CLASS-XII CHAPTER-01 RELATION AND FUNCTION 03 MARKS TYPE QUESTIONS

Q.	QUESTION	MARK
No.	If R and S are equivalence relations on a set A, then prove that $R \cap S$ is also an equivalence relation.	3
2	Let S be the relation in real number R defined by (a,b) S (c,d) if $ad = bc$ for $a,b,c,d \in R$ (set of real numbers). Prove that S is an equivalence relation.	3
3	Classify the function $f(x) = 2^x + 2^{ x }$ as injection, surjection or bijections. Justify your answer.	3
4	Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.	3
5	Let A={1,2} . Find all one-to-one function from A to A.	3
6	Prove the function f:R \rightarrow R given by f(x)=cosx for all x \in R, is neither injective nor surjective.	3
7	An electrician charges a base fee of Rs. 70 plus Rs. 50 for each hour of work. Create a table that shows the amount of the electrician charges for 1, 2, 3, & 4 hours of work. Let x represent the number of hours and y represent the amount charged for x hours. Is the relation a function?	3
8	Jimmy has to fill up his car with gasoline to drive to and from work next week. If gas costs \$2.79 per gallon, and his car holds a maximum of 28 gallons, what is the domain and range of the function?	3
9	"x lives within one mile of y" – Show that it is reflexive, symmetric, but not transitive relation. Aaron's House One miles	3
10	Show that the relations S in the set of real numbers defined as S={ (a,b): a,b \in R and a \leq b ³ } is neither reflexive nor symmetric nor transitive	3
11	Let A= R - $\{\frac{2}{3}\}$, show that the function f in set A defined by $f(x) = \frac{4x-3}{6x-4} \ \forall x \in A$, is one-one and onto	3

12	Show that the relation R defined on the set $\mathbb{N} \times \mathbb{N}$ by (a,b) R (c,d) $\Rightarrow a^2 + d^2 = b^2 + c^2 \ \forall \ a,b,c,d \in \mathbb{N}$ is an equivalence relation	3
13	Let A = R-{3}, B = R-{1}. If f:A \rightarrow B be defined by $f(x) = \frac{x-2}{x-3} \ \forall x \in A$. Then show that f is bijective.	3
14	Let N denotes the set of all natural numbers and R be the relation on N X N defined by (a,b) R (c,d) if $ad(b+c) = bc$ $(a+d)$. Show that R is an equivalence relation.	3
15	Check whether the relation R in R defined by $R = \{(a,b^3) : a \le b^3\}$ is reflexive, symmetric or transitive.	3
16	Show that the relation R in the set of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.	3
17	Let A = R-{3} and B = R-{1}. Consider the function $f: A \rightarrow B$ defined by $f(x) = \frac{x-2}{x-3}$. Show that f is one-one and onto.	3
18	Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b) : a, b \in Z, \text{ and } (a-b) \text{ is divisible by 5}\}.$ Prove that R is an equivalence relation.	3

ANSWER CHAPTER-01

RELATION AND FUNCTION 03 MARKS TYPE QUESTIONS

Q.No	ANSWERS	Mark
1	Given that R and S are reflexive, symmetric and transitive.	3
	<u>Reflexivity</u> : Let $a \in A$. So, $(a, a) \in R$ and $(a, a) \in S$ (as R and S are reflexive)	
	\Rightarrow $(a, a) \in R \cap S$. So, $R \cap S$ is reflexive.	
	Symmetricity: Let $a, b \in A$ and $(a, b) \in R \cap S$	
	$\Rightarrow (a,b) \in R \ and \ (a,b) \in S$	
	\Rightarrow $(b,a) \in R \ and \ (b,a) \in S \ (as R and S are symmetric)$	
	\Rightarrow $(a,b) \in R \cap S$. So, $R \cap S$ is symmetric.	
	<u>Transitivity</u> : Let $a,b,c\in A$ and $(a,b)\in R\cap S$ and $(b,c)\in R\cup S$	
	\Rightarrow $(a,b) \in R$ and $(a,b) \in S$ and $(b,c) \in R$ and $(b,c) \in S$	
	⇒ $(a,b) \in R$, $(b,c) \in R$ and $(a,b) \in S$, $(b,c) \in S$ ⇒ $(a,c) \in R$ and $(a,c) \in S$ (as R and S are transitive) ⇒ $(a,c) \in R \cap S$. So, $R \cap S$ is transitive.	
	Therefore, $R \cap S$ is an equivalence relation.	
2	Reflexivity: Let $a, b \in R$ and $(a, b) \in R \times R$.	3
	Since, $ab = ba$	
	\Rightarrow $(a,b)S(a,b)$. So, S is reflexive.	
	Symmetricity: Let $a, b, c, d \in R$ and $(a, b), (c, d) \in R \times R$	
	Let (a,b) $S(c,d)$	
	$\Rightarrow ad = bc$ $\Rightarrow bc = ad$ $\Rightarrow cb = da$	
	\Rightarrow $(c,d) S(a,b)$. So, S is symmetric.	
	<u>Transitivity</u> : Let $a, b, c, d, e, f \in R$ and $(a, b), (c, d), (e, f) \in R \times R$	

	Let (a,b) $S(c,d)$ and (c,d) $S(e,f)$	
	$\Rightarrow ad = bc$ and $cf = de$	
	$\Rightarrow adcf = bcde$ $\Rightarrow af = be$	
	$\Rightarrow (a,b) S (e,f)$	
	So, S is transitive.	
	Therefore R is an equivalence relation.	
3	$f(x) = 2^{x} + 2^{ x } = \{2.2^{x} \ x \ge 0 \ 2^{x} + 2^{-x} \ x < 0 $	3
	Case-1: $x \ge 0$	
	let $x_1, x_2 \ge 0$ and $f(x_1) = f(x_2)$	
	$\Rightarrow 2.2^{x_1} = 2.2^{x_2} \Rightarrow x_1 = x_2$	
	$\underline{\text{Case-2}}: \ x < 0$	
	Let $x_1, x_2 < 0$ and $f(x_1) = f(x_2)$	
	$\Rightarrow 2^{x_1} + 2^{-x_1} = 2^{x_2} + 2^{-x_2}$	
	$\Rightarrow 2^{x_1} - 2^{x_2} = 2^{-x_2} - 2^{-x_1} = \frac{1}{2^{x_2}} - \frac{1}{2^{x_1}}$	
	$\Rightarrow 2^{x_1} - 2^{x_2} = \frac{2^{x_1} - 2^{x_2}}{2^{x_2} \cdot 2^{x_1}}$	
	$\Rightarrow (2^{x_1} - 2^{x_2})(2^{x_2} \times 2^{x_1}) - 2^{x_1} - 2^{x_2} = 0$	
	$\Rightarrow (2^{x_1} - 2^{x_2})\{(2^{x_2} \times 2^{x_1}) - 1\} = 0$	
	$\Rightarrow 2^{x_1} - 2^{x_2} = 0 \text{ because } (2^{x_2} \times 2^{x_1}) - 1 = 2^{x_1 + x_2} - 1 \neq 0$	
	$\Rightarrow x_1 = x_2$	
	<u>Case-3</u> : let $x_1 \ge 0$ and $x_2 < 0$. Clearly, $x_1 \ne x_2$	
	Now, $f(x_1) = 2 \cdot 2^{x_1} \ge 2$ and $f(x_2) = 2^{x_2} + 2^{-x_2} > 2$	
	Therefore, $f(x_1)$ can be equal to $f(x_2)$ for some x_1, x_2 .	
	So, f is a many-one function.	
	Again since the value of $f(x) = 2^x + 2^{ x } = \{2.2^x \ x \ge 0\ 2^x + 2^{-x} \ x < 0 \text{ for all } x \in \mathbb{R} \}$	
	Recan not be negative, so f is not onto.	
	{From the graph, it is clear that Range is $[2, \infty)$ and co-domain=R}	
4	Hence f is many-one and onto. $R=\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$	3
'	(1, 1), (2, 2), (3, 3), (1, 2), (2, 3))	3
	Reflexive	
	If the relation is reflexive,then (a, a) \in R for every a \in (1, 2, 3).	
	Since $(1, 1) \in \mathbb{R}$, $(2, 2) \in \mathbb{R}$ & $(3, 3) \in \mathbb{R}$.	
	Therefore, R is reflexive	

	Symmetric					
	To check whether symmetric or not, If (a, b) \in R, then (b, a) \in R.					
	Here (1, 2)∈R, but (2, 1)∉R.					
	Therefore, R is not symmetric.					
	Transitive					
	To check whether tra	nsitive or not,				
	If (a,b)∈R & (b,c	c)∈R, then (a,	c)∈R.			
	Here, (1, 2)∈R a	nd (2, 3) \in R bi	ut (1, 3)∉R.			
	Therefore, R is not tr	ansitive.				
	Hence, R is reflexive	but neither symm	etric nor transitive			
5	A= $\{1,2\}$ one- one function from $f(x)=y$ for every unique x , y $f(x) \rightarrow one$ $f(A)=\{1,1 \mid 2,2\}$ $f(A)=\{1,2 \mid 2,1\}$				3	
6	Injectivity: We know that $f(0)=\cos 0=1$ and $f(2\pi)=\cos 2\pi=1$. So, different elements in R may have the same image. Hence, f is not an injection. Surjectivity: Since the values of $\cos x$ lie between -1 and 1, it follows that the range of $f(x)$ is not equal to its $\cos -domain$. So, f is not a surjection.			3		
7	The table can be dray	vn as:			3	
	X (hour)	Y	Base Fee	Total		
	1	50	70	120		
	2	100	70	170		
	3	150	70	220		
	4	200	70	270		

		1
	The relation is a function such that $Y = x * 50$	
	Total = Y + 70	
	Also, Total = $(x*50) + 70$, where x number of hours	
	We can see that each x element has only one y-element as well as total number associated with it.	
	Hence, the relation is a function, since a function is a special type of relation where each input has exactly one output, and the output can be traced back to its input.	
8	The number of gallons of gas purchased will go on the x-axis and the costs of the gasoline goes on the y-axis.	3
	Because the least amount of gas he can purchase is 0 gallons which is \$0 then part of the function is 0≤x.	
	The most amount of money he can spend on gas is \$78.12 which is the full 28 gallons. i.e., 2.79 * 28 gallons = 78.12	
	This adds to the function making it $0 \le x \le 28$.	
	Then to complete the function because each gallon of gas cost \$2.79	
	and x represents the amount of gas bought the equation is y=2.79x	
	and $0 \le x \le 28$.	
	Hence,	
	The domain is [0,28] and the range is [0,78.12]	
9	Perfectly valid as well:	3
	* Any person lives within a mile of themselves (namely zero distance), so it is reflexive. * If one person lives within a mile of another, that person consequently lives within a mile of the first, so it's symmetric.	
	* It is not ensured that if Paul lives within a mile of John, who lives within a mile of Martha, that Paul is within a mile of Martha. For instance, if Paul and Martha are two miles apart, and	
	John is exactly between the two, we see a lack of transitivity.	
10	Hence, the given relation is reflexive, symmetric but not transitive. $S=\{(a,b): a,b \in \mathbb{R} \text{ and } a \leq b^3\}$	3
	Referive:- as $\frac{1}{2} \le (\frac{1}{2})^3$ where $\frac{1}{2} \in R$, is not true	
	$\left(\frac{1}{2}, \frac{1}{2}\right) \notin S$	
	Thus S is not reflexive (1)	
	Symmetric:- as $-2 \le (3)^3$ where $(-2,30 \in S \text{ is true but } 3 \le (-2)^3 \text{ is not true.}$ i.e. $(-2,3) \in S$ but $(3,-2) \notin S$ (1)	
	Therefore $_{,}$ S is not symmetric .	
	Transitive: As $3 \le (\frac{3}{2})^3$ and $\frac{3}{2} \le (\frac{4}{3})^3$ where $3, \frac{3}{2}, \frac{4}{3} \in S$ are true but $3 \le (\frac{4}{3})^3$ is not true	
	i.e. $(3, \frac{3}{2}) \in S$ and $(\frac{3}{2}, \frac{4}{3}) \in S$ but $(3, \frac{4}{3}) \notin S$.	
	therefore S is not transitive (1) Hence is neither reflexive nor symmetric nor transitive	
	Hence is neither reflexive nor symmetric nor transitive	
		i

11	Given that $f(x) = \frac{4x-3}{6x-4} \ \forall \ x \in A$	3
	To show that f is One-One Let $f(x) = f(x)$	
	Let $f(x_1) = f(x_2)$ $4x_1 + 3 + 4x_2 + 3 + \dots + 1$	
	Then $(\frac{4x_1+3}{6x_1-4}) = \frac{4x_2+3}{6x_2-4}$ on solving this $(\frac{1}{2})$	
	$we get x_1 = x_2 $ (1)	
	To show that f is Onto	
	Let $y \in B$ so $y = f(x)$ $(\frac{1}{2})$	
	Or $y = \frac{4x-3}{6x-4}$ solve for x we get	
	$x = \frac{4y+3}{6y-4} = g(y) \Rightarrow \text{f is Onto function.} $ (1)	
	$x = \frac{1}{6y-4} = g(y) $ is the function.	
12	For Reflexive Relation	3
	Let $(a,b) \in N \times N$	
	Then since $a^2 + b^2 = a^2 + b^2$	
	(a,b) R (a,b) Hence R is reflexive relation (1)	
	Symmetric:- Let $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$ be such that	
	(a,b) R (c,d) $\Rightarrow a^2 + d^2 = b^2 + c^2$	
	$\Rightarrow c^2 + b^2 = d^2 + a^2$	
	\Rightarrow (c,d) R (a,b) Hence R is symmetric relation (1)	
	Transitive:- Let (a,b) , (c,d) , $(e,f) \in N \times N$ be such that	
	(a,b) R (c,d) and $(c,d) R (e,f)$	
	$\Rightarrow a^2 + d^2 = b^2 + c^2 \dots (1)$	
	And $\Rightarrow c^2 + f^2 = d^2 + e^2$ (2)	
	Adding equation.(1) and equation (2)	
	$\Rightarrow a^2 + d^2 + c^2 + f^2 = b^2 + c^2 + d^2 + e^2$	
	$\Rightarrow a^2 + f^2 = b^2 + e^2$	
	\Rightarrow (a,b) R (e,f) Hence R is transitive relation (1)	
	Since R is reflexive, symmetric and transitive	
	Hence R is equivalence relation	
13	For injectivity:	3
	$f(x_1) = f(x_2)$ therefore $\frac{x_1-2}{x_1-3} = \frac{x_2-2}{x_2-3}$	
	AI J AE U	
	$(x_1-2)(x_2-3) = (x_1-3)(x_2-2)$	
	X1.x2 - 3x1 - 2x2 + 6 = x1.x2 - 3x2 - 2x1 + 6 then $x1 = x2$, $f(x)$ is injective.	
	For Surjectivity:	
	$y = \frac{x-2}{x-3} ; x-2 = xy - 3y ; x = \frac{2-3y}{1-y} \in A \text{ for every value of } B$	
	So f is surjective	
	Hence f is bijective.	
14	Reflexivity:	3
1	b+a =a+b, for a,b $\in N$	3
	$ab=ba$, for $a,b \in N$	
	$ab-ba$, $101 \ a,b \in N$ $ab(b+a) = ba(a+b)$, for $a,b \in N$	
	(a,b) R (b,a), R is reflexive.	
	Symmetric:	
L	DJ minietra to	

	=(a,b)R(c,d)	
	ad(b+c) = bc(a+d)	
	cb(d+a) = da(c+b)	
	= (c,d) R (a,b)	
	Transitivity:	
	Let $(a,b)R(c,d)$ and $(c,d)R(e,f)$ then $(a,b)R(e,f)$	
15	<u>Reflexive</u>	3
	$R = \{(a,b^3) : a \le b^3\}$	3
	Here $\frac{1}{2} \in R$	
	1 1	
	$\left \frac{1}{3} > \frac{1}{27}\right $	
	$\left(\frac{1}{3},\frac{1}{3}\right) \notin R$	
	<u>Symmetric</u>	
	Let $(1,2) \in R$	
	$1 \le 8 \text{ or } 1 \le 2^3$	
	but $(2,1) \in R$ and $8 \ge 1$ it is not symmetric.	
	Transitive:	
	$(10,3) \in R$ and $(3,2) \in R$ but $(10,3)$ does not belongs to R	
	Relation is not transitive.	
16	1	
16	For reflexive : Let $a = \frac{1}{2}$,	
	$(a, a) \in \mathbb{R} \Rightarrow \frac{1}{2} \le (\frac{1}{2})^2 \Rightarrow \frac{1}{2} \le \frac{1}{4}$, false, Hence, not reflexive.	1
	For symmetric : Let $(-1, 2) \in \mathbb{R}$ as $-1 \le (2)^2$ is true.	
	Now $(2,-1) \in \mathbb{R} \Rightarrow 2 \le (-1)^2 \Rightarrow 2 \le 1$ is false.	1
	As $(-1, 2) \in \mathbb{R} \Rightarrow (2,-1) \in \mathbb{R}$, Hence, not symmetric.	
	For transitive : Let $(6,3),(3,2) \in \mathbb{R}$	
	$(6,3) \in \mathbb{R} \Rightarrow 6 \le (3)^2 \Rightarrow 6 \le 9$, true	1
	$(3,2) \in \mathbb{R} \Rightarrow 3 \le (2)^2 \Rightarrow 3 \le 4$, true	
	We have to show, $(6, 2) \in \mathbb{R}$	
	$=>6 \le (2)^2 => 6 \le 4$, false. So, not transitive.	
17	Given, $A = R - \{3\}$, $B = R - \{1\}$ and $f(x) = \frac{x-2}{x-3}$.	
	For one-one: Let for $x_1, x_2 \in A$,	₁ 1
	$f(x_1) = f(x_2) \implies \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$	$1\frac{1}{2}$
	$\Rightarrow x_1 x_2 - 2x_2 - 3x_1 + 6 = x_1 x_2 - 3x_2 - 2x_1 + 6$	
	$\Rightarrow x_1 = x_2$	
	I	1

	$As f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Hence, function is one-one.	$1\frac{1}{2}$	
	For onto: Let $y \in B$, there exists $x \in A$ such that $y = f(x) => y = \frac{x-2}{x-3}$	2	
	$\Rightarrow xy - 3y = x - 2$		
	$\Rightarrow xy-x = 3y-2$		
	$\Rightarrow x(y-1) = 3y-2$		
	$\Rightarrow x = \frac{3y-2}{y-1} \in A. $ Hence, onto.		
10	, -	4	
18	For reflexive:	1	
	For any $a \in \mathbb{Z}$, we have $a - a = 0$, which is divisible by 5. $\Rightarrow (a, a) \in \mathbb{R}$		
	Thus, $(a, a) \in R$ for all $a \in A$.		
	So, R is reflexive.	1	
	For symmetric : Let $(a, b) \in R$. Then, $(a, b) \in R$	1	
	$\Rightarrow a-b \text{ is divisible by } 5$		
	\Rightarrow $-(a-b)$ is divisible by 5		
	$\Rightarrow b-a$ is divisible by 5		
	$\Rightarrow (b, a) \in R$		
	So, R is symmetric. For transitive: Let $(a,b) \in R$ and $(b,c) \in R$, for $a,b,c \in Z$		
		1	
	\Rightarrow (a-b) is divisible by 5 and (b-c) is divisible by 5		
	$\Rightarrow (a - b) + (b - c) = a - c \text{ is divisible by 5}$		
	$\Rightarrow (a, c) \in R$		
	As $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$		
	Hence, R is transitive.		
	Since R is reflexive, symmetric and transitive		
	$\Rightarrow R$ is equivalence relation.		