CHAPTER-13 LIMITS & DERIVATIVES 04 MARK TYPE QUESTIONS

_	04 WARK TYPE QUESTIONS	
Q. NO	QUESTION	MARK
1.	CASE BASED:	4
	The equation of the path traced by a roller-coaster is given by the polynomial f(x)=a(x+9)(x+1)(x-3).If the roller -coaster crosses y-axis at a point(0,-1),answer the	
	following:	
	(i)Find the value of a	
	(iii) Find $f'(x)$ at x=1	
2.	The relation between height of the plant (y in cm) with respect to exposure to sunlight is	4
	governed by the equation $y=4x-\frac{1}{2}x^2$ where x is the number of days exposed to sunlight.	
	(i) Find the rate of growth of the plant with respect to sunlight.	
	(ii) What is the rate of growth at x=1	
3.	Case Based Question-1: In class XI science, the teacher is explaining the concept of derivative and he defined the derivative of a real function $f(x)$ as $f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ and said that this is called	4(2+2)
	the first principle of derivative. But one of the students asked that this is looking like a limit and what they used to call the left-hand and right-hand limits of the above limit. Then the teacher	
	replied that the left-hand limit of $\frac{f(x+h) - f(x)}{h}$ at $h = 0$ is called left derivative $Lf^{1}(x)$ and the	
	right-hand limit is called right derivative $Rf^{1}(x)$.	
	Based on the above information, answer the following questions. (i)) Verify the function $f(x) = x $ is differentiable at $x = 0$	
	(ii) Find the derivative of $f(x) = e^x$ by using first principle.	
4.	Case Based Question -2:	4
	Given $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, \text{ and}$	
	$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$	
	Based on this information find the following:	
	(i). Evaluate $\lim_{x \to 0} \frac{x - \sin x}{x^3}$.	1
	(ii). Evaluate $\lim_{x \to 0} \frac{1 - \cos x}{x^2}.$	1

	(iii). Evaluate $\lim_{x \to 0} \left(\frac{e^{3x} - 1}{e^{5x} - 1} \right).$			1
	(iv). $\lim_{x \to 0} \left(\frac{e^x - 1 - x}{x^2} \right)$			1
5.	Mr Amit has a rectangular plot, which Length and width of plot are x m and		vegetables. Perimeter of plot is 50	m. 4
	Based on the above information, answ 1) Area function, $A(x) =$ A) $x^2 - 5$ B) $25x - x^2$	wer the following qu C) x ² – 25	estions. D) 25 – x	
	2) Derivative of A(x) w.r.t. x, A'(x) = A) 2x B) - 2x	C) 25 – 2x		
	 3) Value of x for which A'(x) = 0 is A) 25 B) 12.5 A) Value of A'(x) et x = 12.5 is 	C) 5	D) 0	
	4) Value of A'(x) at x = 12.5 is A) 156.25 B) 250	C) 0	D) 144.25	
	Raj was learning limit of a polynomial	function from his to		4
	is said to be a polynomial function if the number, n is a whole number and $a_n \neq$ Then limit of a polynomial function f(x) $= \lim_{x \to a} (a_0 + a_1x + a_2x^2 +, a_n)$ $= \lim_{x \to a} a_0 + \lim_{x \to a} a_1x + \lim_{x \to a} a_2x^2 +, a_n$ $= a_0 + a_1a + a_2a^2 +, a_na_n$ = f(a) Based on above information, answer the	$f(x) = a_0 + a_1x + a_2x^2 +$	++ a _n x ⁿ where a _i 's are	nction f
	number, n is a whole number and $a_n \neq$ Then limit of a polynomial function f(x) $= \lim_{x \to a} (a_0 + a_1 x + a_2 x^2 + \dots + a_1 x + a_2 x^2 + \dots + a_1 x + a_2 x^2 + \dots + a_n x^2 + a_n x^$	$f(x) = a_0 + a_1x + a_2x^2 +$	++ a _n x ⁿ where a _i 's are	nction f
	number, n is a whole number and $a_n \neq$ Then limit of a polynomial function f(x) $= \lim_{x \to a} (a_0 + a_1 x + a_2 x^2 + \dots + a_1 x + a_2 x^2 + \dots + a_1 x + a_2 x^2 + \dots + a_n x^2 + a_n x^2 + \dots + a_n x^2 + a_$	$f(x) = a_0 + a_1x + a_2x^2 +$	bons.	nction f
	number, n is a whole number and $a_n \neq$ Then limit of a polynomial function f(x) $= \lim_{x \to a} (a_0 + a_1x + a_2x^2 + \dots + a_2x^2) + \dots + a_n a_1x + \lim_{x \to a} a_2x^2 + \dots + a_n a_n a_n a_n + a_n + a_n a_n + a_n + a_n a_n + $	$f(x) = a_0 + a_1 x + a_2 x^2 - e^2 0$ $f(x) = \lim_{x \to a} f(x) + a_n x^n$ $f(x) + a_n x^n$ $f(x) + \lim_{x \to a} a_n x^n$	 D) 3 D) 125 	nction f
	number, n is a whole number and $a_n \neq$ Then limit of a polynomial function f(x) $= \lim_{x \to a} (a_0 + a_1 x + a_2 x^2 + \dots + a_2 x^2) + \dots + a_n a_n a_n + \lim_{x \to a} a_1 x + \lim_{x \to a} a_2 x^2 + \dots + a_n a_n a_n a_n + a_n a_n a_n a_n + a_n + a_n a_n + a_n$	$f(x) = a_0 + a_1x + a_2x^2 +$	bons.	nction f

7.	Differentiate the given function $\frac{\sin x + \cos x}{\sin x - \cos x}$ with respect to x.	4
8.	A function f is said to be a rational function, if $f(x) = \frac{g(x)}{h(x)}$, where $g(x)$ and $h(x)$ are polynomial functions such that $h(x) \neq 0$. Then $\lim_{x \to a} f(x) = \lim_{x \to a} \frac{g(x)}{h(x)} = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{g(a)}{h(a)}$. However, if $h(a) = 0$, then there are two cases arise, i) $g(a) \neq 0$ ii) $g(a) = 0$ In first case we say that the limit does not exist. In second case, we can find the limit. Based on above information, answer the following questions. i) $\lim_{x \to -1} \left(\frac{x^{10} + x^5 + 1}{x - 1} \right)$ is equal to a) $\frac{1}{2}$ b) $-\frac{1}{2}$ c) 2 d) $\frac{3}{2}$ ii) $\lim_{x \to -1} \frac{(x - 1)^2 + 3x^2}{(x^4 + 1)^2}$ is equal to a) $\frac{7}{4}$ b) $\frac{6}{5}$ c) $\frac{4}{7}$ d) $\frac{3}{4}$	4

Q. NO	ANSWER	MARKS
1.	$(i)\frac{1}{27}$ $(ii)\frac{-4}{27}$	4
2.	(i) 4-x (ii) 3	4
3.	(i) $f(x) = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$	4
	$\therefore Lf^{1}(0) = \frac{d}{dx}(-x) = -1 \text{ and}$	
	$\therefore Rf^{1}(0) = \frac{d}{dx}x = 1$	
	Hence derivative of $f(x) = x $ at $x = 0$ does not exist.	
	(ii) $f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = \lim_{h \to 0} \frac{e^{x} \cdot e^{h} - e^{x}}{h}$	
	$= \lim_{h \to 0} \frac{e^{x}(e^{h} - 1)}{h} = \lim_{h \to 0} e^{x} \lim_{h \to 0} \frac{(e^{h} - 1)}{h} = e^{x} \times 1 = e^{x}$	
4.	(i) $\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right)}{x^3} =$	4
	$\lim_{x \to 0} \frac{x - x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots}{x^3} = \lim_{x \to 0} \frac{x^3 \left(\frac{1}{3!} - \frac{x^2}{5!} + \dots\right)}{x^3} = \lim_{x \to 0} \left(\frac{1}{3!} - \frac{x^2}{5!} + \dots\right) = \frac{1}{3!} = \frac{1}{6}$	
	(ii) $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \left(\frac{1 - \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots\right)}{x^2} \right)$	
	$= \lim_{x \to 0} \left(\frac{1 - 1 + \frac{x^2}{2!} - \frac{x^4}{4!} + \dots}{x^2} \right) = \lim_{x \to 0} \frac{x^2 \left(\frac{1}{2!} - \frac{x^2}{4!} + \dots \right)}{x^2}$	
	$= \lim_{x \to 0} \left(\frac{1}{2!} - \frac{x^2}{4!} + \dots \right) = \frac{1}{2!} = \frac{1}{2}$	
	(iii) $\lim_{x \to 0} \left(\frac{e^{3x} - 1}{e^{5x} - 1} \right) = \lim_{x \to 0} \left(\frac{3 \cdot \frac{e^{3x} - 1}{3x}}{5 \cdot \frac{e^{5x} - 1}{5x}} \right) = \frac{3 \cdot \lim_{x \to 0} \left(\frac{e^{3x} - 1}{3x} \right)}{5 \cdot \lim_{x \to 0} \left(\frac{e^{5x} - 1}{5x} \right)} = \frac{3 \times 1}{5 \times 1} = \frac{3}{5}$	

ANSWERS:

	$(\text{iv}) \lim_{x \to 0} \left(\frac{e^x - 1 - x}{x^2} \right) = \lim_{x \to 0} \left(\frac{1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots - 1 - x}{x^2} \right)$ $= \lim_{x \to 0} \left(\frac{\frac{x^2}{2!} + \frac{x^3}{3!} + \dots}{x^2} \right) = \lim_{x \to 0} x^2 \left(\frac{\frac{1}{2!} + \frac{x}{3!} + \dots}{x^2} \right) = \lim_{x \to 0} \left(\frac{1}{2!} + \frac{x}{3!} + \dots \right) = \frac{1}{2!} = \frac{1}{2}$	
5.	(1)B (2)C (3) B (4)C	4
6.	(1)A (2) B (3) B (4) A	4
7.	Using quotient rule, $\frac{d}{dx} \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)$ $= \frac{(\sin x - \cos x) \cdot \frac{d}{dx} (\sin x + \cos x) - (\sin x + \cos x) \cdot \frac{d}{dx} (\sin x - \cos x)}{(\sin x - \cos x)^2}$ $= \frac{(\sin x - \cos x) (\cos x - \sin x) - (\sin x + \cos x) (\cos x + \sin x)}{(\sin x - \cos x)^2}$ $= \frac{-\left[(\sin x - \cos x)^2 + (\sin x + \cos x)^2 \right]}{(\sin x - \cos x)^2}$ $= \frac{-2(\sin^2 x + \cos^2 x)}{(\sin^2 x + \cos^2 x - 2\sin x \cos x)}$ we get f'(x) = $\frac{-2}{1 - \sin 2x}$.	4
8.	i) b ii) a	4