CHAPTER-7 PERMUTATIONS & COMBINATIONS 04 MARK TYPE QUESTIONS

Q. NO	QUESTION		
1.	The letter of the word 'RANDOM' are written in all possible orders and these words are		
	written out as in a dictionary. Find the rank of the word 'RANDOM'.		
2.	There are 10 points in a plane, no three of which are in the same straight line, excepting 4	4	
	points, which are collinear. Find the (i) number of straight lines obtained from the pairs of		
	these points; (ii) number of triangles that can be formed with the vertices as these points.		
3.	Riya and her five friends went for a trip to Shimla. They stayed in a hotel. There were 4	4	
0.	vacant rooms A, B, C & D. Out of these 4 vacant rooms two rooms A & B were double share	•	
	rooms & Two rooms C & D Can contain one person each.		
	i) Find the number of ways in which room A can be filled.		
	 ii) If room A & B are already filled, then find the number of ways in which room C can be filled. 		
	iii) If room A is filled with 2 person, then find the number in which rooms C & D can be		
	filled.		
4.	Sumit works at a book shop, while arranging some books on the book shelf, he observed	4	
	that there are 5 history books , 3 Maths books & 4 science books which are to be arranged		
	on the shelf.		
	i) In how many ways can he select a history or a math book .		
	ii) If he select 2 history books, 1 math book & 1 science book to arrange them , then		
	find the number of ways in which selection can be made.		
	iii) Find the number of ways , if the book of the same subject are put together.		
5.	A bag contains six white marbles and five red marbles. Find the number of ways in which	4	
	four marbles can be drawn from the bag if		
	(a) they can be of any colour.(b) two must be white and two red.		
	(c) they must all be of the same colour.		
6.	In how many ways can the letters of the word PERMUTATIONS be arranged if the	4	
	(i) words start with P and end with S,		
	(ii) there are always 4 letters between P and S?		
7.	In a cinema hall 4 doors to enter and 3 other doors to exit.	4	
	(a) How many ways a person can enter?		
	(b) How many ways a person can exit?(c) How many ways a person can enter and then exit?		
	(d) How many ways a person can enter and then exit but he can't enter and exit from the		
	same door.		
8.	A committee of 5 is to be formed out of 6 Gents and 4 ladies. In how many ways this can be	4	

done, when	
(i) At least two ladies are included?	
(ii) At most two ladies are included?	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	In a dictionary the words at each stage are arranged in alphabetical order. In the	4
	given problem we must therefore consider the words beginning with A, D, M, N, O, R	
	in order. A will occur in the first place as often as there are ways of arranging the	
	remaining 5 letters all at a time i.e. A will occur 5! times. Similarly, D, M, N, O will	
	occur in the first place the same number of times.	
	Number of words starting with A= 5!= 120	
	Number of words starting with D = 5!= 120	
	Number of words starting with M = 5! = 120	
	Number of words starting with N=5!= 120	
	Number of words starting with O=5! = 120	
	Number of words beginning with R is 5!, but one of these words is the word	
	RANDOM. So, we first find the number of words beginning with RAD and RAM.	
	Now, the words beginning with 'RAN' must follow. There are 3! words beginning with	
	RAN One of these words is the word RANDOM itself,	
	No. of words starting with RAD = 3! = 6 No. of words starting with RAM = 3! = 6	
	The first word beginning with RAN is the word RANDMO and the next word is	
	RANDOM Rank of RANDOM = 5x120 +2x6+2= 614 ways.	
2.	(i) Number of straight lines formed joining the 10 points, taking 2 at a	4
	time	
	$= {}^{10}C_2 = 45$ ways	
	Number of straight lines formed by joining the four points, taking 2 at a time = ${}^{4}C_{2}$ = 6	
	But, 4 collinear points, when joined pairwise give only one line. Required number of straight lines = 45-6+1=40.	
	(ii) Number of triangles that can be formed with the vertices as these points	
	Number of triangles formed by joining the points, taking 3 at a time = ${}^{10}C_3$ =120.	
	Number of triangles formed by joining the 4 points, taken 3 at a time = ${}^{4}C_{3} = {}^{4}C_{1} = 4$.	
	But, 4 collinear points cannot form a triangle when taken 3 at a time. So, Required	
	number of triangles = $120 - 4 = 116$.	
3.	i) Total numbers = 6	4
	Room A is a double shared room.	
	The number of ways in which room A can be filled = $6c_2 = 15$	
	ii) Now, rooms A and B can be filled with 2 members each and room C can be	

		filled with 1 person.	
		Required number of ways = $2c_1 = 2$	
		Required number of ways – $2c_1 - 2$	
	iii)	As room A is filled with 2 persons. Now, the remaining persons = 4	
	,	Given that room C and D can occupy 1 person each.	
		The number of ways in which rooms C and D can be filled = $4c_1 X 3c_1 =$	
		12	
4.	i)	A History book can be selected in 5 ways and a Math book can be selected	4
	-,	in 3 ways. Required number of ways = $5 + 3 = 8$	
	ii)	Now 2 History books can be chosen in $5p_2$ ways, I math book can be	
	,	chosen in $4p_1$ ways.	
		Required number of ways = $5p_2 X 3p_1 X 4p_1 = 240$	
	iii)	Number of ways of arranging History books = 5!	
		Number of ways of arranging Math books = 3!	
		Number of ways of arranging Science books = 4!	
	Poquirod		
5.	-	number of ways if the books of same subject are put together =3! . 4! . 5! otal number of marbles=6+5=11	4
5.		equired number of ways= ${}^{11}C_4$	4
		equired number of ways= ${}^{6}C_{2} \times {}^{5}C_{2} = 150$	
		equired number of ways= ${}^{6}C_{4}+{}^{5}C_{4}=20$	
6.	(i)	If P and S are fixed at the extreme ends, then 10 letters are left.	4
		In this case Required number of arrangements $\frac{10!}{2!} = 1814400$	
	(ii)	The letters have to arranged in such a way that there are always 4 letters	
		between P and S.	
		So, in a way the places of P and S are fixed. The remaining 10 letters in 10^{10}	
		which there 2 Ts can be arranged in $\frac{10!}{2!}$ ways	
		Also the letters P and S can be placed such that there are 4 letters between the main 2×7 , 14 means	
		them in $2 \times 7 = 14$ ways.	
		Therefore required number of arrangements $=\frac{10!}{2!} \times 14 = 25401600$	
7.		er of ways a person can enter= 4ways er of ways a person can exit = 3 ways	4
		er of ways a person can extr = 3 ways er of ways a person can enter and exit = $3x4 = 12$	
		enter and exit but can not enter and exit from same door= $12 - 8$	
		= 8	
8.		tal number of ways of forming the committee	4
		$X 6_{C_3} + 4_{C_3} X 6_{C_2} + 4_{C_4} X 6_{C_1}$	
	=120+	60 +6=186	
	(ii)Total	number of ways of forming the committee	
		$=6_{c_5}+6_{c_4}X4_{c_1}+6_{c_3}X4_{c_2}$	
		=6 + 60 + 120 = 186.	