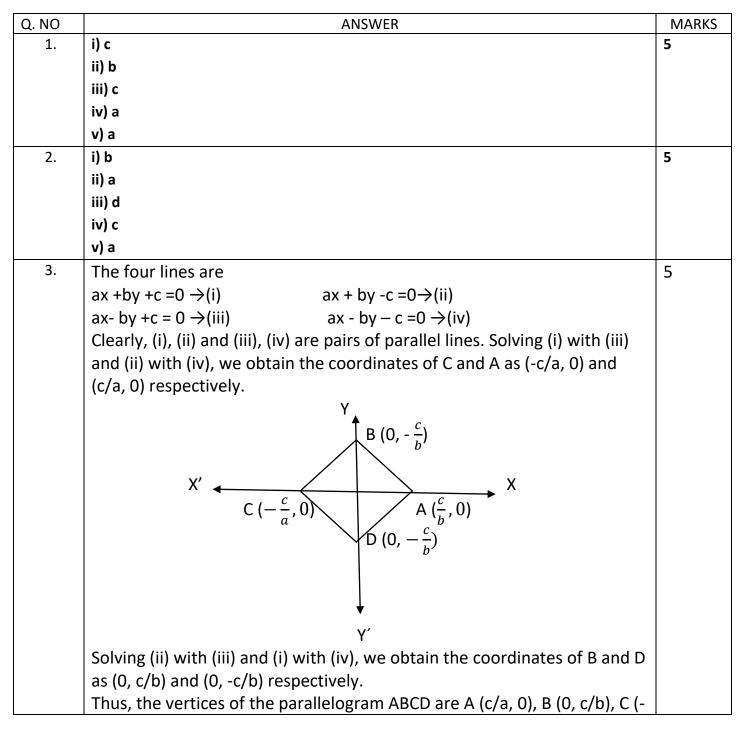
CHAPTER-10 STRAIGHT LINES 05 MARK TYPE QUESTIONS


	05 MARK TYPE QUESTIONS	
Q. NO	QUESTION	MARK
1.	Four friends Rishabh, Shubham, Vikram and Rajkumar are sitting on vertices of a rectangle,	5
	whose coordinates are given.	
	Rishabh (1, 4) Rajkumar (5, 4)	
	Shubham (1, 2) Vikram (5,2)	
	Based on the above information, answer the following questions.	
	i)The equation formed by Shubham and Rajkumar is a	
	a) X + 2Y + 3 = 0 b) X - 2Y - 3 = 0	
	c) X - 2Y + 3 = 0 d) None of the above	
	ii) The equation formed by Rishabh and Vikram is	
	a) $X + 2Y + 9 = 0$ b) $X + 2Y - 9 = 0$	
	c) X - 2Y - 9 = 0 d) None of the above	
	iii) The equation formed by Shubham and Vikram is	
	a) $X + 2Y + 9 = 0$ b) $X + 2Y - 9 = 0$	
	c) X - 2Y - 9 = 0 d) None of the above	
	iv)Slope of equation of line formed by Rishabh and Rajkumar is	
	a) ZERO b) 1 c) 2 d) 3	
	v) Pair of the same slope is	
	a) Rishabh – Rajkumar and Shubham-Vikram	
	b) Rishabh-Rajkumar and Rajkumar – Vikram	
	c) Rishabh – Rajkumar and Rishabh -Shubham	
	d) None of the above	
2.	If A and B are two persons sitting at the positions (2, -3) and (6, -5). If C is a third person who	5
	is sitting between A and B such that it divides the line AB in 1: 3 ratio.	
	VectorStock* VectorStock.com/2720759	
	A(2, -3) C(X,Y) B(6, -5)	
	Based on the above information, answer the following questions.	
	i) The distance between A and B is	
	a) $\sqrt{5}$ b) $2\sqrt{5}$ c) $3\sqrt{5}$ d) $4\sqrt{5}$	
	ii)The equation of AB is	
	a) $X + 2Y + 4 = 0$ b) $X + 2Y - 4 = 0$	
	c) $X - 2Y + 4 = 0$ d) None of these	
	iii)The coordinates of point C are	
	, · · · · · · · · · · · · · · · · · · ·	I

	a) $\left(\frac{7}{2}, -3\right)$ b) $\left(3, \frac{7}{2}\right)$ c) $\left(3, 3\right)$ d) $\left(3, -\frac{7}{2}\right)$ iv)Distance between A and C is	
	a) $\sqrt{5}$ b) $2\sqrt{5}$ c) $\frac{\sqrt{5}}{2}$ d) $\sqrt{\frac{5}{2}}$ v) Distance between C and B is	
	a) $\frac{3\sqrt{5}}{2}$ b) $3\sqrt{5}$ c) $\frac{2\sqrt{5}}{2}$ d) None of these.	
3.	3	5
4.	Show that the four lines ax by c = 0 enclosed a rhombus whose area is $\frac{2c^2}{ab}$.	5
4.	The mid points of the sides of a triangle are (2, 1), (-5, 7) and (-5, -5). Find the equations of the sides of the triangle.	5
5.	In a park Road 1 and road 2 of width 5 m and 4 m are crossing at centre point O(0, 0) as shown in the figure .	5
	For trees A, B, C and D are situated in four quadrants of the Cartesian system of coordinate. The coordinates of the trees A, B, C and D are situated in four quadrants of the Cartesian system of coordinate. The coordinates of the trees A, B, C and D are situated in four quadrants of the coordinate. The coordinates of the trees A, B, C and D are (6,	
	 Based on the above information answer the following questions: (i) What is the distance of Tree C from the Origin? a) 5 m b) 10 m c) 15 m d) 25 m 	
	(ii) What is the equation of line AB? a) $2x + y = 22$ b) $x - 2y = -6$ c) $x + 2y - 22 = 0$ d) $x + 2y = 6$	
	(iii) What is the slope of line CD? a) $2/1$ b) -2 c) $-1/2$ d) $3/2$	
	 (iv) What is the distance of point B from the origin? a) 13 m b) 15 m c) 12 m d) 5 m 	
6.	Villages of Shanu and Arun's are 50km apart and are situated on Delhi Agra highway as shown in the following picture. Another highway YY' crosses Agra Delhi highway at O(0,0). A small local road PQ crosses both the highways at	5

	Shanu's Village	10 km Ο (0,0) 15 km Υ' Jeetu's Village	A 20 km	• V •	following questions: i)What are the coordinates of A? a) (10, 0) b) (10, 12) c) (0,10) d)	
a) iii) a) 6	What is the equation 5x + 6y = 60 b) What is the distance 50 km b) What is the slope	66x + 5y = 60 nce of AB from $60/\sqrt{61}$ km	i i i	d) 60 km	c) (0,10)	
of in Bas (i)T (a)(1 (ii)A (a)3	ntersection. ed on the above infor he point of intersecti 2, 0) (b) (0, 2) Angle between the gi	rmation, answer the on of the given line (c) $(\sqrt{3}, 2)$ (ven lines is (c) 60^0 (d)9 of the angle betwe	e following que es is d) ($-\sqrt{3}$, 2) 0^0	estion:	units from their point	5

	Based on the above information, answer the following questions. (i)The distance between A and B is (a) $\sqrt{5}$ (b) $2\sqrt{5}$ (c) $3\sqrt{5}$ (d) $4\sqrt{5}$ (ii) The equation of AB is (a)X+2Y+4=0 (b) X+2Y-4=0 (c) X-2Y+4=0 (d) None of these (iii)Coordinates of point C are (a) $(\frac{7}{2}, -3)$ (b) $(3, \frac{7}{2})$ (c) $(3, 3)$ (d) $(3, -\frac{7}{2})$ (iv)Distance between A and C is (a) $\sqrt{5}$ (b) $2\sqrt{5}$ (c) $\frac{\sqrt{5}}{2}$ (d) $\sqrt{\frac{5}{2}}$ (v) Distance between C and B is (a) $\frac{3\sqrt{5}}{2}$ (b) $3\sqrt{5}$ (c) $\frac{2\sqrt{5}}{3}$ (d) None of these	
9.	 The line parallel to the x-axis and passing through the intersection of the lines ax+2by+3b=0 and bx-2ay-3a=0, where (a,b) a) Above x axis at a distance of 3/2 from it. b) Above x axis at a distance of 2/3 from it. c) below x axis at a distance of 3/2 from it d) below x axis at a distance of 2/3 from it 	5
10.	P(m,n) (where m,n are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines xy=0 and the lines 2x+y-2=0 and 4x+5y=20. The possible number of positions of the point P is : a) 6 b) 5 c) 4 d) 11	5
11.	Let the point P(-8, 12) lies on the top of Qutub Minar, Delhi. Find the image of the point in the line $4x+7y+13=0$.	5
12.	 Consider the ΔABC with vertices A (1, 4), B(2, -3), and C(-1, -2). AD and AM are the median and altitude through A. Answer the following questions: i) Find the distance of AC. ii) Find the slope of BC iii) Find the equation of median AD iv) Find the equation of altitude AM v) Find the equation of right bisector of side BC. 	5

ANSWERS:

	c/a, 0), D (0, -c/b) This shows that the vertices of the parallelogram are on the coordinate			
	axes such that one diagonal is along to X-axis and other along to Y-axis.			
	Since, the diagonals are right angles. Hence, ABCD are a rhombus. Area of rhombus = $\frac{1}{2}AC \times BD = \frac{1}{2}(\frac{2C}{a} \times \frac{2C}{b}) = 2c^2/ab$			
	Area of mornbus = $\frac{1}{2}AC \times BD = \frac{1}{2}(\frac{1}{a} \times \frac{1}{b}) = 2C^{-1}/aD$			
4.	Let D (2, 1), E (-5, 7) and F (-5, -5) be the mid points of sides BC, CA and AB respectively of \triangle ABC.	5		
	DE AB, EF BC, and DF AC			
	Slope of AB = Slope of DE Slope of BC = slope of EF, and Slope of AC = Slope of DF			
	Let $m_{1,}m_{2,}m_{3}$ be the slopes of AB, BC and CA respectively.			
	Then			
	$m_1 = \text{Slope of AB} = \text{Slope of DE} = \frac{7-1}{-5-2} = -6/7$			
	m_2 = Slope of BC = Slope of EF = $\frac{7+5}{-5=5}$ =(undefined)			
	m_3 = Slope of CA = Slope of DF = $\frac{1+5}{2+5}$ = 6/7			
	Side AB passes through F (-5, -5) and has slope $m_1 = \frac{-6}{7}$. So, its equation is			
	Y + 5 = $\frac{-6}{7}$ (x +5) or 6x + 7y + 65 = 0			
	Side BC is parallel to Y-axis and passes through D (2, 1). So, its equation is			
	x = k. As it passes through (2, 1).			
	2 = k			
	Hence equation of BC is $x = 2$			
	Side CA passes through E(-5, 7) and has slope m_3 =6/7. So, its			
	equation is $y - 7 = \frac{6}{7}(x + 5)$			
	7			
	6x - 7y + 79 = 0			
5.	(i) a) 5 m (ii) c) $x + 2y - 22 = 0$	5		
	(iii) b) -2 (iv) a) 13 m			
6.	(i) a) $(10, 0)$ (ii) b) $6x + 5y = 60$	5		
	(iii) b) $60/\sqrt{61}$ km (iv) c) $\frac{-6}{5}$			
7.	The equation of given lines are $y - \sqrt{3} x = 2$ or $y = \sqrt{3} x + 2$	5		
	It can also be written as $y = -\sqrt{3}x + 2$ if $x \le 0 \dots \dots (i)$ and $y = \sqrt{3}x + 2$ if $x \ge 0 \dots \dots (i)$			
	Slope of line (i), $m_1 = -\sqrt{3}$ and y intercept = 2			
	Slope of line (ii), $m_2 = \sqrt{3}$ and y intercept = 2			
	(i)Since y-intercept of lines (i) and (ii) is 2, so both the lines passes through the point $(0, 2)$			
	(0, 2). Hence, the point of intersection of the given lines is (0, 2)			
	Therefore, Option (b) is the correct answer.			

	(ii)Let θ_1 and θ_2 be the inclination of the lines (i) and (ii) with the x-axis, then $\tan \theta_1 = -\sqrt{3} = > \theta_1 = 120^\circ$ and $\tan \theta_2 = \sqrt{3} => \theta_2 = 60^\circ$ The given lines can be extended in one direction only. So the given lines are actually rays. Points p_1, p_2 have a point on y-axis as common foot of the perpendicular. From the graph, the angle between the given lines is 60° . Therefore, Option (c) is the correct answer. (iii)From the given figure, we have angle $\angle CAO=30^\circ$ And $\angle DAO=30^\circ$ So $p_1AB=\angle CAO=30^\circ$ and $\angle p_2AB=\angle DAO=30^\circ$ Therefore, Option (a) is the correct answer. (iv)In $\triangle ABp_1$, sin $30^\circ = \frac{Bp_1}{2}$. Therefore, OB=OA+AB= $21\frac{5\sqrt{3}}{2}$. Therefore, OB=OA+AB= $21\frac{5\sqrt{3}}{2}$. Therefore, Option (a) is the correct answer. (v)Since $y=axis$ is the bisector of angle between the given lines and these points p_1 and p_2 have a point on y-axis as common foot of perpendicular. So, the coordinates of foot of perpendiculars drawn from p_1 and p_2 on the bisector of angle between the given lines are $(0, 2+\frac{5\sqrt{3}}{2})$.	
	Therefore, Option (d) is the correct answer	
8.	(i)b (ii)a (iii)d (iv)c (v)a	5
<u> </u>		5
5.	The line passing through the intersection of the	
	lines $ax+2by+3b=0$ and $bx-2ay-3a=0$ is	
	$ax+2by+3b+\lambda(bx-2ay-3a)=0(1)$	
	$(a+b\lambda)x+(2b-2a\lambda)y+3b-3\lambda a=0$	

	As the li	ine is parallel to x-axis	
	a+bλ=0		
	so, λ=(-a	a/b)	
	Putting	$\lambda = (-a/b)$ in equation (1), we get	
	-	-3b+(-a/b)(bx-2ay-3a)=0	
	Since it	is parallel to x -axis, so coefficient of x =0. Hence we get:	
	\Rightarrow y(2b+	$-a^{2}$)+3b+3ba2=0	
	On simp	plifying we get $y=-2/3$	
	So it is 2	2/3 units below x-axis	
10.	Using gr	raph.	5
11.	(a)	mage of the point P(-8, 12) in the line given AB be Q (h, k). Then PQ	5
		ndicularly bisected by AB, say at R.	
		rdinate of R= $\left(\frac{h-8}{2}, \frac{k+12}{2}\right)$	
		lies on the line $4x+7y+13=0$ 7k+78=0 (i)	
		B is perpendicular to PQ	
		of AB x Slop of PQ = -1	
	-	+104 = 0(ii)	
		equations (i) and (ii). We get $h = -16$, $k = -2$	
	_	ne image of point (-8, 12) in the line $4x + 7y + 13=0$ is (-16, -2)	
12.	i)	Using Distance formula AC= $\sqrt{40}$ units	5
	ii)	Slop of BC= $\frac{-2-(-3)}{-1-2} = -1/3$	
	iii)	Since D is the midpoint of BC.	
		So, Coordinate of point D is (1/2, -5/2)	
		Equation of median AD is 13x-y-9=0	
	iv)	Since AM is the altitude through A	
	,	So, slop of AM = $-1/(slop of BC)$	
		=3	
		Equation of altitude through A is y-4=3(x-1)	
		3x - y + 1 = 0	
	v)	Equation of right bisector of BC passes through D and having slop 3 is 3x –	
	-,	y - 4 = 0	
		,	