k}$ and $\vec{b} = \hat{\imath} + p\hat{\jmath} + 3\hat{k}$ are (i) Perpendicular (ii) Parallel	1 1 1
34.35.36.	Find the projection of the vector $7\hat{i} + \hat{j} - 4\hat{k}$ on $2\hat{i} + 6\hat{j} + 3\hat{k}$. Find the value of p for which the vectors $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are (i) Perpendicular	_
35. 36.	Find the value of p for which the vectors $\vec{a} = 3\hat{\imath} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{\imath} + p\hat{\jmath} + 3\hat{k}$ are (i) Perpendicular	1
	Find the angle between two vectors \vec{a} and \vec{b} having the same length $\sqrt{2}$ and their scalar product is -1 .	1
37.	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, find the value of $(\vec{r} \times \hat{\imath}) \cdot (\vec{r} \times \hat{\jmath}) + xy$.	1
	Find a unit vector perpendicular to both the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$.	1
39.	If $\vec{a} = \hat{\imath} + 3\hat{\jmath} - 2\hat{k}$ and $\vec{b} = -\hat{\imath} + 3\hat{k}$ then find $ \vec{a} \times \vec{b} $.	1
40.	Find $\hat{\iota}, \hat{\jmath}, \hat{\jmath}, and \hat{k}, \hat{k}$ also find $\hat{\iota} \times \hat{\iota}, \hat{\jmath} \times \hat{\jmath}$ and $\hat{k} \times \hat{k}$	1
	The value of expression $ \vec{a} \times \vec{b} ^2 + (\vec{a} \cdot \vec{b})^2$ is (a) $\vec{a} \cdot \vec{b}$ (b) $ \vec{a} \cdot \vec{b} $ (c) $ \vec{a} ^2 \vec{b} ^2$ (d) $(\vec{a} \cdot \vec{b})$	1
42.	If is any non zero vector then $(\vec{a} \cdot \hat{i}) \hat{i} + (\vec{a} \cdot \hat{j}) \hat{j} + (\vec{a} \cdot \hat{k}) \hat{k}$ is equal to (a) $\vec{a} \cdot \vec{b}$ (b) \vec{a} (c) 0 (d) None of these	1
43.	The vector in the direction of the vector $(\hat{\iota} - 2\hat{j} + 2\hat{k})$ has the magnitude 9 is (a) $(\hat{\iota} - 2\hat{j} + 2\hat{k})$ (b) $\frac{\hat{\iota} - 2\hat{j} + 2\hat{k}}{3}$ (c) $3(\hat{\iota} - 2\hat{j} + 2\hat{k})$ (d) $9(\hat{\iota} - 2\hat{j} + 2\hat{k})$	1
	The direction cosine of vector \overrightarrow{BA} , where the coordinates of A and B are (1,2,-1) and (3,4,0) respectively, are (a) -2,-2,-1 (b) $-\frac{2}{3}$, $-\frac{2}{3}$, $-\frac{1}{3}$ (c) 2,2,1 (d) $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$	1
	Angle between two vectors \vec{a} and \vec{b} with magnitude $\sqrt{3}$ and 4 respectively and $\vec{a} \cdot \vec{b} = 2\sqrt{3}$ is	1

	(a) AL + BM + CN= 0 (b) $\frac{A}{L} = \frac{B}{M} = \frac{C}{N}$	(c) A=L,B=M, C=N (d) None of these	;
48.	The value of $(\hat{\imath} \times \hat{\jmath}) \cdot \hat{\jmath} + (\hat{\jmath} \times \hat{\imath}) \cdot \hat{k}$ is		1
	(a) 2 (b) 0	(c) 1 (d) -1	
49.	If $ \vec{a} = 4$ and $-3 \le \delta \le 2$ then the range of $ \delta $	iā is	1
	(a) $[0, 8]$ (b) $[-12, 8]$	(c) [0, 12] (d) [8, 12]	
50.	In $\triangle ABC$, $\overrightarrow{AB} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{\imath} - \hat{\jmath} + \hat{\jmath} + 2\hat{k}$	$-4\hat{k}$.If D is mid- point of BC ,then , \overrightarrow{AD} is	. 1
	equal to		
	(a) $4\hat{i} + 6\hat{k}$ (b) $2\hat{i} - 2\hat{j} + 2\hat{k}$	(c) $\hat{i} - \hat{j} + \hat{k}$ (d) $2\hat{i} + 3\hat{k}$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	b	1
2.	d	1
3.	a	1
4.	b	1
5.	c	1
6.	c	1
7.	а	1
8.	a	1
9.	b	1
10.	b	1
11.	b	1
12.	c	1
13.	d	1
14.	b	1
15.	d	1
16.	c	1
17.	c	1
18.	b	1
19.	c	1
20.	d	1
21.	$C. \ 3(\hat{\imath} - \hat{2j} + 2\hat{k})$	1
22.	A. form an isosceles triangle	1
23.	C. $\frac{\sqrt{5}}{6}$	1
24.	$B, \frac{\pi}{2}$	1
25.	$\overline{C}.\sqrt{3}$	1
26.	A. $\frac{3}{2}(\hat{i}+\hat{j})$	1
27.	$C. \sqrt{3}$ $A. \frac{3}{2}(\hat{i} + \hat{j})$ $D \frac{5}{\sqrt{162}}$ $A. \frac{1}{2} \vec{a} + \vec{b} $	1
28.	A. $\frac{1}{2} \left \vec{a} + \vec{b} \right $	1

29.	$B_{-}-\frac{3}{2}$	1
30.	C. Assertion is correct statement but reason is wrong statement.	1
31.	(i) Scalar	1
	(ii) Vector	
32.	$\frac{12}{5}\vec{a} - \frac{13}{5}\vec{b}$	1
33.	Magnitude is equal ($\sqrt{5}$) of both vectors but since components if the	1
	vectors are not equal both vectors are not same.	
34.	8/7	1
35.	(i) P=-15	1
	(ii) P=2/3	
36.	2π	1
	$\overline{3}$	
37.	0	1
38.	$4\sqrt{3}$	1
39.	$\sqrt{91}$	1
40.	1,1,1 AND 0,0,0	1
41.	(c)	1
42.	(b)	1
43.	(c)	1
44.	(b)	1
45.	(b)	1
46.	(a)	1
47.	(b)	1
48.	(d)	1
49.	(c)	1
50.	(d)	1