
CHAPTER-11

THREE DIMENSIONAL GEOMETRY

05 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK			
1.	The Indian Coast Guard (ICG) while patrolling, saw a suspicious boat with four men. They were nowhere looking like fishermen. The soldiers were closely observing the movement of the boat for an opportunity to seize the boat. They observe that the boat is moving along a planar surface. At an instant of time, the coordinates of the position of coast guard helicopter and boat are (2, 3, 5) and (1, 4, 2) respectively.				
	*				
	Based on the above information, answer the following questions.				
	 (i) If the line joining the positions of the helicopter and boat is perpendicular to the plane in which boat moves, then equation of plane is (a) x - y + 3z = 2 (b) x + y + 3z = 2 (c) x - y + 3z = 3 (d) x + y + 3z = 3 				
	(ii) If the soldier decides to shoot the boat at given instant of time, where the distance measured in metres, then what is the distance that bullet has to travel?				
	(a) √5 m (b) √8 m				
	(c) $\sqrt{10}$ m (d) $\sqrt{11}$ m				
	(iii) If the speed of bullet is 30 m/sec, then how much time will the bullet take to hit the boat after the shot is fired?				
	(a) 30 seconds (b) 1 second				
	(c) $\frac{1}{2}$ second (d) $\frac{\sqrt{11}}{30}$ seconds				
	(iv) At the given instant of time, the equation of line passing through the positions of helicopter and boat is (a) $\frac{x}{1} = \frac{y}{-1} = \frac{z}{3}$ (b) $\frac{x-1}{1} = \frac{y-4}{-1} = \frac{z-2}{3}$				
	(c) $\frac{x}{1} = \frac{y}{1} = \frac{z}{-3}$ (d) $\frac{x-1}{1} = \frac{y-4}{1} = \frac{z-2}{-3}$				
	(v) At a different instant of time, the boat moves to a different position along the planar surface. What should be the coordinates of the location of the boat for the bullet to hit the boat if soldier shoots the bullet along				
	the line whose equation is $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-2}{3}$?				
	(a) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{3}{4}, \frac{3}{2}, \frac{5}{4}\right)$ (c) $\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right)$ (d) none of these				

	? At what distances will the rocket be from the starting point O(0,0,0) and from the following line in 10 minutes ? \vec{r} =40 \hat{i} -10 \hat{j} -20 \hat{k} + λ (10 \hat{i} -20 \hat{j} +10 \hat{k})	
7.	Find the Vector equation of the line passing through the point P (1, 2, -4) and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}.$	5
8.	Find the angle between the lines whose direction cosines are given by the equations: $3l + m + 5n = 0$ and $6mn - 2nl + 5lm = 0$	5
9.	Show that the lines $r \to = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{k} + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{k}); \ r \to = 5\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \mu(3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 6\hat{k})$ are intersecting. Hence, find their points of intersection.	5
10.	If a variable line in two adjacent positions has direction cosines l, m, n and $l + \delta l, m + \delta m, n + \delta n$, show that the small angle $(\delta \theta)^2 = (\delta l)^2 + (\delta m)^2 + (\delta n)^2$.	5

ANSWERS:

Q. NO	ANSWER		
1.	1. (i) (c): Let $P(2,3,5)$ and $Q(1,4,2)$ be the positions of helicopter and boat respectively. Now, direction ratios of PQ are proportional to $1-2, 4-3, 2-5, i.e., -1, 1, -3$. So, equation of plane passing through $Q(1, 4, 2)$ and perpendicular to PQ is $-(x-1)+(y-4)+(-3)(z-2)=0 \Rightarrow x-y+3z=3$ (ii) (d): Required distance = Distance between P and Q $= \sqrt{(1-2)^2+(4-3)^2+(2-5)^2} = \sqrt{1+1+9} = \sqrt{11}$ m (iii) (d): We know, Distance = Speed × Time $= \sqrt{11}$ seconds		
	(iv) (b): Equation of line PQ is $\frac{x-1}{1} = \frac{y-4}{-1} = \frac{z-2}{3}$. (v) (b): Any point on the line $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-2}{3}$ is given by $(\lambda + 1, -2\lambda + 1, 3\lambda + 2)$. Now, on substituting this point in the equation of plane $x - y + 3z = 3$, we get $(\lambda + 1) - (-2\lambda + 1) + 3(3\lambda + 2) = 3$ $\Rightarrow \lambda + 1 + 2\lambda - 1 + 9\lambda + 6 = 3 \Rightarrow 12\lambda = -3$ $\Rightarrow \lambda = \frac{-1}{4}$ Thus, the required point is $\left(\frac{-1}{4} + 1, \frac{1}{2} + 1, \frac{-3}{4} + 2\right)$ i.e., $\left(\frac{3}{4}, \frac{3}{2}, \frac{5}{4}\right)$.		
2.	2. (i) (b): D.R's of OA are $< 1-0, 0-0, 0-0 >$, i.e., $< 1, 0, 0 >$. (ii) (a): Equation of diagonal OB' is $\frac{x-0}{1} = \frac{y-0}{2} = \frac{z-0}{3} \text{ i.e., } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ (iii) (c): $OABC$ is xy -plane, therefore its equation is $z = 0$. (iv) (c): Plane $O'A'B'C'$ is parallel to xy -plane passing through $(0, 0, 3)$, therefore its equation is $z = 3$. (v) (a): Plane $ABB'A'$ is parallel to yz -plane passing through $(1, 0, 0)$, therefore its equation is $x = 1$.		
3.	Let P(2, 3, 4) be the given point, L be the foot of perpendicular from 'P' to the given line AB $P(2, 3, 4)$ $A \qquad \qquad$	5	

	let Q(a, b,c) be the image of P(2, 3, 4), then L is mid-point of PQ.			
	So, $\frac{a+2}{2} = \frac{16}{21}$, $\frac{b+3}{2} = \frac{74}{21}$, $\frac{c+4}{2} = \frac{92}{21}$			
	i.e. $a = \frac{-10}{21}$, $b = \frac{85}{21}$, $c = \frac{100}{21}$			
	so, image of P in the given line is $(\frac{-10}{21}, \frac{85}{21}, \frac{100}{21})$			
	Distance of point $(\frac{-10}{21}, \frac{85}{21}, \frac{100}{21})$ from origin is 6.27 approximately using distance			
1	formula. The equations of two given straight lines in Cartesian form are:	5		
4.]		
	$\left \frac{x}{2} = \frac{y}{3} = \frac{z}{4} \right $ (i) and $\frac{x-1}{0} = \frac{y-1}{3} = \frac{z}{2} $ (ii)			
	Lines are not parallel as direction ratios are not proportional. Let P and Q be the points			
	on the straight lines (i) and (ii) respectively such that PQ is perpendicular to both of the			
	lines,			
	Let the coordinates of P be $(2\gamma, 3\gamma, 4\gamma)$ and Q be $(1, 3\beta + 1, 2\beta)$ where β and γ are			
	scalars			
	Then the direction ratios of the line PQ will be $(2\gamma - 1, 3\gamma - 3\beta - 1, 4\gamma - 2\beta)$			
	Since, PQ is perpendicular to both (i) and (ii), so			
	$2(2\gamma - 1) + 3(3\gamma - 3\beta - 1) + 4(4\gamma - 2\beta) = 0 \dots (iii)$			
	$3(3\gamma - 3\beta - 1) + 2(4\gamma - 2\beta) = 0$ (iv)			
	Solving (iii) and (iv) we get, $\gamma = \frac{7}{44}$, $\beta = \frac{-1}{44}$			
	Hence, coordinates of P are $(\frac{14}{44}, \frac{21}{44}, \frac{28}{44})$ and Q are $(1, \frac{129}{44}, \frac{-2}{44})$			
	The required shortest distance can be found by distance formula.			
	and required shortest ensured cum so require sy distance remines			
5.	The given lines are non-parallel lines. There is a unique line segment PQ which is at	5		
	right angles to both the lines.			
	Hence, shortest distance between the snakes = PQ			
	The position vector of P lying on the line \vec{r} =3 \hat{i} +2 \hat{j} +3 \hat{k} + λ (\hat{i} -2 \hat{j} +2 \hat{k})			
	is $(3+\lambda) \hat{i} + (2-2\lambda) \hat{j} + (3+2\lambda) \hat{k}$ for some λ			
	The position vector of Q lying on the line $\vec{r} = -4\hat{i} - 2\hat{k} + \mu (3\hat{i} - 2\hat{j} - 2\hat{k})$			
	is $(-4+3\mu)\hat{i} - 2\mu\hat{j} + (-2-2\mu)\hat{k}$ for some μ			
	$ 15 (-4+5\mu) t - 2 \mu + (-2-2 \mu) \kappa 101 \text{ Sollie } \mu $			
	\overrightarrow{DO} $(7, 2,, 3)$ $(2, 2,, 2, 3)$ $(2, 2,, 2,, 3, $			
	$\overrightarrow{PQ} = (-7 + 3\mu - \lambda) \hat{i} - (-2 - 2\mu + 2\lambda) \hat{j} + (-2 - 2\mu - 3 - 2\lambda) \hat{k}$			
	Since, Pq is perpendicular to both the lines . So, $(-7+3\mu-\lambda)$ - $(-2-2\mu+2\lambda)(-2)+(-2-2\mu-3-2\lambda)2=0$			
	$-7+3\mu - \lambda -4 -4 \mu +4\lambda -10 -4 \mu -4 \lambda = 0$			
	$ \begin{vmatrix} -\lambda - 5 \mu = 21 & (i) \\ (-7 + 3\mu - \lambda) 3 - (-2 - 2\mu + 2\lambda) (-2) + (-2 - 2\mu - 3 - 2\lambda) (-2) = 0 $			
	$(-7+3\mu-\lambda)3-(-2-2\mu+2\lambda)(-2)+(-2-2\mu-3-2\lambda)(-2)=0$ $(-21+9\mu-3\lambda-4-4\mu+4\lambda+10+4\mu+4\lambda=0)$			
	$-21+9\mu - 3\lambda - 4 - 4\mu + 4\lambda + 10 + 4\mu + 4\lambda = 0$ $5\lambda + 9\mu = 15$ (ii)			
	Solving equn. (i) and (ii)			
	$\lambda = 33/2$ and $\mu = -15/2$			
	The position vector of the points at which they should be so that the distance			
	between them is the shortest are			
	$(39\hat{i} - 62\hat{j} + 70\hat{k})/2$ and $(-53\hat{i} + 30\hat{j} + 26\hat{k})/2$			
	$\overrightarrow{PQ} = (-92\hat{\imath} + 92\hat{\jmath} + 44\hat{k})/2 = (-46\hat{\imath} + 46\hat{\jmath} + 22\hat{k})$			
	The shortest distance = $ \overrightarrow{PQ}I = \sqrt{2116 + 2116 + 484} = \sqrt{4716}$			
	$=2\sqrt{1179} \text{ Unit}$			
6.	x = 4t, y = -4t, z = -2t,	5		
	Or, $x/4 = t$, $-y/4 = t$, $z/-2 = t$			

		 			
	So, $x/4 = y/-4 = z/-2$				
	Direction Ratios are 4,-4,-2				
	When t = 10 seconds, the airplane will be at the points $(40,-40,-20)$				
	Distance from the origin in 10 minutes = $\sqrt{1600 + 1600 + 400}$				
	$=\sqrt{3600} = 60 \text{ km}$				
	Distance of the point (40,-40,-20) from the given line				
	$= (a_2 - a_1) \times \overline{b} / \overline{b} $				
	$= -30\hat{j} \times ((10\hat{i} - 20\hat{j} + 10\hat{k}) / (10\hat{i} - 20\hat{j} + 10\hat{k}) $				
	$= I -300 \hat{i} + 300 \hat{k} I / I(10\hat{i} -20 \hat{j} +10 \hat{k})I$				
	$=300\sqrt{2}/10\sqrt{6}=10\sqrt{3}$ km				
7.	Let, the direction ratios of the line be (a, b, c) then the equation of the line will be $\vec{r} =$	1			
	$\hat{i} + 2\hat{j} - 4\hat{k} + (a\hat{i} + b\hat{j} + c\hat{k})$ (i)				
	Equations of the given lines are : $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.				
	Line given in equation (i) is perpendicular to these lines so that	1			
	3a - 16b + 7c = 0 & 3a + 8b - 5c = 0.	1			
	Solving above by cross – multiplication method we get,				
	$\frac{a}{80 - 56} = \frac{b}{21 + 15} = \frac{c}{24 + 48}$	1			
	$ \overline{80-56} - \overline{21+15} - \overline{24+48} $				
	1.				
	$\frac{a}{24} = \frac{b}{36} = \frac{c}{72} = k(let)$				
	24 36 72	1			
	Hence, $a = 2k, b = 3k, c = 6k$				
	So that required vector equation of line is:				
	$\vec{r} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}).$	1			
0	The relation between direction – cosines are given by	1			
8.	The relation between direction – cosines are given by $3l + m + 5n = 0 \dots (1)$				
	6mn - 2nl + 5lm = 0(2)				
	From, (1) we get, $m = -3l - 5n$ (3)	1			
	Putting this value in (2) we get, $6(-3l-5n)n-2nl+5l(-3l-5n)=0$				
	$\Rightarrow l^2 + 3ln + 2n^2 = 0 \Rightarrow (l+n).(l+2n) = 0$	2			
	$\Rightarrow l = -n \text{ or } l = -2n$				
	Now, if $l = -n$, then $m = -2n$ using (3)				
	and if $l = -2n$, then $m = n$. using (3)	1			
	Thus the direction ratios of two lines are proportional to $-n$, $-2n$, n and $-2n$, n , n i.e.				
	1, 2, -1 and -2, 1, 1				
	Hence, angle between these lines are given by $\cos \theta = \frac{1 \times (-2) + 2 \times 1 + (-1) \times 1}{\sqrt{1 + 4 + 1} \times \sqrt{4 + 1 + 1}} = \frac{-1}{6}$	1			
	$\Rightarrow \theta = \cos^{-1}(\frac{-1}{\epsilon}).$	1			
9.	0 0 0 0	_			
9.	$\left \frac{-3+6}{6} \right = \left \frac{3\sqrt{2}}{2} \right $	5			
	3√2 2				
10.	$(\delta\theta)^2 = (\delta l)^2 + (\delta m)^2 + (\delta n)^2$	5			