
CHAPTER-11

THREE DIMENSIONAL GEOMETRY 03 MARKS TYPE OUESTIONS

Q. NO 1. Find the distance of a point $(2,4,-1)$ from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ 2. Find the shortest distance between the lines $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (2\mathbf{i} - \mathbf{j} - \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ 3. Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively. 4. Find the shortest distance between the following lines: $\vec{r} = (2\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}) + \beta(2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k})$ $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + \alpha(4\mathbf{i} + 6\mathbf{j} + 12\mathbf{k})$ 5. Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}) + \beta(2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k})$ $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + \alpha(4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$ 6. Find the angle between the pair of lines: $\vec{r} = (6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}) + \gamma(2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k})$ $\vec{r} = (10\mathbf{i} - 4\mathbf{j}) + \delta(6\mathbf{i} + 4\mathbf{j} + 12\mathbf{k})$ 3. 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town, where the maximum speed limit was set by the organizers. No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = i + j - k + \lambda (i + 2j - 2k)$ and $\vec{r} = i + 2j + 2k + \mu (2i + j + k)$ Find the angle between two lines.		03 MARKS TYPE QUESTIONS		
2. Find the shortest distance between the lines $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma (\mathbf{i} - \mathbf{j} + \mathbf{k}) \text{ and}$ $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma (\mathbf{i} - \mathbf{j} + \mathbf{k}) \text{ and}$ $\vec{r} = (2\mathbf{i} - \mathbf{j} - \mathbf{k}) + \mu (2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ 3. Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively. 4. Find the shortest distance between the following lines: $\vec{r} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \beta (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - 4\hat{k}) + \alpha (4\hat{\imath} + 6\hat{\jmath} + 12\hat{k})$ 3. 5. Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \beta (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - 4\hat{k}) + \alpha (\hat{\imath} + 2\hat{\jmath} + 4\hat{k})$ 3. 6. Find the angle between the pair of lines: $\vec{r} = (6\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \gamma (2\hat{\imath} + 4\hat{\jmath} + 4\hat{k})$ $\vec{r} = (10\hat{\imath} - 4\hat{\jmath}) + \delta (6\hat{\imath} + 4\hat{\jmath} + 12\hat{k})$ 3. 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town, where the maximum speed limit was set by the organizers. No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\imath} + \hat{\jmath} - \hat{k} + \lambda (\hat{\imath} + 2\hat{\jmath} - 2\hat{k})$ and $\vec{r} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \mu (2\hat{\imath} + \hat{\jmath} + \hat{k})$ Find the angle between two lines.	Q. NO	QUESTION	MARK	
$\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma (\mathbf{i} - \mathbf{j} + \mathbf{k}) \text{ and}$ $\vec{r} = (2\mathbf{i} - \mathbf{j} - \mathbf{k}) + \mu (2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ 3. Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively. 4. Find the shortest distance between the following lines: $\vec{r} = (2\mathbf{i} + 4\mathbf{j} - 8\hat{k}) + \beta (2\mathbf{i} + 3\mathbf{j} + 6\hat{k})$ $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\hat{k}) + \alpha (4\mathbf{i} + 6\mathbf{j} + 12\hat{k})$ 5. Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2\mathbf{i} + 4\mathbf{j} - 8\hat{k}) + \beta (2\mathbf{i} + 3\mathbf{j} + 6\hat{k})$ $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\hat{k}) + \alpha (\mathbf{i} + 2\mathbf{j} + 4\hat{k})$ $\vec{r} = (6\mathbf{i} + 4\mathbf{j} - 8\hat{k}) + \gamma (2\mathbf{i} + 4\mathbf{j} + 4\hat{k})$ $\vec{r} = (6\mathbf{i} + 4\mathbf{j} - 8\hat{k}) + \gamma (2\mathbf{i} + 4\mathbf{j} + 4\hat{k})$ $\vec{r} = (10\mathbf{i} - 4\mathbf{j}) + \delta (6\mathbf{i} + 4\mathbf{j} + 12\hat{k})$ 3 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town, where the maximum speed limit was set by the organizers. No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\imath} + \mathbf{j} - \hat{k} + \lambda (\hat{\imath} + 2\hat{\jmath} - 2\hat{k})$ and $\vec{r} = \hat{\imath} + 2\hat{\jmath} + 2\mathbf{k} + \mu (2\hat{\imath} + \hat{\jmath} + \hat{k})$ Find the angle between two lines.	1.	• • • • • • • • • • • • • • • • • • • •	3	
 3. Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively. 4. Find the shortest distance between the following lines: \$\vec{r} = (2\vec{t} + 4\vec{f} + 8\vec{k}) + \beta (2\vec{t} + 3\vec{f} + 6\vec{k})}{\vec{r} = (\vec{t} - 2\vec{f} - 4\vec{k}) + \alpha (2\vec{t} + 3\vec{f} + 6\vec{k})}{\vec{r} = (\vec{t} - 2\vec{f} - 4\vec{k}) + \alpha (2\vec{t} + 3\vec{f} + 6\vec{k})}{\vec{r} = (\vec{t} - 2\vec{f} - 4\vec{k}) + \alpha (2\vec{t} + 3\vec{f} + 6\vec{k})}{\vec{r} = (\vec{t} - 2\vec{f} - 4\vec{k}) + \alpha (2\vec{t} + 3\vec{f} + 6\vec{k})}{\vec{r} = (\vec{t} - 2\vec{f} - 4\vec{k}) + \alpha (2\vec{t} + 3\vec{f} + 4\vec{k})}\$ 5. Find the shortest distance between the following lines whose vector equation are given: \$\vec{r} = (2\vec{t} + 4\vec{f} - 8\vec{k}) + \vec{g} (2\vec{t} + 3\vec{f} + 4\vec{k})\$\$ 6. Find the angle between the pair of lines: \$\vec{r} = (6\vec{t} + 4\vec{f} - 8\vec{k}) + \vec{y} (2\vec{t} + 4\vec{f} + 4\vec{k})\$\$ 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines \$\vec{r} = \vec{t} + \vec{f} - \vec{k} + \lambda (\vec{t} + \vec{f} - \vec{k})\$ and \$\vec{r} = \vec{t} + \vec{f} - \vec{k} + \vec{k} (\vec{t} + \vec{f} + \vec{k})\$ and \$\vec{r} = \vec{t} + 2\vec{f} + 2\vec{k} + \vec{k} (2\vec{t} + \vec{f} + \vec{k})\$ show the conditions are constant. 8 The condition of the same. The condition of the basis of the same. The condition of the same. Th	2.		3	
 the x, y and z axis respectively. Find the shortest distance between the following lines: ⁷ = (2ℓ + 4ĵ - 8k̂) + β (2ℓ + 3ĵ + 6k̂) ⁷ = (1 - 2ĵ - 4k̂) + α (4ℓ + 6ĵ + 12k̂) Find the shortest distance between the following lines whose vector equation are given: ⁷ = (2ℓ + 4ĵ - 8k̂) + β (2ℓ + 3ĵ + 6k̂) ⁷ = (ℓ - 2ĵ - 4k̂) + α (ℓ + 2ĵ + 4k̂) Find the angle between the pair of lines: ⁷ = (6ℓ + 4ĵ - 8k̂) + γ (2ℓ + 4ĵ + 4k̂) ⁷ = (10ℓ - 4ĵ) + δ (6ℓ + 4ĵ + 12k̂) Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines ⁷ = ℓ + ĵ - k̂ + λ (ℓ + 2ĵ - 2 k̂) and ⁷ = ℓ + 2ĵ + 2k + μ (2ℓ + ĵ + k̂) Find the angle between two lines. 		$\vec{r} = (2 \mathbf{i} - \mathbf{j} - \mathbf{k}) + \mu (2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$		
 r = (2î + 4ĵ - 8k) + β (2î + 3ĵ + 6k) r = (î - 2ĵ - 4k) + α (4î + 6ĵ + 12k) 5. Find the shortest distance between the following lines whose vector equation are given: r = (2î + 4ĵ - 8k) + β (2î + 3ĵ + 6k) r = (î - 2ĵ - 4k) + α (î + 2ĵ + 4k) 6. Find the angle between the pair of lines: r = (6î + 4ĵ - 8k) + γ (2î + 4ĵ + 4k) r = (10î - 4ĵ) + δ (6î + 4ĵ + 12k) 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines r = î + ĵ - k + λ (î + 2ĵ - 2k) and r = î + 2ĵ + 2k + μ (2î + ĵ + k) Find the angle between two lines. 	3.	Find the equation of the plane with intercepts 2,3 and 4 on	3	
 r = (2î + 4ĵ - 8k̂) + β (2î + 3ĵ + 6k̂) r = (î - 2ĵ - 4k̂) + α (î + 2ĵ + 4k̂) Find the angle between the pair of lines: r = (6î + 4ĵ - 8k̂) + γ (2î + 4ĵ + 4k̂) r = (10î - 4ĵ) + δ (6î + 4ĵ + 12k̂) 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines r = î + ĵ - k̂ + λ (î + 2ĵ - 2 k̂) and r = î + 2ĵ + 2k + μ (2î + ĵ + k̂) Find the angle between two lines. 	4.	$\vec{r} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \beta (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$	3	
$\vec{r} = (6\hat{\iota} + 4\hat{\jmath} - 8\hat{k}) + \hat{\gamma} (2\hat{\iota} + 4\hat{\jmath} + 4\hat{k})$ $\vec{r} = (10\hat{\iota} - 4\hat{\jmath}) + \delta (6\hat{\iota} + 4\hat{\jmath} + 12\hat{k})$ 7. Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\iota} + \hat{\jmath} - \hat{k} + \lambda (\hat{\iota} + 2\hat{\jmath} - 2\hat{k})$ and $\vec{r} = \hat{\iota} + 2\hat{\jmath} + 2k + \mu (2\hat{\iota} + \hat{\jmath} + \hat{k})$ Find the angle between two lines.	5.	$\vec{r} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \beta (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$	3	
Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\imath} + \hat{\jmath} - \hat{k} + \lambda \left(\hat{\imath} + 2 \hat{\jmath} - 2 \hat{k} \right)$ and $\vec{r} = \hat{\imath} + 2 \hat{\jmath} + 2 k + \mu (2 \hat{\imath} + \hat{\jmath} + \hat{k})$ Find the angle between two lines.	6.	$\vec{r} = (6\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \gamma (2\hat{\imath} + 4\hat{\jmath} + 4\hat{k})$	3	
8 3	7.	A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\imath} + \hat{\jmath} - \hat{k} + \lambda \ (\hat{\imath} + 2 \ \hat{\jmath} - 2 \ \hat{k} \)$ and $\vec{r} = \hat{\imath} + 2 \ \hat{\jmath} + 2 \ k + \mu \ (2 \ \hat{\imath} + \hat{\jmath} + \hat{k})$	3	
	8		3	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	7 units	
2.	$3\sqrt{2}$	
	$\frac{1}{2}$	
3.	$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$	
4.	Since, the given lines are parallel as their direction ratios are proportional, so shortest	3
	distance between these lines is given by;	
	$d = \left \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{ \vec{b} } \right , \text{ where } \vec{a_1} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k})$	
	$\overrightarrow{a_2} = (\hat{\imath} - 2\hat{\jmath} - 4\hat{k})$	
	$\vec{b} = (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $d = \frac{\sqrt{2581}}{7}$	
5.	Since, the given lines are not parallel as their direction ratios are not proportional, so	3
	shortest distance between these lines is given by;	
	$d = \left \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{ \overrightarrow{b_1} \times \overrightarrow{b_2} } \right , \text{ where } \overrightarrow{a_1} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k})$	
	$\overrightarrow{a_2} = (\hat{\imath} - 2\hat{\jmath} - 4\hat{k})$	
	$\overrightarrow{b_1} = (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$	
	$\overrightarrow{b_2} = (\hat{\imath} + 2\hat{\jmath} + 4\hat{k})$	
	$d = \frac{16}{\sqrt{5}}$	
6.	The angle between the two given lines is given by:	3
	$\theta = \left \frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{ b_1 b_2 } \right $, where $\overrightarrow{b_1} = (2\hat{\imath} + 4\hat{\jmath} + 4\hat{k})$	
	$\overrightarrow{b_2} = (\widehat{6}i + 4\hat{j} + 12\hat{k})$	
	<u> </u>	
7.	$\theta = \cos^{-1} \frac{19}{21}$ $b_1 = (\hat{i} + 2 \hat{j} - 2 \hat{k})$	3
	and $b_2 = (2\hat{\imath} + \hat{\jmath} + \hat{k})$	
	$b_1 \cdot b_2 = (\hat{i} + 2\hat{j} - 2\hat{k}) \cdot (2\hat{i} + \hat{j} + \hat{k})$	
	= 2+2-2	
	= 2	
	$ b_1 = \sqrt{1 + 4 + 4} = 3$	
	$ b_2 = \sqrt{4+1+1} = \sqrt{6}$	
	the angle between two lines, $\cos \theta = 2/3\sqrt{6}$	
_	So, $\theta = \cos^{-1}(2/3\sqrt{6})$	
8.	The given lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{5z-10}{11}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$	3
	OR, $\frac{x-1}{-3} = \frac{y-2}{2p/7} = \frac{z-2}{11/5}$ and $\frac{x-1}{-3p/7} = \frac{y-5}{1} = \frac{z-6}{-5}$	
	-3 $2p/7$ $11/5$ $-3p/7$ 1 -5 Direction ratios of the lines are -3,2p/7, 11/5 and -3p/7, 1,-5	
	As the lines are perpendicular	
	So, -3 X -3p/7 + 2p/7 X 1 + 11/5 X (-5) = 0	
	9p/7 + 2p/7 - 11 = 0	
	11p -77 = 0	
	11 p = 77	
	So, p = 7. The second transfer of the second transfer $x+3$ $y-4$ $z+8$	
9.	The equation of given line is $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$	3

	Direction ratios of the line are 2.5 and 6	
	Direction ratios of the line are 3,5 and 6 Now, the equation of the line passing through point (-2,4,5) and having direction	
	ratios 3,5,6 is $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$	
	$\frac{1005}{3}$ $\frac{3}{3}$ $\frac{1}{5}$ $\frac{1}{6}$	
10	x+3 $y-4$ $z+8$	
10.	Any general point on the line $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ (1)	
	is given by Q $(-3 + 3\lambda, 4 + 5\lambda, -8 + 6\lambda)$ (2)	
	If this point Q is to be foot of the perpendicular drawn to the line (1) from the point	
	P(-2,4,-5), then	
	Direction ratios of line \overrightarrow{PQ} are given by $(3\lambda - 3 + 2, 5\lambda + 4 - 4, 6\lambda - 8 + 5) = (3\lambda - 1, 5\lambda, 6\lambda - 3)$	1
	Now, as \overrightarrow{PQ} is perpendicular to the line (1) hence, we have	
	Now, as PQ is perpendicular to the line (1) hence, we have $3(3\lambda - 1) + 5(5\lambda) + 6(6\lambda - 3) = 0$	
	$3. (3\lambda - 1) + \overline{5}. (5\lambda) + 6. (6\lambda - 3) = 0$ $\Rightarrow 70\lambda - 21 = 0 \Rightarrow \lambda = \frac{21}{70} = \frac{3}{10}$	
	$\Rightarrow 70\lambda - 21 = 0 \Rightarrow \lambda = \frac{10}{70} = \frac{10}{10}$	1
	Hence, $\overrightarrow{PQ} = \left(-1 + \frac{9}{10}\right)\hat{i} + \frac{15}{10}\hat{j}\left(-3 + \frac{18}{10}\right)\hat{k} = \frac{1}{10}\hat{i} + \frac{15}{10}\hat{j} - \frac{12}{10}\hat{k}$	
	(10/ 10 (10/ 10 10	1
	Therefore, $ \overrightarrow{PQ} = \frac{1}{10}\sqrt{1 + 225 + 144} = \sqrt{\frac{37}{10}}$.	
	'	
11.	Let Q be the foot of perpendicular drawn from the points A (1, 8, 4) to the line passing	
	through B and C as shown in the Fig. 11.2. The equation of line BC by using the	
	formula, $\vec{r} = \vec{a_1} + \lambda (\vec{a_2} - \vec{a_1})$	
	Here, $\overrightarrow{a_1} = -\hat{j} + 3\hat{k}$, $\overrightarrow{a_2} = 2\hat{i} - 3\hat{j} - \hat{k}$	1
	So that equation of $\overrightarrow{BC} = -\hat{j} + 3\hat{k} + \lambda(2\hat{i} - 2\hat{j} - 4\hat{k})(1)$	1
	Any general point Q on line (1) is given by Q $(2\lambda, -1 - 2\lambda, 3 - 4\lambda)$ (2)	
	If this point Q is to be foot of the perpendicular drawn to the line (1) from the point P(1, 8, 4), then	1
	Direction ratios of line \overrightarrow{PQ} are given by $2\lambda - 1$, $-1 - 2\lambda - 8$, $3 - 4\lambda - 4$) = $(2\lambda - 4)$	
	Direction ratios of fine FQ are given by $2\lambda = 1, -1 = 2\lambda = 8, 3 = 4\lambda = 4$ $= (2\lambda = 1, -2\lambda = 9, -4\lambda = 1)$	
	Now, as \overrightarrow{PQ} is perpendicular to the line (1) hence, we have	
	$2.(2\lambda - 1) - 2.(-2\lambda - 9) 4.(-4\lambda - 1) = 0 \Rightarrow 24\lambda + 20 = 0 \Rightarrow \lambda = \frac{-5}{6}$	1
	The required point is obtained by putting value of λ in (2) which is $Q(\frac{-5}{2}, \frac{2}{3}, \frac{19}{3})$	
12.	Any general point on the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ (1)	
	is given by Q $(\lambda, 1 + 2\lambda, 2 + 3\lambda)$ (2)	
	Let P $(1, 6, 3)$ be the given point and let Q be the foot of perpendicular from point P to	
	the line (1)	1
	Direction ratios of line \overrightarrow{PQ} are given by $(\lambda - 1, 1 + 2\lambda - 6, 3\lambda + 2 - 3) = (\lambda - 2)$	1
	$1,2\lambda-5,3\lambda-1)$	
	Now, as \overrightarrow{PQ} is perpendicular to the line (1) hence, we have	1
	$1.(\lambda - 1) + 2.(2\lambda - 5) + 3.(3\lambda - 1) = 0$	
	$\Rightarrow 14\lambda - 14 = 0 \Rightarrow \lambda = 1$	
	Hence, co – ordinates of point Q are: Q (1, 3, 5)	
	Now, if R (x, y, z) be image point of the point P $(1, 6, 3)$ then, Q $(1, 3, 5)$ will be mid – point of line – segment PR.	
	So that, $\frac{x+1}{3} = 1$, $\frac{y+6}{3} = 3$, $\frac{z+3}{3} = 5$	1
		1
	Hence, $x = 1, y = 0, z = 7$.	<u> </u>

	So that image point is : $(1, 0, 7)$.	
13.	A $(\frac{56}{17}, \frac{43}{17}, \frac{111}{17})$	3
14.	R(4,3,7) or R(-2,-1,3)	3
15.	-51 -141 +192=0	3