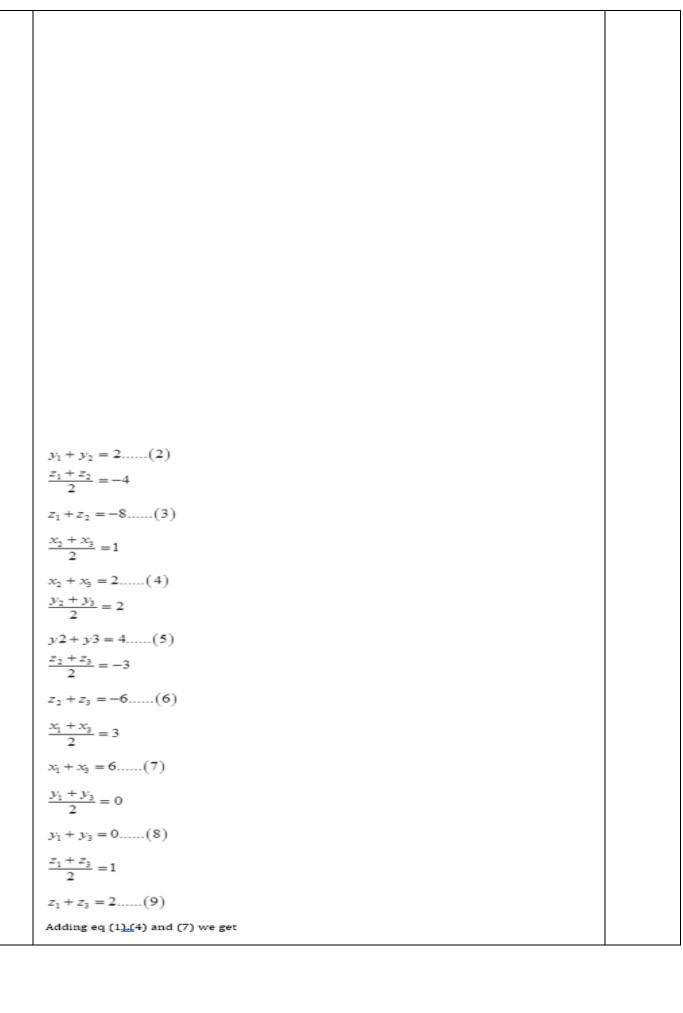
CHAPTER-12

INTRODUCTION TO 3D

04 MARK TYPE QUESTIONS

Q. NO			QUESTION	MARK
1.	X	Z YZ XY		4
	(i)	x-axis is the intersect	tion of the planes	
		(a) xy and xz	(b) yz and zx	
		(c) xy and yz	(d) none of these	
	(ii)	Equation y-axis is co	nsidered as	
		(a) x=0,y=0	(b) y=0,z=0	
		(c) z=0,x=0	(d) none of these	
	(iii)	The locus of the poir	nt x=0 is	
		(a) xy-plane	(b) yz-plane	
		(c) zx-plane	(d) none of these	
	(iv)	A plane is parallel to	yz-plane, so it is perpendicular to	
		(a) x-axis	(b) y-axis	
		(c) z-axis	(d) none of these	
2.			at its centroid which is at origin, if the three vertices of	4
	_	re A(2a,2,6), B(-4,3b,-1		
	(i)	Find the value of a, b		
	(ii)	=	edian through vertex A.	
	(iii)	•	3 and divide it in 2:3. Find coordinates of mid-point of CD.	
	(iv)	Find the coordinates	of mid-point of CD.	
		C L	<u>₹</u> Υ	
3.	Determin		a point where Ramesh is standing equidistant from the point	4
			t distance from the line joining the point (1, 2) and (3, 4) to	
	Ramesh is	s√2.		
4.			teorological Dept. of Odisha predicted a trough line 2x - 3y =	4
		•	of the line two cities A&B. If the co-ordinates of A are (-3, 1),	
	Tina the c	o-ordinates of B.		

	Trough Trough	
5.	If the origin is the centroid of \bullet PQR with vertices P (a,0,6) Q(4,b,-1) and R (4
	2,4,c) then find the values of a,b and c.	
6.	Show that the points (-2,6,-2) (0,4,-1) (-2,3,1) and (-4,5,0) are the vertices of a	4
7.	Four students in traditional dress represent four states of india, standing at the points represented by O(0,0,0), A(a,0,0),B(0,b,0) and C(0,0,c). Find the place, in terms of coordinate ,where a girl representing "BHARATMATA" be replaced so that "BHARATMATA" is equidistant from the four students.	4
8.	Three students are standing in a park with three different sign boards "SAVE ENVIRONMENT", "DON'T LITTER", "KEEP PLACE CLEAN". Their positions are marked by the points A(0,7,10),B(-1,6,6) and C(-4,9,6). The three students are holding GREEN colored ribbon together. Answer the following questions which are based on above information:- (i) Find the difference between lengths of ribbon AB and ribbon BC. (ii) Ribbons form the sides of a right angled triangle". Is this statement correct? Justify.	4
9.	A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle <bac bc<="" meets="" th=""><th>4</th></bac>	4
10.	A boy is standing at point O and observe three kites A, B and C in space. Taking O as origin if the coordinates of three kites A, B and C are (3,4,5), (1, 3, 4) and (2,-1,4) respectively, then	4
	(i). the distance between kites A and B is	
	(a) $\sqrt{6}$ units. (b) $3\sqrt{2}$ units	
	(c) 5 units. (d) 9v2 units	
	(ii). The coordinates of a point on the y-axis which is at a distance of $\sqrt{35}$ units from kite A are	
	(a) (0,0, 5). (b) (0,7,0)	
	(c) (3,0,0). (d) (0.5,0)	
	(iii). The coordinates of point D so that ABCD is a parallelogram are	
	(a) (6, 0,5). (c) (-1,3,2)	


	(b) (4,9,5). (d) (5,6,0)	
	(iv). If the points (0,-1,-7), (2, 1-9) and (6,513) represent kites A, B and C then the kites	
	(a) are collinear. (b) form right angled triangle	
	(c) form an isosceles triangles. (d) form a rhombus	
11.	Show that the points A (1,2,3), B (-1, -2, -1), C (2,3,2) and D (4,7,6) are the vertices of a parallelogram ABCD, but it is not a rectangle.	4
12.	The mid-points of the sides of a triangle are (1,5,-1),(0,4,-2) and (2,3,4). Find its vertices.	4
13.	You are an urban planner working on a new park design. The park has a triangular playground with vertices A $(2, 3, 4)$, B $(5, 6, 7)$, and C $(8, 9, 10)$. The park also features a jogging track that passes through the centroid of the triangular playground. Answer the following questions: MCQ 1: What are the coordinates of the centroid of triangle ABC? a) $(5, 6, 7)$ b) $(5, 6, 5)$ c) $(5, 6, 6)$ d) $(5, 6, 8)$ MCQ 2: What is the equation of the line passing through the centroid of triangle ABC? a) $x = 5$ b) $y = 6$ c) $z = 6$ d) $x + y + z = 17$ MCQ 3: At what coordinates does the jogging track intersect the x-y plane? a) $(5, 6, 0)$ b) $(5, 0, 7)$ c) $(0, 6, 7)$ d) $(0, 6, 0)$ **MCQ 4: What is the equation of the plane containing the triangular playground ABC and parallel to the $x - z$ plane? a) $y = 6$ b) $x = 5$ c) $y + z = 13$ d) $x - y = -1$	4
14.	1. Find the Co-ordinate of a point equidistant from the four points	4

ANSWERS:

Q. NO	ANSWER	MARKS
1.	(i) (a) xy and yz	4
	(ii) (c) z=0,x=0	
	(iii) (b) yz-plane	
	(iv) (a) x-axis	
2.	(i) $\frac{2a-4+8}{3} = 0 \implies a = -2$	4
	$\frac{2+3b+14}{3} = 0 \implies b = \frac{-16}{3}$	
	$\frac{6-10+2c}{2}=0 \implies c=2$	
	3 -0 - 2	
	(_4+8 _16+14 _10+4)	
	(ii) Mid point of BC= $\left(\frac{-4+8}{2}, \frac{-16+14}{2}, \frac{-10+4}{2}\right)$	
	= (2,-1,-3)	
	Length of median through vertex A	
	$=\sqrt{(-4-2)^2+(2+1)^2+(6+3)^2}$	
	$= \sqrt{36 + 9 + 81} = 3\sqrt{14}.$	
	(iii) Points A (-4,2,6) and B(-4,-16,-10)	
	Ratio 2:3	
	Coordinates of point D	
	$= \left(\frac{2(-4)+3(-4)}{2+3}, \frac{2(-16)+3\times 2}{2+3}, \frac{2(-10)+3\times 6}{2+3}\right)$	
	$-\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$=\left(-4,\frac{-26}{5},\frac{-2}{5}\right)$	
	('' 5 ' 5)	
	(,, 26 , 2)	
	(iv) Mid point of CD= $\left(\frac{8-4}{2}, \frac{14-\frac{26}{5}}{2}, \frac{4-\frac{2}{5}}{2}\right)$	
	·	
	$=\left(2,\frac{22}{5},\frac{9}{5}\right)$	
3.	Eq. of line through A(1,2) & B(3,4) is y-2=1(x-1) => x-y+1=0	1
	Shortest distance $ \frac{x-y+1}{\sqrt{2}} = \sqrt{2} = x-y-1=0$ (eq.1)	+1
	Let P(x,y) such that PA=PB	
	$(x-1)^2+(y-2)^2=(x-3)^2+(y-4)^2 => x+y-5=0 \text{ (eq.2)}$	+1
	Solving eq.1 & 2 point is (3,2)	+1
4.	Let C is M.P. of AB with A(-3.1)	1
	Now eq. of perpendicular bisector CD is 2x-3y=4 (eq.1)	+1
	m(CD)=2/3 => m(AB)=-3/2,	+1

	Eq. of AB y-1= $(-3/2)(x+3) => 3x+2y+8=0$ (eq.2)	
	Solving (1) & (2), C(-16/13,-28/13)	+1
	⇒ B (7/13,-43/13)	
5.	Given, vertices of ▲ PQR are P (a,0,6) Q(4,b,-1) and R(2,4,c)	4
	Then, the coordinates of the centroid of ▲ PQR are given by	
	$\left(\frac{a+4+2}{3}, \frac{0+b+4}{3}, \frac{6-1+c}{3}\right)$	
	$=(\frac{a+6}{3},\frac{b+4}{3},\frac{c+5}{3})$	
	Given, that the centroid of \bullet PQR is the point (0,0,0)	
	$\therefore \frac{a+6}{3} = 0$	
	$\Rightarrow a = -6$	
	$\frac{b+4}{3} = 0$	
	\Rightarrow b = -4	
	$\frac{c+5}{3} = 0$	
	$\begin{array}{c} 3 \\ \Rightarrow c = -5 \end{array}$	
	Hence, $a = -6$, $b = -4$ and $c = -5$.	
6.	Let A (-2,6,-2) B (0,4,-1) C (-2,3,1) and D (-4,5,0) be the given points.	4
	AB = $\sqrt{(0+2)^2 + (4-6)^2 + (-1+2)^2}$	
	[using the distance formula]	
	$=\sqrt{4+4+1} = \sqrt{9}$	
	= 3 units	
	BC = $\sqrt{(-2-0)^2 + (3-4)^2 + (1+1)^2}$	
	$=\sqrt{4+4+1}=\sqrt{9}$	
	= 3 units	
	$CD = \sqrt{(-4+2)^2 + (5-3)^2 + (0-1)^2}$	
	$=\sqrt{4+4+1}=\sqrt{9}$	
	= 3 units.	
	$AD = \sqrt{(-4+2)^2 + (5-6)^2 + (0+2)^2}$	
	$=\sqrt{4+1+4} = \sqrt{9}$	
	= 3 units	
	Here, AB = BC = CD = DA	
	So, ABCD is a square or a rhombus.	
	Now, AC = $\sqrt{(-4+2)^2+(5-3)^2+(0-1)^2}$	
	$=\sqrt{0+9+9} = \sqrt{18}$ units	
	And BD = $\sqrt{(-4+2)^2 + (5-3)^2 + (0-1)^2}$	
	$=\sqrt{16+1+1} = \sqrt{18}$ units	
	Since, diagonal AC = diagonal BD	
	Hence ABCD is a square.	
7.	Let $O(0,0,0)$, $A(a,0,0)$, $B(0,b,0)$ and $C(0,0,c)$ be four points equidistant from the point	4
	P(x,y,z).	
	Then PA=PB=PC=OP	

	Now, $OP=PA \Rightarrow OP^2=PA^2$	
	Now, $OP = PA \Rightarrow OP = PA^2$ $\Rightarrow x^2 + y^2 + z^2 = (x - a)^2 + (y - 0)^2 + (z - 0)^2$	
	$\Rightarrow x + y + z = (x - u) + (y - 0) + (z - 0)$ $\Rightarrow x = a/2$	
	Similarly, OP=PB $\Rightarrow y = \frac{b}{2}$	
	<u> </u>	
	and $OP=PC \Rightarrow z = \frac{c}{2}$	
	Hence, the coordinate of the required points are(a/2,b/2,c/2)	_
8.	$AB=3\sqrt{2}$, $BC=3\sqrt{2}$, $CA=6$	4
	 (i) Difference between lengths of ribbon AB and ribbon BC is Zero. (ii) AB²+ BC²= CA² 	
	Hence, $\triangle ABC$ is right angled triangle at B	
9.	The distance between the points A (1, 2, 3) and B (0, 4, 1) is	4
		-
	AB, $=\sqrt{\{(1-0)^2+(2-4)^2+(3-1)^2\}}$	
	$=\sqrt{1^2+2^2+2^2}$	
	$=\sqrt{1+4+4}$	
	= 3	
	The distance between the points A (1, 2, 3) and C (-1,-1,-3) is AC,	
	$= \sqrt{(1+1)^2 + (2+1)^2 + (3+3)^2}$	
	$=\sqrt{4+9+36}$	
	=7	
	So, AB/AC = 3/7	
	AB: AC = 3:7	
	BD: DC = 3:7	
	The coordinates of D are (-3/10, 5/2, -1/5).	
10.	(i) b	4
	(ii) d	
	(iii) a	
	(iv) a	
11.	ANSWER	
12.	(1,2,3),(3,4,5),(-1,6,-7)	
13.	Answer: MCQ 1: b) (5, 6, 5)	4
	MCQ 2: c) z = 6	
	MCQ 3: a) (5, 6, 0)	
1.4	MCQ 4: c) y + z = 13	1
14.	P(x,y,z) be the required point OP=PA=PB=PC	4
	O1 -1 /1-1 D-1 C	

		1
	$2(x_1 + x_2 + x_3) = -2 + 2 + 6$	
	Adding eq. (2 <u>).(</u> 5) and (8)	
	$2(y_1 + y_2 + y_3) = 6$	
	$y_1 + y_2 + y_3 = 3(11)$	
	And $OP = PC$	
	c	
	$\Rightarrow z = \frac{c}{2}$	
	Hence co-ordinate of $P\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$	
15.		
16.		
17.		
18.		
19.		
20.		
21.		
22.		
23.		
24.		
25.		
26.		
27.		
28.		
29.		
30.		
31.		
32.		
33.		
34.		
35.		
36.		
37.		
38.		
39.		
40.		
41.		
41.		
43.		
44.		
44.		
46.		
47.		

48.	
49.	
50.	
51.	
52.	
53.	
54.	
55.	
56.	
57.	
58.	
59.	
60.	
61.	
62.	
63.	
64.	
65.	
66.	
67.	
68.	
69.	
70.	
71.	
72.	
73.	
74.	
75.	
76.	
77.	
78.	
79.	
80.	
81.	
82.	
83.	
84.	
85.	
86.	
87.	
88.	
89.	
90.	
90.	
92.	
93.	
94.	
95.	
96.	

97.	
98.	
99.	
100.	
101.	
101.	
102.	
103.	
104.	
106.	
100.	
107.	
109.	
110.	
111. 112.	
113.	
114.	
115.	
116.	
117.	
118.	
119.	
120.	
121.	
122.	
123.	
124.	
125.	
126.	
127.	
128.	
129.	
130.	
131.	
132.	
133.	
134.	
135.	
136.	
137.	
138.	
139.	
140.	
141.	
142.	
143.	
144.	
145.	

146.	
147.	
148.	
149.	
150.	