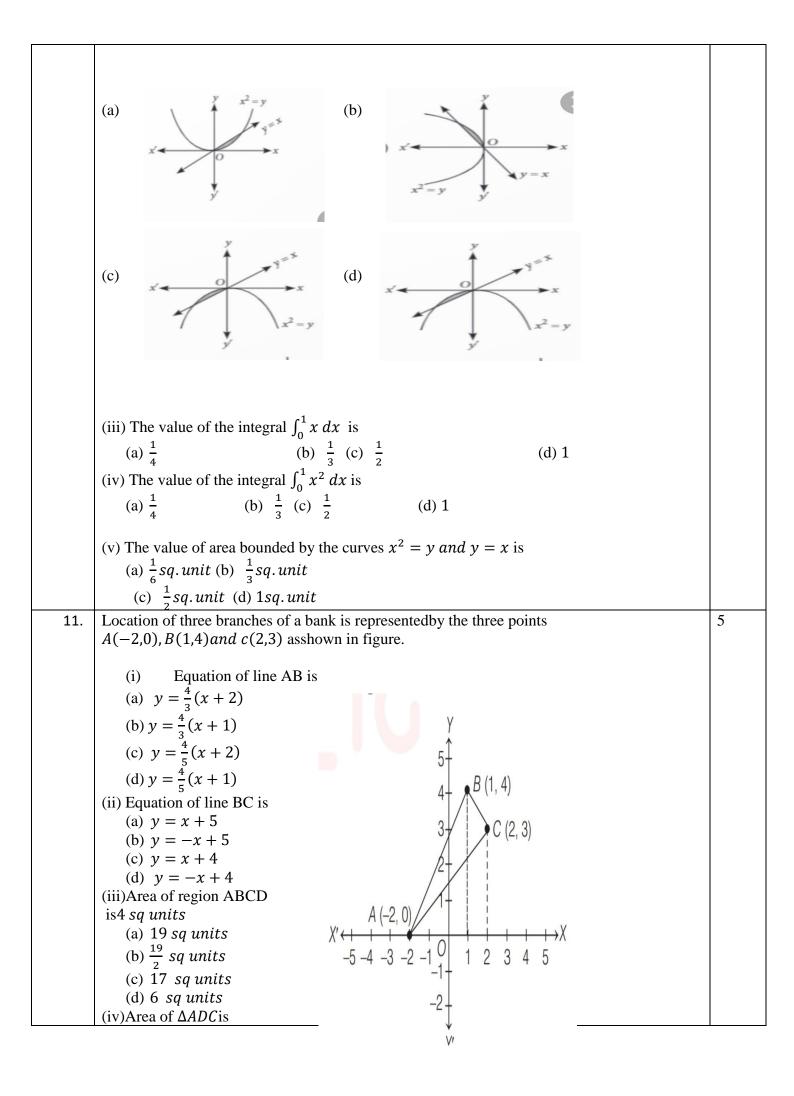
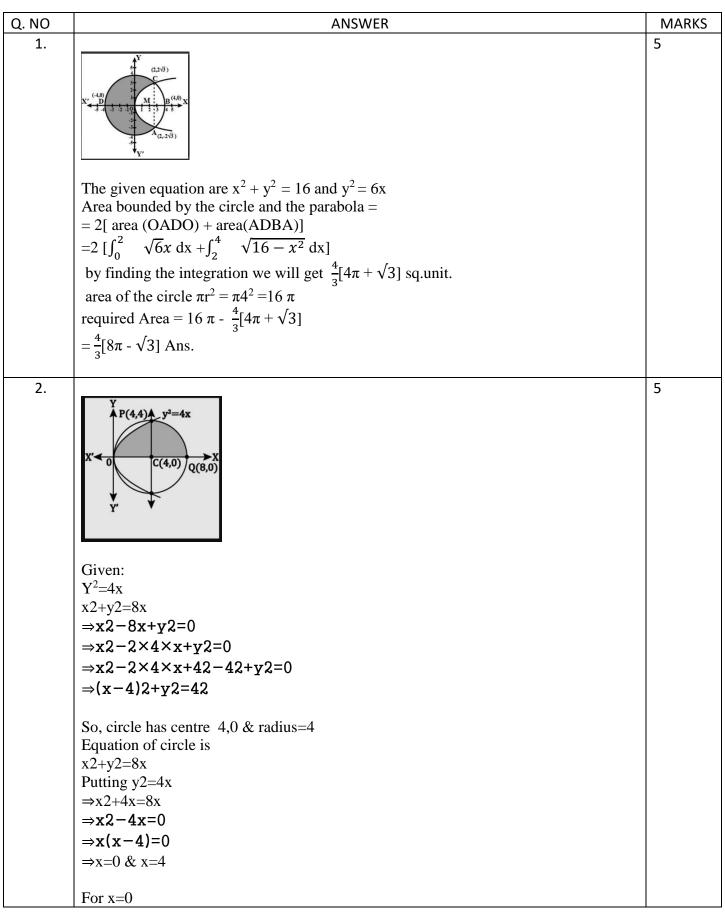
CHAPTER-8 APPLICATION OF INTEGRALS 05 MARK TYPE QUESTIONS

Q. NO		MARK				
<u>Q. NO</u> 1.						
2.						
	and inside the parabola $y^2 = 4x$.					
3.	Using integration, prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by $x = 0$, $x = 4$, $y = 4$ and $y = 0$ into three equal parts.					
4.	Find the area bounded by the curve $x^2 = 4y$ and the line $x = 4y - 2$	5				
5.	Using integration, find the area of region bounded by the triangle whose vertices are $(-1, 0), (1, 3)$ and $(3, 2)$.	5				
6.	Show that the area cut off by a parabola in first quadrant and ordinate is one third of the corresponding rectangle formed by that ordinate and its distance from the vertex using integration.					
7.	Find the area of the region bounded by the curve $y = \tan x$, tangent to the curve at point at $x = \pi/4$ and the x-axis using integration.					
8.	A particle is moving as a elliptical curve, whose horizontally maximum distance is 8 km and vertically maximum distance is 6 km.	5				
	F1 F2 Major Axis					
	Then find the area covered by the particle.					
9.	A horse is tied to a peg at one corner of a square-shaped grass field of side 15 m by means of a 5 m long rope (see Fig.).Find the area of that part of the field in which the horse can graze by using integration.	5				
10.	Consider the following equation of curves $x^2 = y$ and $y = x$ On the basis of above information, answer the following questions (i) The point(s) of intersection of both the curves is (are) (a) (0,0), (2,2) (b) (0,0), (1,1) (c) (0,0), (-2,-2) (d) (0,0), (-1,-1) (ii) Area bounded by the curves is represented by which of the following graphs?	5				

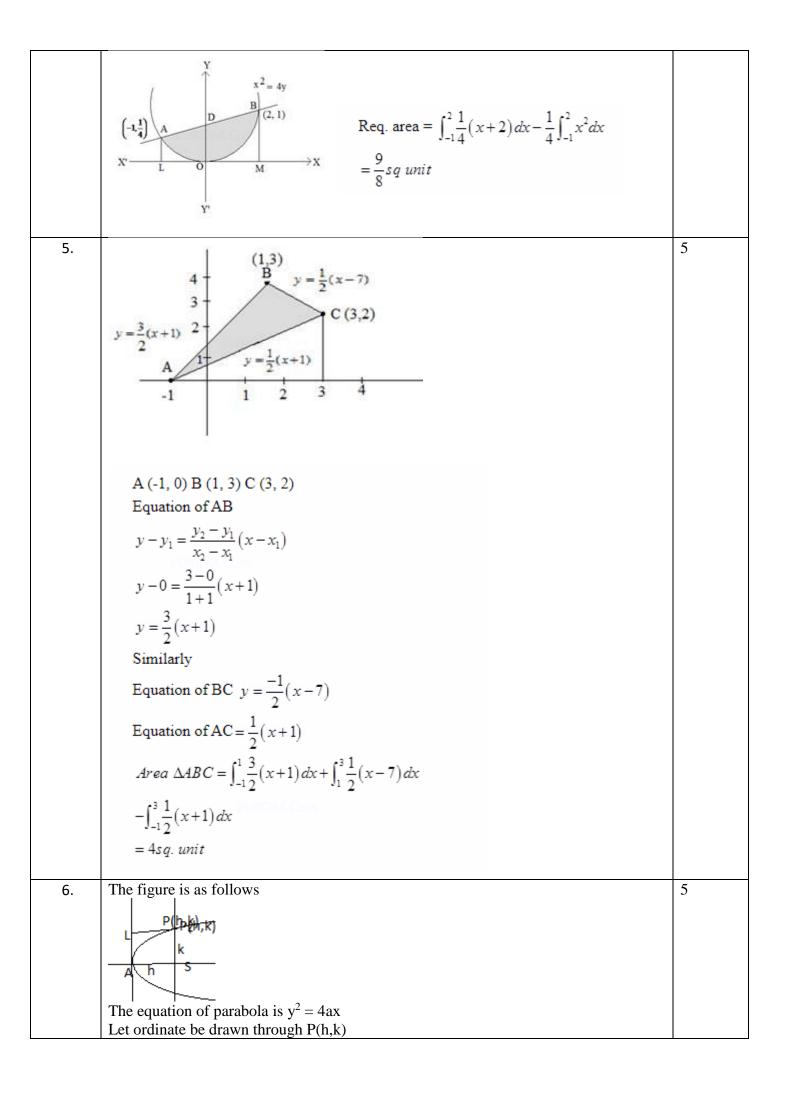


(a) 3 sq units
(b) 4 sq units
(c) 6 sq units
(d) 5 sq units
(v) Area of $\triangle ABC$ is
(a) 7 sq units
(b) $\frac{3}{2}$ sq units
(c) 5 sq units
(d) $\frac{7}{2}$ sq units

ANSWERS:



4.	So A1=A2=A3= $\frac{16}{3}$ sq. unit. $x^{2} = 4y$ (1) x = 4y - 2(2)	5
	A3= A - (A1+A2) =16- $2*\frac{16}{3}$ = $\frac{16}{3}$ sq. unit	
	A2 = $\int_0^4 \frac{y^2}{4} dy = \frac{16}{3}$ sq. unit	
	To prove A1= A2= A3 = $\frac{A}{3}$ whetre A is the area of the square. A=4*4= 16 sq. unit A1 = $\int_0^4 \frac{x^2}{4} dx = \frac{16}{3}$ sq. unit	
	$(0,4) \begin{array}{c} y^{=4} & y^{2=4}x \\ (0,4) & \chi^{=4} & (4,4) \\ & \chi^{=4} & \chi^{=4} \\ (0,0) & (4,0) & \chi^{-axis} \end{array}$	
3.	Y-axis x ² =4y	5
	where $y = 2\sqrt{x}$ and $y = \sqrt{42 - (x - 4)2}$ so by solving we gwt the required area $\frac{4}{3}(8+3\pi)$. ANS.	
	Area Required=AreaOPCO+AreaPCQP =∫40yl dx+∫84y2dx	
	Parabola: $y=2\sqrt{x}$ Circle: $(x-4)2+y2=42$ $\Rightarrow y=\sqrt{42-(x-4)2}$	
	Since, point P is in 1st quadrant, so, the coordinates of $P = (4,4)$ Equation of the curves in first quadrant is	
	$Y^2 = 4x = 16$ $Y = \pm 4$ So, point is (4,4) And (4,-4)	
	$Y^{2} = 4x$ =y =0 Point is (0,0) For x=4	



	Then $k^2 = 4ah$ or $k=2\sqrt{(ah)}$					
	So area of triangle = $k.h = 2h \sqrt{(ah)}$					
	Now area of triangle = $\int_0^h y dx = \int_0^h 2\sqrt{a\sqrt{x}dx} = \frac{1}{3}(2h\sqrt{ah})$					
	= one third of area of triangle					
7.	The required area is as shown in shaded portion bounded by curve $y = \tan x$, tangent PT at P and part OT of x-axis	5				
	Now $\frac{dy}{dx} = \sec^2 x = 2 \text{ at } x = \pi/4$ Also $y = \tan \pi/4 = 1$ at point $P(\pi/4, 1)$ Equation of tangent is $y - 1 = 2(x - \pi/4)$ $y = 2x + 1 - \pi/2$ When $y = 0$ then $x = \pi/2 - \frac{1}{2} = OT$ So, $TN = ON - OT = \pi/4 - \frac{\pi}{4} + \frac{1}{2} = \frac{1}{2}$ Required area is given by Area OPNO - Area of ΔPTN $= \int_0^{\pi/4} \tan x dx - \frac{1}{2} TN.PN$ $= \log\sqrt{2} - \frac{1}{2}$					
8.	Equation of the curve is $\frac{x^2}{16} + \frac{y^2}{9} = 1$ The curve is ellipse with vertex (0, 0) (0,3) (0,3) (4,0) The area of the region bounded by the given ellipse = 4 × Area of the ellipse in the first quadrant Reqd. area = 4 $\int_0^4 y dx$ = 4 $\int_0^4 \frac{3}{4} \sqrt{16 - x^2} dx$ = 12 π sq. units	5				
9.	Equation of the curve is $x^2 + y^2 = 25$ Reqd. area = area of the circle in the first quadrant. $= \int_0^5 y dx$ $= \int_0^5 \sqrt{25 - x^2} dx$	5				

		$=\frac{25\pi}{4}$ sq. units	
10.	(i)	(b)We have $x^2 = y \dots \dots (1)$ and $x = y \dots \dots (2)$ From eq (1) and (2), $x^2 = x \Rightarrow x^2 - x = 0$ $\Rightarrow x(x - 1) = 0 \Rightarrow x = 0,1$ from Eq. (2)y = 0,1 \therefore Required points of intersection are (0,0),(1,1).	5
	(ii)	(a)	
	(iii)	(c) $\int_0^1 x dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$	
	(iv)	(b) $\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3} - 0 = \frac{1}{3}$	
	(v)	(a) Required area $=\int_0^1 x dx - \int_0^1 x^2 dx$ $=\frac{1}{2} - \frac{1}{3} = \frac{1}{6} sq units$	
11.	(i)	(a) Equation of line AB is given by $(y-0) = \frac{4-0}{1+2}(x+2) \Rightarrow y = \frac{4}{3}(x+2)$	5
	(ii)	(b) Equation of line BC is given by $(y-4) = \frac{3-4}{2-1}(x-1) \Rightarrow y = -x+5$	
	(iii)	(b) Area of the region ABCD = Area of $\triangle ABE$ + Area of region BCDE $=\int_{-2}^{1} \frac{4}{3} (x+2) dx \int_{1}^{2} (-x+5) dx$ $=\frac{4}{3} \left[\frac{x^{2}}{2} + 2x\right]_{-2}^{1} + \left[-\frac{x^{2}}{2} + 5x\right]_{1}^{2}$ $=\frac{4}{3} \left[\frac{1}{2} + 2 - 2 - 2 + 4\right] + \left[-2 + 10 + \frac{1}{2} - 5\right]$ $=\frac{4}{3} \cdot \frac{9}{2} + \left(\frac{1}{2} + 3\right)$ $=6 + \frac{7}{2} = \frac{19}{2} \text{ sq units}$	
	(iv)	(c) Equation of line AC is given by $(y-0) = \frac{3-0}{2+2}(x+2) \Rightarrow y = \frac{3}{4}(x+2)$ Area of $\Delta ADC = \int_{-2}^{2} \left(\frac{3}{4}(x+2)\right) dx$ $= \frac{3}{4} \left[\frac{x^2}{2} + 2x\right]_{-2}^{2} \Rightarrow \frac{3}{4}(2+4-2+4) \Rightarrow \frac{3}{4} .8 = 6 \ sq \ units$	
	(v)	(d) Area of $\triangle ABC = (iii) - (iv)$ = $\frac{19}{2} - 6 = \frac{7}{2} sq$ units	