CHAPTER-3 TRIGONOMETRIC FUNCTIONS 03 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	A cow is tied to a pole by a rope. If it moves along a circular path always	3
	keeping the rope tight and describe 88m when it has traced out 72 at the	
	centre, find the length of rope.	
2.	If $\cos \cos (\alpha + \beta) = \frac{4}{5}$ and $\sin \sin (\alpha - \beta) = \frac{5}{13}$, where α lie between 0 and $\frac{\pi}{4}$,	3
	then find that value of $tan tan 2\alpha$	
3.	A kite is flying , attached to a thread which is 165m long. The thread makes an	3
	angle of 30° with the ground. Find the height of the kite from the ground,	
	assuming that there is no slack in the thread.	
4.	Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm (use π = 22/7).	3
5.	Prove that:	3
	$\cos^2 x + \cos^2\Bigl(x+rac{\pi}{3}\Bigr) + \cos^2\Bigl(x-rac{\pi}{3}\Bigr) = rac{3}{2}$	
6.	Find the value of $\sqrt{3}$ cosec 20° – sec 20°.	3
7.	Prove that $2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0.$	3
8.	Prove that $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x.$	3
9.	Prove that $\sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin 4x$	3

ANSWERS:

Q. NO	ANSWER	MARKS
1.	Solution:	
	Here, $\operatorname{arc}(l) = 88 \operatorname{m}_{2}$	
	$\theta = 72^{\circ} = 72 \times \frac{\pi}{180} = \frac{2\pi}{5}$	
	We know,	
	$r = \frac{l}{\theta} = \frac{\frac{88}{2\pi}}{\frac{2\pi}{5}} = \frac{\frac{88 \times 5 \times 7}{2 \times 22}}{\frac{2}{2} \times 22} = 70$	
	so the length of the rope be 70m	
2.	Solution:	
	We know $\sin^2 x + \cos^2 x = 1$	
	So $\sin \sin (\alpha + \beta) = \sqrt{1 - \frac{16}{25}} = \pm \frac{3}{5} = \frac{3}{5}$ [since α lie between 0 and $\frac{\pi}{4}$]	
	Simillarly $\cos \cos (\alpha - \beta) = \frac{12}{13}$	
	Now $tan tan (\alpha + \beta) = \frac{3}{4}$	
	$\tan \tan (\alpha - \beta) = \frac{5}{12}$	
	$\therefore \tan \tan 2\alpha = \tan \tan (\alpha + \beta + \alpha - \beta)$	
	$=\frac{tantan(\alpha+\beta)+tantan(\alpha-\beta)}{1-tantan(\alpha+\beta)}$	
	$-\frac{56}{56}$	
2	$-\frac{1}{33}$	
5.		
	165	
	losm	
	30 degree	
	0	
	Here $\sqrt{B}\Omega\Delta = 3\Omega^{\circ}$	
	$\Omega A = 165 m$	
	$\angle OBA=90^{\circ}$	
	From the Triangle ,	
	$\sin \sin 30^{\circ} - \frac{AB}{B}$	
	$1 \qquad b$	
	$=>\frac{1}{2}=\frac{\pi}{165}$	
	$=>h=\frac{165}{=825}$	
	Hence the height of the kite from the ground -82.5	
	Hence the height of the Nite from the ground – 62.5m	
4.		

	Given,	
	Length of the arc = $I = 37.4$ cm	
	Central angle = θ = 60° = 60 π /180 radian = π /3 radians	
	We know that,	
	$r = I/\Theta$	
	= (37.4) * (π / 3)	
	= (37.4) / [22 / 7 * 3]	
	= 35.7 cm	
	Hence, the radius of the circle is 35.7 cm.	
5.	$=\cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(x - \frac{\pi}{3}\right)$	
	$= \cos^2 x + [\cos(x + \frac{\pi}{3})]^2 + [\cos(x - \frac{\pi}{3})]^2$	
	$= \cos^2 x + (\cos x \cos \frac{\pi}{3} - \sin x \sin \frac{\pi}{3})^2 + (\cos x \cos \frac{\pi}{3} + \sin x \sin \frac{\pi}{3})^2$	
	$= \cos^2 x + [\cos x \left(\frac{1}{2}\right) - \sin x \left(\frac{\sqrt{3}}{2}\right)]^2 + [\cos x \left(\frac{1}{2}\right) + \sin x \left(\frac{\sqrt{3}}{2}\right)]^2$	
	$=\cos^2 x + \frac{1}{4}(\cos x - \sqrt{3}\sin x)^2 + \frac{1}{4}(\cos x + \sqrt{3}\sin x)^2$	
	$=\cos^{2}x + \frac{1}{4}(\cos^{2}x + 3\sin^{2}x - 2\sqrt{3}\cos x\sin x) + \frac{1}{4}(\cos^{2}x + 3\sin^{2}x + 2\sqrt{3}\cos x\sin x)$	
	$=\cos^{2}x + \frac{1}{4}(\cos^{2}x + 3\sin^{2}x - 2\sqrt{3}\cos x\sin x + \cos^{2}x + 3\sin^{2}x + 2\sqrt{3}\cos x\sin x)$	
	$=\cos^2 x + \frac{1}{4}(2\cos^2 x + 6\sin^2 x)$	
	$=\cos^2 x + \frac{1}{2}\cos^2 x + \frac{3}{2}\sin^2 x$	
	$=\frac{3}{2}\cos^2 x + \frac{3}{2}\sin^2 x$	
	$=\frac{3}{2}(\cos^2 x + \sin^2 x)$	
	$=\frac{3}{2}(1)$	
	$=\frac{3}{2}$	
	= RHS	
	Hence proved.	

6.	3 cosec 20° – sec 20°	
	$= \frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}}$ $= \frac{\sqrt{3}\cos 20^{\circ} - \sin 20^{\circ}}}{\sin 20^{\circ}\cos 20^{\circ}} = 4 \left(\frac{\frac{\sqrt{3}}{2}\cos 20^{\circ} - \frac{1}{2}\sin 20^{\circ}}{2\sin 20^{\circ}\cos 20^{\circ}} \right)$	
	$= 4 \left(\frac{\sin 60^\circ \cos 20^\circ - \cos 60^\circ \sin 20^\circ}{\sin 40^\circ} \right)$	
	$= 4 \left(\frac{\sin (60^{\circ} - 20^{\circ})}{\sin 40^{\circ}} \right) = 4$	
7.	$LHS = 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\left(-\frac{\pi}{13}\right)$	3
	$= 2\cos\frac{\pi}{13}\left(\cos\frac{9\pi}{13} - \cos\frac{\pi}{13}\right) = 2\cos\frac{\pi}{13}\left(2\cos\frac{\pi}{2}\cos\frac{5\pi}{26}\right)$	
	Since $\cos \frac{\pi}{2} = 0$.	
8.	$\frac{1}{\cos 4x + \cos 2x + \cos 3x} = 2\cos 3x \cos x + \cos 3x \cos 3x$	3
	$LHS = \frac{1}{\sin 4x + \sin 2x + \sin 3x} = \frac{1}{2 \sin 3x \sin x + \sin 3x} = \frac{1}{\sin 3x}$ $= \cot 3x$	
9.	$LHS = \sin 2x + \sin 6x + 2\sin 4x = 2\sin 4x \cos -2x + 2\sin 4x$	3
	$= 2 \sin 4x (\cos 2x + 1) = 2 \sin 4x (2 \cos^2 x)$	
	$= 4\cos^2 x \sin 4x$	