CHAPTER-2 RELATIONS & FUNCTIONS 04 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Let A = {1, 2} and B = {2, 4, 6}. Let f = {(x, y) : $x \in A$, $y \in B$ and $y > 2x + 1$ }.	4
	Write f as a set of ordered pairs. Show that f is a relation but not a function	
	from A to B	
2.	Let R+ be the set of all positive real numbers. Let $f : R+ \rightarrow R : f(x) = \log x$. Base e	4
	Find	
	(i) Range (f)	
	(ii) $\{x : x \in R+ \text{ and } f(x) = -2\}.$	
	(iii) Find out whether $f(x + y) = f(x)$. $f(y)$ for all x, y \in R.	
3.	Let $A = \{5,7\}$ and $B = \{9,13\}$	4
	Let $R = \{(x, y) : x \in A, y \in B, x - y = odd integer\}$	
	Show that R is an empty relation from setA to setB	
4.	Find the domain range of $f(x) = \frac{1}{\sqrt{x - [x]}}$	4

A٢	١S	W	EI	RS	:

Q. NO	ANSWER	MARKS
1.	Given: A = {1, 2} and B = {2, 4, 6}	
	$f = \{(x, y): x \in A, y \in B \text{ and } y > 2x + 1\}$	
	Putting $x = 1$ in $y > 2x + 1$, we get	
	y > 2(1) + 1	
	$\Rightarrow \gamma > 3$	
	and $y \in B$	
	this means y = 4, 6 if x = 1 because it satisfies the condition y > 3	
	Putting $x = 2$ in $y > 2x + 1$, we get	
	y > 2(2) + 1	
	$\Rightarrow \gamma > 5$	
	this means $y = 6$ if $x = 2$ because it satisfies the condition $y > 5$.	
	$\therefore f = \{(1, 4), (1, 6), (2, 6)\}$	
	(1, 2), (2, 2), (2, 4) are not the members of 'f' because they do not satisfy the given	
	condition $y > 2x + 1$	
	Firstly, we have to show that f is a relation from A to B.	
	First elements = 1, 2	
	All the first elements are in Set A	
	So, the first element is from set A	
	Second elements in F = 4, 6 All the second elements are in Set B	

	So, the second element is from set B	
	Since the first element is from set A and second element is from set B	
	Hence, F is a relation from A to B.	
	Function:	
	(i) all elements of the first set are associated with the elements of the second set.	
	(ii) An element of the first set has a unique image in the second set.	
	Now, we have to show that f is not a function from A to B	
	f = {(1, 4), (1, 6), (2, 6)}	
	Here, 1 is coming twice.	
	Hence, it does not have a unique (one) image.	
	So, it is not a function.	
2.	Given that f: $R+\rightarrow R$ such that $f(x) = \log x$	
	To find: (i) Range of f Here, $f(x) = \log x$ We know that the range of a function is the set of images of elements in the domain. \therefore The image set of the domain of $f = R$ Hence, the range of f is the set of all real numbers. To find: (ii) {x : x $\in R$ + and $f(x) = -2$ } We have, $f(x) = -2$ (a) And $f(x) = \log x$ (b) From eq. (a) and (b), we get $\log x = -2$ Taking exponential both the sides, we get $\Rightarrow x = e^{-2}$	
	∴{x : x ∈ R+ and f(x) = -2} = {e- ² } To find: (iii) f(xy) = f(x) + f(y) for all x, y ∈ R We have,	

	$f(xy) = \log(xy)$	
	$= \log(x) + \log(y)$	
	[Product Rule for Logarithms]	
	= f(x) + f(y) [::f(x) = logx]	
	\therefore f(xy) = f(x) + f(y) holds.	
3.	$A = \{5,7\}, B = \{9,13\}$	
	$A \times B = \{(5,9), (5,13), (7,9), (7,13)\}$	
	Every relation is a subset of $A \times B$	
	$R = \{(x, y) : x \in A, y \in B, x - y = An \ odd \ ingteger\}$ Now $(5 - 9) = -4$, $(5 - 13) = -8$, $(7 - 9) = -2$, $(7 - 13) = -6$	
	We see that every ordered pair (x, y) of $A \times B$, $x - y$ is not odd, i.e, no $(x, y) \in R$	
	Hence, R is an empty relation.	
4.	We have, $f(x) = \frac{1}{\sqrt{x-[x]}}$	
	Domain of f: We know that $0 \le x - [x] < 1$ for all $x \in R$	
	and $x - [x] \le 1$ for all $x \in \mathbb{R}$ and $x - [x] = 0$ for $x \in \mathbb{Z}$	
	$\therefore 0 < x - [x] < 1$ for all $x \in R - Z$	
	$\Rightarrow f(x) = \frac{1}{\sqrt{x- x }} \text{ exists for all } x \in R - Z$	
	Hence, Domain (f) = $R - Z$	
	Range of f : We have	
	$0 < x - [x] < 1 \text{ for all } x \in R - Z$	
	$\Rightarrow 0 < \sqrt{x - [x]} < 1$ for all $x \in R - Z$	
	$\Rightarrow 1 < \frac{1}{\sqrt{x-[x]}} < \infty \text{ for all } x \in R - Z$	
	$\Rightarrow 1 < f(x) < \infty \text{ for all } x \in R - Z$	
	Range $(f) = (1, \infty)$	