CHAPTER-2 RELATIONS & FUNCTIONS 03 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Redefine the function: $f(x) = x-1 - x+6 $. Write its domain also.	3
2.	Find the domain and range of the real function $f(x) = x/1+x^2$	3
3.	What is the fundamental difference between a relation and function? Is every	3
	relation a function?	
4.	Redefine the function: $f(x) = x - 1 - x + 6 $. Write its domain also.	3
5.	Let f and g be two real valued functions, defined by $f(x)=(x+1)$ and $g(x)=(2x-3)$. Find	3
	$i)f + g$ $ii)f - g$ $iii)\frac{f}{g}$	
6.	If $f: R \to R$ is defined by $f(x) = 3x + x $, Prove that	3
	f(2x) - f(-x) - 6x = f(x)	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	Given function is $f(x) = x-1 - x+6 $	3
	Dedefine of the forestion in	
	Redefine of the function is: $f(x)=-x+1+x+6, x \le -6$	
	-x+1-x-6,-6≤x<1	
	x-1-x-6,x≥1	
	7.1.4.6	
	=7,x≤-6 -2x-5,-6≤x<1	
	-7,x≥1	
	The domain of this function is R	
2.	Given real function is $f(x) = x/1+x^2$.	3
	$1 + x^2 \neq 0$	
	1 + X ⁻ 7 U	
	X ² ≠ -1	
	Domain: $x \in R$	
	Let $f(x) = y$	
	$y = x/1 + x^2$	
	(4 2)	
	$\Rightarrow x = y(1 + x^2)$	
	$\Rightarrow yx^2 - x + y = 0$	
	This is quadratic equation with real roots.	
	$(-1)^2 - 4(y)(y) \ge 0$	
	$(-1) - 4(y)(y) \ge 0$	
	$1-4y^2 \ge 0$	
	$\Rightarrow 4y^2 \le 1$	
	\Rightarrow y ² \leq 1/4	
	, ,, .	
	$\Rightarrow -\frac{1}{2} \le y \le \frac{1}{2}$	

	$\Rightarrow -1/2 \le f(x) \le \frac{1}{2}$	
3.	Range = [-½, ½]	2
5.	Every function is a relation, but every relation need not be a function. A relation f from A to B is called a function if	3
	(i) Dom(f) = A	
	(ii) no two different ordered pairs in f have the same first component.	
	For. e.g.	
	Let A = {a, b, c, d} and B = {1, 2, 3, 4, 5}	
	f = {(a, 1), (b, 2), (c, 3), (d, 4)} g = {(a, 1), (b, 3), (c, 5)}	
	h = {(a, 1), (b, 2), (b, 3), (c, 4), (d, 5)}	
	In the relation f, f={(a,1),(b,2),(c,3),(d,4)}	
	(i) Dom (f) = A	
	(ii) All first components are different.	
	So, f is a function.	
	In the relation g,	
	(i) Dom (g) ≠ A	
	So, the condition is not satisfied. Thus, g is not a function.	
	In the relation h, h={(a,1),(b,2),(b,3),(c,4),(d,5)}	
	(i) Dom (h) = A	
	(i) Two first components are the same, i.e. b has two different images.	

	So, h is not a function.
	No, every relation is not a function.
4.	Given function is $f(x) = x - 1 - x + 6 $
	Redefine of the function is:
	$f(x) = \begin{cases} -x+1+x+6, & x \le -6 \\ -x+1-x-6, & -6 \le x < 1 \\ x-1-x-6, & x \ge 1 \end{cases}$
	$ f(x) = \{-x + 1 - x - 6, -6 \le x < 1\}$
	$(x-1-x-6, x \ge 1)$
	7 r < -6
	$= \begin{cases} 7, & x \le -6 \\ -2x - 5, & -6 \le x < 1 \\ -7, & x \ge 1 \end{cases}$
	$\begin{pmatrix} -7, & x \ge 1 \end{pmatrix}$
	The domain of this function is R
5.	Given, $f(x) = (x + 1)$ and $g(x) = (2x - 3)$
	i) $(f+g)(x) = f(x) + g(x)$
	= (x+1) + (2x-3)
	= (3x - 2) $\Rightarrow (f + g)(x) = (3x - 2)$
	ii) $(f - g)(x) = f(x) - g(x)$
	= (x+1) - (2x-3)
	$\Rightarrow (f - g)(x) = (4 - x)$
	iii) $ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x+1}{2x-3} $
6.	f(x) = 3x + x
	f(2x) = (3(2x) + 2x) = 6x + 2 x
	f(-x) = (3(-x) + -x) = -3x + x
	f(2n) = f(-n) = f(n+2 n) = f(2n+ n) = f(2n+ n)
	$-3\lambda + \lambda - f(\lambda)$
	Hence proved.