CHAPTER-10

VECTORS

02 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $ \vec{a} = 3$, $ \vec{b} = 4$, $ \vec{c} = 5$ and each one	2
2	of them being perpendicular to the sum of the other two find $ \vec{a} + \vec{b} + \vec{c} $ If $\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k}$, $\vec{b} = - \hat{i} + \hat{k}$, $\vec{c} = 2 \hat{j} - \hat{k}$ are three vectors, find the area of the	2
2.	parallelogram having diagonals ($\vec{a} + \vec{b}$) and ($\vec{b} + \vec{c}$)	2
3.	Show that the points A(-2î+3 ĵ+5 k̂), B (î+2 ĵ+3 k̂), C (7î- k̂) are collinear.	2
4.	If $\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k}$, $\vec{b} = -\hat{i} + 2 \hat{j} + \hat{k}$, $\vec{c} = 3 \hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is	2
	perpendicular to \vec{c} , then find the value of λ .	
5.	If p and q are the unit vectors forming an angle of 300	2
	, find the area of the	
	parallelogram having	
	$\vec{a} = \vec{p} + 2 \vec{q}$ and $\vec{b} = 2\vec{p} + \vec{q}$ as its diagonals.	
6.	Find the direction ratios and direction cosines of the vector $\vec{a} = (5\hat{\imath} - 3\hat{\jmath} + 4\hat{k})$.	2
7.	Write the value of p for $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 9\hat{k}$ and $\vec{b} = \hat{\imath} + p\hat{\jmath} + 3\hat{k}$ are parallel vectors.	2
8.	Find $\vec{a} \cdot (\vec{b} \times \vec{c})$ if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.	2
9.	If $\vec{a} = x\hat{\imath} + 2\hat{\jmath} - z\hat{k}$ and $\vec{b} = 3\hat{\imath} - y\hat{\jmath} + \hat{k}$ are two equal vectors, then write the value of $y^x + 5z$.	2
10.	Find a unit vector parallel to the sum of the vectors $(\hat{i}+\hat{j}+\hat{k})$ and $(2\hat{i}-3\hat{j}+5\hat{k})$.	2
11.	If $\vec{a} = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$, $\vec{b} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$ and $\vec{c} = -\hat{\imath} + 2\hat{k}$, then find the value of $\hat{a} - \hat{b} + 2\hat{c}$.	2
12.	The sum of two unit vectors is a unit vector. Show that the value of their difference is $\sqrt{3}$.	2
13.	Find a vector in the direction of $5\hat{i} - \hat{j} + 2\hat{k}$ which has magnitude 8.	2
14.	Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX , OY , OZ	2
15.	If $ \vec{a} = 10$, $ \vec{b} = 1$ and $ \vec{a} \cdot \vec{b} = 6$, then find $ \vec{a} \times \vec{b} $	2
16.	Find a unit vector perpendicular to each of the vectors $ec{a}+ec{b}$ and $ec{a}-ec{b}$, where	2
	$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}, \vec{b} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}.$	
17.	Prove that the points A,B and C with position vectors \vec{a} , \vec{b} and \vec{c} respectively	2
	are collinear if and only if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$.	
18.	Prove that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$	2
19.	If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{b} = 4\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and $\vec{c} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$ find a vector of	2
	magnitude 6 units which is parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.	
20.	Show that the points A,B and C with position vectors $\vec{a}=3\hat{\imath}-4\hat{\jmath}-4\hat{k},\vec{b}=$	2
	$2\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{c} = \hat{\imath} - 3\hat{\jmath} - 5\hat{k}$ respectively from the vertices of a right angled	
	triangle.	
21.	For what value of a, the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear?	2
22.	Find unit vector perpendicular to both the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$.	2
23.	If $\vec{a} = 2$, $\vec{b} = \sqrt{3}$ and $\vec{a} \cdot \vec{b} = \sqrt{3}$ find the angle between \vec{a} and \vec{b} .	2
24.	If \vec{p} is unit vector and $(\vec{x} - \vec{p}) \cdot (\vec{x} + \vec{p}) = 80$, then find $ \vec{x} $.	2
25.	Show that the points $A(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, $B(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$, and $C(7\hat{\imath} - \hat{k})$ are collinear.	2

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$ \vec{a} + \vec{b} + \vec{c} ^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$	2
	$= \vec{a}.\vec{a} + \vec{a}.\left(\vec{b} + \vec{c}\right) + \vec{b}.\vec{b} + \vec{b}.\left(\vec{a} + \vec{c}\right) + \vec{c}.\vec{c} + \left(\vec{a} + \vec{b}\right)$	
	$= \left \vec{a} \right ^2 + \left \vec{b} \right ^2 + \left \vec{c} \right ^2$	
	=9+16+25 = 50	
	$\left \vec{a} + \vec{b} + \vec{c} \right = \sqrt{50}$	
	$=5\sqrt{2}$	
2.	It is given that $ec{a}=2\hat{i}-3\hat{j}+\hat{k}, ec{b}=-\hat{i}+\hat{k}, ec{c}=2\hat{j}-\hat{k}$	2
	$dec {ec a} + {ec b} = \left(2 \hat i - 3 \hat j + \hat k ight) + \left(- \hat i + \hat k ight) = \hat i - 3 \hat j + 2 \hat k$	
	$ec{b}+ec{c}=\left(-\hat{i}+\hat{k} ight)+\left(2\hat{j}-\hat{k} ight)=-\hat{i}+2\hat{j}$	
	We know that the area of parallelogram is $rac{1}{2}ig ec{d_1} imesec{d_2}ig $, where $ec{d_1}$ and $ec{d_2}$ are the diagonal vectors.	
	Now, $\left(\vec{a}+\vec{b} ight) imes\left(\vec{b}+\vec{c} ight)=egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \ 1 & -3 & 2 \ -1 & 2 & 0 \ \end{bmatrix}=-4\hat{i}-2\hat{j}-\hat{k}$	
	$ -1 2 0 $ \therefore Area of the parallelogram having diagonals $\left(ec{a}+ec{b} ight)$ and $\left(ec{b}+ec{c} ight)$	
	$=rac{1}{2}\left \left(ec{a}+ec{b} ight) imes\left(ec{b}+ec{c} ight) ight $	
	$=rac{1}{2}igg -4\hat{i}-2\hat{j}-\hat{k}igg $	
	$=\frac{1}{2}\sqrt{(-4)^2+(-2)^2+(-1)^2}$	
	$=rac{\sqrt{21}}{2}$ square units	
	Thus, the required area of the parallelogram is $\frac{\sqrt{21}}{2}$ square units.	

3.	We have	2
	vector AB = $(1 + 2)i + (2 - 3)j + (3 - 5)k = 3i$ - $j - 2k$	
	vector BC = $(7 - 1)i + (0 - 2)j + (-1 - 3)k = 6i$ - 2j - 4k	
	vector CA = $(7 + 2)i + (0 - 3)j + (-1 - 5)k =$ 9i - 3j - 6k	
	Now, $ \text{vector AB} ^2 = 14$, $ \text{vector BC} ^2 = 56$, $ \text{vector CA} ^2 = 126$	
	⇒ vector AB = $\sqrt{14}$, vector BC = $2\sqrt{14}$, vector CA = $3\sqrt{14}$	
	⇒ vector CA = vector AB + vector BC	
	Hence the points A, B and C are collinear.	
4.	$\vec{a} + \lambda \vec{b} = (2\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$ Ans:	2
	$= (2-\lambda)\hat{i} + (2+2\lambda)\hat{j} + (3+\lambda)\hat{k}$	
	$(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = 0 \cdot \vec{a} + \lambda \vec{b} \perp \vec{c}$	
	$\left[(2-\lambda)\hat{i} + (2+2\lambda)\hat{j} + (3+\lambda)\hat{k} \right] \cdot (3\hat{i} + \hat{j}) = 0$	
	$3(2-\lambda)+(2+2\lambda)=0$	
	$-\lambda = -8$	
	$\lambda = 8$	
5.	$ec{a} = \hat{p} + 2 \; \widehat{q}$	2
	$ec{b}=2\widehat{p}+\!\hat{q}$	
	$ec{a} imesec{b}=\left(ec{p}+2ec{q} ight) imes\left(2ec{p}+ec{q} ight)$	
	$=2ec{p} imesec{p}+ec{p} imesec{q}+4ec{q} imesec{p}+2ec{q} imesec{q}$	
	$=2\left(0 ight) +ec{p} imesec{q}-4ec{p} imesec{q}+2\left(0 ight)$	
	$=-3ec{p} imesec{q}$	
	Area of the parallelogram $=rac{1}{2}\left ec{a} imesec{b} ight $	
	$egin{align} &=rac{1}{2}\leftert-3\left(ec p imesec q ight) ightert \ &=rac{3}{2}\leftertec p ightert\leftertertert\sin30^o \end{aligned}$	
	$=rac{f 3}{2} ec p ec q \sin 30^o$	
	$= \frac{3}{2}(1)(1)\left(\frac{1}{2}\right)(\because \vec{p} \text{ and } \vec{q} \text{ are unit vectors })$ $= \frac{3}{4} \text{ sq. units}$	
	$=\frac{1}{2}(1)(1)\left(\frac{1}{2}\right)(1)\left(\frac{1}{2}\right)(1)$	
	$=\frac{3}{4}$ sq. units	
6.	Given that $\vec{a} = (5\hat{i} - 3\hat{j} + 4\hat{k})$	2
	For any vector $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ the direction ratios are represented as (a_x, a_y, a_z) The direction ratios are $(5, -3, 4)$	
	$ \vec{a} = \sqrt{25 + 9 + 16} = \sqrt{50} = 5\sqrt{2}$	
	$\therefore \text{ The direction cosines are} = \frac{5}{5\sqrt{2}}, \frac{-3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}} = \frac{1}{\sqrt{2}}, \frac{-3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}$	

		
7.	Given that $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 9\hat{k}$ and $\vec{b} = \hat{\imath} + p\hat{\jmath} + 3\hat{k}$	2
	Since these two vectors are parallel to each other, so the angle between them is $\theta = 0$.	
	Therefore $\vec{a} \times \vec{b} = \vec{a} \vec{b} \sin \theta = \vec{a} \vec{b} \sin 0 = 0$	
	We know that $\vec{a} \times \vec{b} = (a_2b_3 - b_2a_3)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$	
	$\vec{x} = \vec{x} \cdot \vec{b} = 0$	
	$\Rightarrow (a_2b_3-b_2a_3)\hat{i} + (a_3b_1-a_1b_3)\hat{j} + (a_1b_2-a_2b_1)\hat{k} = 0$	
	$\Rightarrow \hat{i} (6 - 9p) + \hat{j} (9 - 9) + \hat{k} (3p - 2) = 0$	
	$\Rightarrow -3\hat{\imath}(3p-2) + \hat{k}(3p-2) = 0$	
	$\Rightarrow 3p - 2 = 0 \Rightarrow \text{Thus p} = 2/3$	
8.	Given that $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k}$, $\vec{b} = -\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{c} = 3\hat{\imath} + \hat{\jmath} + 2\hat{k}$	2
	To find $\vec{a} \cdot (\vec{b} \times \vec{c})$	
	We know that $\vec{b} \times \vec{c} = \hat{\imath}(b_2c_3-c_2b_3) + \hat{\jmath}(c_1b_3-b_1c_3) + \hat{k}(b_1c_2-c_1b_2)$ Here $a_1=2, a_2=1, a_3=3, b_1=-1, b_2=2, b_3=1, c_1=3, c_2=1, c_3=2$	
	$\vec{b} \times \vec{c} = \hat{\iota} (4-1) + \hat{\jmath} (3+2) + \hat{k} (-1-6) = 3\hat{\iota} + 5\hat{\jmath} - 7\hat{k}$	
	Therefore, $\vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{\imath} + \hat{\jmath} + 3\hat{k}) \cdot (3\hat{\imath} + 5\hat{\jmath} - 7\hat{k}) = ((2 \times 3) + (1 \times 5) + (3 \times (-7)) = 6 + 5 - 21$	
	$\begin{vmatrix} -10 \end{vmatrix} = -10$	
9.	Given that $\vec{a} = x\hat{\imath} + 2\hat{\jmath} - z\hat{k}$	2
	and $\vec{b} = 3\hat{\imath} - y\hat{\jmath} + \hat{k}$	
	are two equal vectors.	
	$\therefore x = 3, y = -2 \text{ and } z = -1$	
10		2
10.	Let $\vec{a} = (i+j+k)$ and $\vec{b} = (2i-3j+5k)$ $\vec{a} + \vec{b} = (\hat{i}+\hat{j}+\hat{k}) + (2\hat{i}-3\hat{j}+5\hat{k}) = 3\hat{i}-2\hat{j}+6\hat{k}$	2
	The unit vector parallel to the sum of the given vectors $=\frac{\vec{a}+\vec{b}}{ \vec{a}+\vec{b} } = \frac{3\hat{\imath}-2\hat{\jmath}+6\hat{k}}{\sqrt{9+4+36}} = \frac{3\hat{\imath}-2\hat{\jmath}+6\hat{k}}{\sqrt{49}} =$	
	$\frac{3\hat{i}-2\hat{j}+6\hat{k}}{7} = \frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k}$ $ \hat{a} - \hat{b} + 2\hat{c} = \sqrt{4 + 25 + 1} = \sqrt{30}$	
11.	$ \hat{a} - \hat{b} + 2\hat{c} = \sqrt{4 + 25 + 1} = \sqrt{30}$	2
	$d.r = -\frac{2}{\sqrt{20}}\frac{5}{\sqrt{20}}, -\frac{1}{\sqrt{20}}$	
12.	$d.r = -\frac{2}{\sqrt{30}}\frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}}$ $ \vec{a} = 1, \vec{b} = 1, \vec{a} + \vec{b} = 1$	2
	u -1, b -1, a b -1	_
	$\left (\vec{a} + \vec{b})^2 + (\vec{a} - \vec{b})^2 = 2\left\{ \vec{a} ^2 + \vec{b} ^2 \right\} = 4$	
	$\left \left(\left \vec{a} - \vec{b} \right \right)^2 = 3 \right $	
	$ \vec{a} - \vec{b} = \sqrt{3}$	
13.	$\begin{vmatrix} \vec{a} - \vec{b} \end{vmatrix} = \sqrt{3}$ $\vec{a} = 5\hat{i} - \hat{j} + 2\hat{k}, \hat{a} = \frac{5\hat{i} - \hat{j} + 2\hat{k}}{\sqrt{30}}$	2
	$Req \ vector = 8\hat{a} = 8 \cdot \frac{\sqrt{30}}{\sqrt{30}}$	
4.4	γ30	
14.	$ \vec{a} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$	2
	$d.c = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$	
	$\cos \alpha = \frac{1}{\sqrt{3}}, \cos \beta = \frac{1}{\sqrt{3}}, \cos \gamma = \frac{1}{\sqrt{3}}$	
	$\alpha = \beta = \gamma$ (where α, β, γ are the inclination of \vec{a} with OX, OY, OZ resp.)	
15.	$(\vec{a}.\vec{b})^2 + (\vec{a} \times \vec{b})^2 = \{ \vec{a} ^2, \vec{b} ^2\}$	2
	$\left (\left \vec{a} \times \vec{b} \right)^2 = 64 \right $	
L		ı

	$ \vec{a} \times \vec{h} = 8$	
16.	1 . 2 . 1 .	2
	$\begin{aligned} & \vec{a} \times \vec{b} = 8 \\ & -\frac{1}{\sqrt{6}} \hat{\imath} + \frac{2}{\sqrt{6}} \hat{\jmath} - \frac{1}{\sqrt{6}} \hat{k} \\ & \text{Proving } \overrightarrow{AB} \times \overrightarrow{BC} = 0, (\vec{b} - \vec{c}) \times (\vec{c} - \vec{b}) = 0 \text{ and proceeding further to} \end{aligned}$	
17.	Proving $\overrightarrow{AB} \times \overrightarrow{BC} = 0$, $(\overrightarrow{b} - \overrightarrow{c}) \times (\overrightarrow{c} - \overrightarrow{b}) = 0$ and proceeding further to	2
	prove.	
18.	Expanding and solving.	2
19.	$2\hat{\imath} - 4\hat{\jmath} + 4\hat{k}$	2
20.	$ \overrightarrow{AB} = \sqrt{35}$, $ \overrightarrow{BC} = \sqrt{41}$ and $ \overrightarrow{CA} = \sqrt{6}$ and apply Pythagoras theorem.	2
21.	Let $\vec{A} = 2 \hat{\imath} - 3\hat{\jmath} + 4\hat{k}$	2
	$\vec{B} = a\hat{\imath} + 6\hat{\jmath} - 8\hat{k}$	
	\vec{A} and \vec{B} are collinear so, $\vec{A} = \lambda \vec{B}$	
	$\frac{2}{a} = \frac{-3}{6} = \frac{4}{-8}$	
	a=-4	
22.	Unit vector perpendicular to $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$ is	2
	$\hat{n} = \frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} } \qquad \dots (i)$	
	$ec{a} \hspace{0.1cm} imes ec{b} = egin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \ 1 & 1 & 1 \ 1 & 1 & 0 \end{bmatrix} = - \hat{\imath} + \hat{\jmath}$	
	$ \vec{a} \times \vec{b} = \sqrt{1+1} = \sqrt{2}$	
	From equation (i) $\vec{a} \times \vec{b} = 1 (a + b)$	
	$\widehat{n} = \frac{\vec{a} \times \vec{b}}{\mid \vec{a} \times \vec{b} \mid} = \frac{1}{2} \left(-\hat{i} + \hat{j} \right)$	
23.	We know that angle between \vec{a} and \vec{b} is given by	2
25.		
	$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} }$	
	$\cos \theta = \frac{\sqrt{3}}{2\sqrt{3}}$	
	$\cos\theta = \frac{1}{2}$	
	$\theta = \frac{\pi^2}{3}$	
24.	It is given that \vec{p} is unit vector and	2
	$(\vec{x} - \vec{p}) \cdot (\vec{x} + \vec{p}) = 80$	
	$ \vec{x} ^2 - \vec{p} ^2 = 80$ $ \vec{x} ^2 = 80 + 1 = 81$	
	$ \vec{x} = 9$	
25.	Given points $A(-2\hat{i} + 3\hat{j} + 5\hat{k})$	2
	$B(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ $C(7\hat{\imath} - \hat{k})$	
	$\overrightarrow{AB} = P.V. \text{ of } B - P.V. \text{ OF } A$	
	$=(\hat{i}+2\hat{j}+3\hat{k})-(-2\hat{i}+3\hat{j}+5\hat{k})$	
	$=(3\hat{\imath}-\hat{\jmath}-2\hat{k})$	
	\overrightarrow{BC} =P.V. of C – P.V. of B	
	$=(7\hat{\imath}-\hat{k})-(\hat{\imath}+2\hat{\jmath}+3\hat{k})$	
i		ı

$=(6\hat{\imath}-2\hat{\jmath}-4\hat{k})$	
$\overrightarrow{BC} = 2\overrightarrow{AB}$	
\overrightarrow{BC} is parallel to \overrightarrow{AB} . B is common.	
Hence A,B,C are collinear.	