CHAPTER-11 CONIC SECTIONS 03 MARK TYPE QUESTIONS

	(-6,0) (1.5) (1.5) $(6,0)$ x	
6.	The maximum and minimum distances of the Earth from the Sun respectively are 152	3
	×10 ⁶ km and 94.5×10 ⁶ km. The Sun is at one focus of the elliptical orbit. Find the distance	
	from the Sun to the other focus.	
	Earth	
	Sun	
	S' S	
7.	Show that the set of all points such that the difference of their distances from	3
	(4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola	
8.	If the latus rectum of an ellipse with axis along x-axis and centre at origin is 10,	3
	distance between foci = length of minor axis, then find the equation of the	
	ellipse .	
9.	A bar of given length moves with its extremities on two fixed straight lines at	3
	right angles. Prove that Any point of the bar describes an ellipse	
10.	A rod AB of length 15 cm rests in between two coordinate axes in such	3
	a way that the end point A lies on x-axis and end point B lies on	
	y-axis. A point $P(x, y)$ is taken on the rod in such a way that AP = 6 cm. Show that the locus of P is an ellipse	
11.	Find the locus of the mid points of chords of an ellipse drawn through the positive extremity of the	3
	minor axis.	
12.	A civil engineer is given a work of renovating a semi-elliptical bridge. This bridge is 20m wide at the base and 6m high at the centre.	3
	I) What could be the lattus rectum of the elliptical curve showing in the figure?	
	ii) At what distance from the centre, the height of the bridge would be 2m?	
	6 m	
	20 m	
10		
13.	The most common modern applications of the parabolic reflector are in	3

	and 'b' on the coordinate axis.	
20.	Show that the equation $x^2+y^2-6x+4y-36=0$ represents a circle, also find its centre & radius?	3

Q. NO	ANSWER	MARKS
1.	AS = 94.5×10 ⁶ km, SA ' = 152 ×10 ⁶ km	1+1+1
	$a + c = 152 \times 10^6$	
	$a - c = 94.5 \times 10^6$	
	Subtracting 2c = 57.5×10 ⁶ = 575×10 ⁵ km	
2.	From the graph the vertex is at (0, 0) and the parabola is open down	1+1+1
	Equation of the parabola is $x^2 = -4ay$	
	(−20, −15) and (20, −15) lie on the parabola	
	$20^2 = -4a(-15)$	
	$4a = \frac{400}{15}$	
	$-\frac{15}{-80}$	
	$x = \frac{1}{3} \times y$	
	Therefore equation is $3x^2 = -80y$	
	3. The parabolic communication antenna has a focus at 2m distance from the vertex of	
	the antenna. Find the width of the antenna 3m from the vertex	
3.	Let the parabola be $y^2 = 4ax$.	1+1+1
	Since focus is 2m from the vertex a = 2	
	Equation of the parabola is $y^2 = 8x$	
	Fig. 5.58	
	Let P be a point on the parabola whose x -coordinate is 3m from the vertex P (3, y)	
	Y ² = 8×3	
	y = v(8x3) = 2v6	
	The width of the antenna 3m from the vertex is 4v6	
4.	Let V_1 be the vertex of the parabola and V_2 be the vertex of the hyperbola.	3
	$F_1F_2 = 14 - 2 = 12m, 2c = 12, c = 6$	

ANSWERS:

The distance of center to the vertex of the hyperbola is $a = 6 - 1 = 5$ $b^2 = c^2 - a^2$ = 36 - 25 = 11. Therefore the equation of the hyperbola is $y^2/25 - x^2/11 = 1$ $\frac{y^2}{25} - \frac{x^2}{11} = 1$	
Since the truck's width is $3m$, to determine the clearance, we must find the height of the archway $1.5m$ from the center. If this height is $2.7m$ or less the truck will not clear the archway. From the diagram $a = 6$ and $b = 3$ yielding the equation of ellipse as $ \frac{x^2}{6^2} + \frac{y^2}{3^2} = 1 $ The edge of the $3m$ wide truck corresponds to $x = 1.5m$ from center We will find the height of the archway $1.5m$ from the center by substituting $x = 1.5$ and solving for y $ \frac{\left(\frac{3}{2}\right)^2}{36} + \frac{y^2}{9} = 1 $ $y^2 = 9\left(1 - \frac{9}{144}\right)$ $= \frac{9(135)}{144} = \frac{135}{16}$ $y = \frac{\sqrt{135}}{4}$ $= \frac{11.62}{4}$ $= 2.90$ Thus the height of arch way $1.5m$ from the center is approximately $2.90m$. Since the	3
	For the diagram $a = 6$ and $b = 3$ yielding the equation of ellipse as $\frac{x^2}{6^2} + \frac{y^2}{3^2} = 1$. The distance of center to the vertex of the hyperbola is $a = 6 - 1 = 5$ $b^2 = c^2 - a^2$ = 36 - 25 = 11. Therefore the equation of the hyperbola is $y^2/25 - x^2/11 = 1$ $\frac{y^2}{25} - \frac{x^2}{11} = 1$ Since the truck's width is $3m$, to determine the clearance, we must find the height of the archway 1.5m from the center. If this height is 2.7m or less the truck will not clear the archway. From the diagram $a = 6$ and $b = 3$ yielding the equation of ellipse as $\frac{x^2}{6^2} + \frac{y^2}{3^2} = 1$. The edge of the $3m$ wide truck corresponds to $x = 1.5m$ from center We will find the height of the archway 1.5m from the center by substituting $x = 1.5$ and solving for y $\frac{\left(\frac{3}{2}\right)^2}{36} + \frac{y^2}{9} = 1$ $y^2 = 9\left(1 - \frac{9}{144}\right)$ $= \frac{9(135)}{144} = \frac{135}{16}$ $y = \frac{\sqrt{135}}{4}$ $= \frac{11.62}{4}$ $= 2.90$ Thus the height of arch way 1.5m from the center is approximately 2.90m. Since the truck is 2 m. the truck we have the truck we have the truck we have the rest of the archway.

6.	<i>AS</i> = 94.5×10 ⁶ km, <i>SA</i> ' = 152 ×10 ⁶ km	3
	$a + c = 152 \times 10^6$	
	$a - c = 94.5 \times 10^{6}$	
	Subtracting $2c = 57.5 \times 10^6 = 575 \times 10^5$ km	
	Earth	
	8	
	Sun	
	S S	
	Distance of the Sun from the other focus is SS' = 575×10^5 km.	
7.	$\sqrt{(x+4)^2 + y^2} - \sqrt{(x-4)^2 + y^2} = 2$	3
	Solving we will get $x^2 = y^2 = 1$	
	Solving we will get $\frac{1}{1} - \frac{1}{4^2 - 1^2} - 1$	
8.	$\frac{2b^2}{2} = 10.2c = 2b \Rightarrow c = b.a^2 = b^2 + c^2 \Rightarrow a^2 = 2b^2$	3
	$\frac{a^2}{a} = 10 \Rightarrow a = 10, b^2 = 50$, so equation of ellipse is $\frac{x^2}{a} + \frac{y^2}{a} = 1$	
0	<i>a</i> 100 50	2
9.	\uparrow	3
	в	
	$\theta P(x,y)$	
	x	
	y True. Let $P(x, y)$ be any point on the bar	
	$O \xrightarrow{B} L \xrightarrow{A} X$ such that $PA = a$ and $PB = b$, clearly from the	
	$x = OL = b \cos \theta$ and	
	$y = PL = a \sin \theta$	
	$x^2 = x^2$	
	These give $\frac{x}{b^2} + \frac{y}{a^2} = 1$, which is an ellipse.	
10.		
	Solution Let AB be the rod making an angle θ with B OX as shown in Fig 10.33 and P (x, y) the point on it 9 cm	
	such that $AP = 6$ cm.	
	Since $AB = 15$ cm, we have $y' = \frac{6}{\theta}$ cm	
	PB = 9 cm. From P draw PQ and PR perpendiculars on y-axis and	
	x-axis, respectively. Fig 10.33	

```
\Delta PBQ, \cos \theta = \frac{x}{9}
             From
                                           \Delta PRA, sin \theta = \frac{y}{6}
             From
              Since \cos^2 \theta + \sin^2 \theta =
                                           \left(\frac{x}{9}\right)^2 + \left(\frac{y}{6}\right)^2 = 1
                                            \frac{x^2}{81} + \frac{y^2}{36} = 1
             01
             Thus the locus of P is an ellipse
11.
              Let the ellipse be \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
Let the mid point of chord of contact be (h,
                                            vhen mid point is gr
                       \frac{yy'}{x^2} = \frac{x^2}{x^2} + \frac{y'^2}{x^2}
                   +\frac{\mathbf{y}\mathbf{k}}{\mathbf{b}^2} = \frac{\mathbf{h}^2}{\mathbf{a}^2} + \frac{\mathbf{k}^2}{\mathbf{b}^2}
                    asses through (0, b)
\frac{bk}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}
                       The equation of the parabola takes the form x^2 = 4ay. Since it passes through
               \left(6, \frac{3}{100}\right), we have \left(6\right)^2 = 4a \left(\frac{3}{100}\right), i.e., a = \frac{36 \times 100}{12} = 300 \text{ m}
               Let AB be the deflection of the beam which is \frac{1}{100} m. Coordinates of B are (x, \frac{2}{100}).
                                                     x^2 = 4 \times 300 \times \frac{2}{100} = 24
               Therefore
                                                      x = \sqrt{24} = 2\sqrt{6} metres
               i.e.
12.
          i) a=18 ,b = 9
                                                                                                                                               3
          x^{2}/324 + y^{2}/81 = 1
          ii)Using above equation
          x=6 y=?
          36+4y^2 = 324
13.
          I) A parabolic reflection with diameter PR = 20 cm and
                                                                                                                                               3
          OQ = 5c cm is shown below:
          Here, vertex of the parabola is (0,0)
          Let the focus be S (a, 0)
          Let the equation of the parabola be y \wedge 2 = 4ax. Now, PR = 2c cm
          Rightarrow PQ = 10 cm Since it lies on the parabola sqrt = 4a
          Also, OQ = 5 cm .. Point P is (5, 10)
```

14	10 ^ 2 = 4 (a) 5 100 = 20a a = 5 Focus is S(5, 0) which is same as point Q ii) diameter is 12.0 then I will be its depth 224/9 iii) If depth is 2 m then (2,y) lies on parabola $Y^2=81/56$ $Y=9/2\sqrt{7}$ i) a = 20 h = 6	2
14.	i) $a = 20, b = 6$ $x^2/400 + y^2/36 = 1$ Required latus rectum=2b ² /a =3.6m ii) $x^2/400 + y^2/36 = 1$ Let (p, 2) lie on ellipse. P ² /400+4/36=1 P=40V2 /3m.	3
15.	Let the circle cuts X –axis at point A and Y – axis at point B. Since the circle makes intercepts as a and b on the co-ordinate axes. Y-axis F(0,b)	3
	Since angle in semi circle is 90^{0} Equation of circle is $(x - a)(x - 0) + (y - 0)(y - b)$ Or $x^{2} + y^{2} - ax - by = 0$	
16.	The vertices (± 13,0) lies on X –axis, therefore the equation will be of the form $x^2/a^2 + y^2/b^2 = 1$ Now vertices = (± 13,0) = (± <i>a</i> , 0)	3

	So, a = 13	
	Now foci = $(\pm 5,0) = (\pm ae, 0)$	
	So, ae = 5	
	Now $b^2 = a^2(1 - e^2) = 169 - 25 = 144$	
	So, $x^2/169 + y^2/144 = 1$	
17.	Given, $2x^2 - 3y^2 = 5$	3
	So, $x^2/(5/2) - y^2/(5/3) = 1$	
	Here, $a^2 = 5/2$, $b^2 = 5/3$	
	So, $b^2 = a^2(e^2 - 1)$	
	$5/3 = 5/2(e^2 - 1)$	
	So, $e^2 = 5/3$	
	Foci = $(\pm ae, 0) = (\pm \frac{5}{\sqrt{6}}, 0)$	
18.	Given that, the circle equation is $2x^2 + 2y^2 - x = 0$	3
	This can be written as:	
	$\Rightarrow (2x^2 - x) + y^2 = 0$	
	$\Rightarrow 2\{[x^2 - (x/2)] + y^2\} = 0$	
	$\Rightarrow \{ x^2 - 2x(1/4) + (1/4)^2 \} + y^2 - (1/4)^2 = 0$	
	Now, simplify the above form, we get	
	$\Rightarrow (x - (\frac{1}{4}))^2 + (y - 0)^2 = (\frac{1}{4})^2$	
	The above equation is of the form $(x - h)^2 + (y - k)^2 = r^2$	
	Therefore, by comparing the general form and the equation obtained, we can say	
	$h = \frac{1}{4}$, $k = 0$, and $r = \frac{1}{4}$.	
19.	OA = a and OB = b Which implies $OC = a/2$ and $OD = b/2$ Therefore $h = a/2$ and $k = b/2$ Therefore centre of the circle is $(a/2, b/2)$ Now, $OE = r$ (radius)	3
1	$ a^2 \rangle a^2 \rangle$	1

	$r^{2} = \frac{a^{2}}{4} + \frac{b^{2}}{4}$ Now, equation of circle is given by $(x - h)^{2} + (y - k)^{2} = r^{2}$ $(x - a/2)^{2} + (y - b/2)^{2} = r^{2}$ $x^{2} + y^{2} - ax - by = 0$	
20.	It is of the form $x^2+y^2+2gx+2fy+c=0$ Where $2g = -6$, $2f=4$ & $c=-36$	3
	\therefore g =-3, f=2 & c=-36	
	Thus, center of the circle is $(-g,-t)=(3,-2)$	
	Radius of the circle is $\sqrt{g^2 + f^2} - c = \sqrt{9} + 4 + 36$	
	=/units	