CHAPTER-10 VECTORS 05 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK		
1.	Let $\vec{a} = \hat{i} + 4j + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2j + 7\hat{k}$ and $\vec{c} = 2\hat{i} - j + 4\hat{k}$, find a vector \vec{d} which is perpendicular to			
	both \vec{a} and \vec{b} and \vec{c} . \vec{d} = 15			
2.	If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitudes show that the vector 5			
	$\vec{a} + \vec{b} + \vec{c}$ is equally inclined to the \vec{a} , , \vec{b} and \vec{c} .			
3.	Find the position vector of the point which divides the join of the points $(2\vec{a}-3\vec{b})$ and $(3\vec{a}-2\vec{b})$			
4.	Find the area of the parallelogram whose diagonals are represented by the vectors $\vec{d}_1 = 3\hat{i} + \hat{i}$ -	5		
	$2\hat{k}$ and $\vec{d}_2 = \hat{i} - 3\hat{i} + 4\hat{k}$			
5.	CSB1:	5		
	Ishaan left from his village on weekend. First, he travelled up to temple. After this, he left for the zoo. After this he left for shopping in a mall. The positions of Ishaan at different places is given in the following graph. y = 10			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	Based on the above information, answer the following questions.			
	(i) Position vector of <i>B</i> is			
	(a) $3\hat{i} + 5\hat{j}$ (b) $5\hat{i} + 3\hat{j}$ (c) $-5\hat{i} - 3\hat{j}$ (d) $-5\hat{i} + 3\hat{j}$			
	(a) $5\hat{i} + 3\hat{i}$ (b) $3\hat{i} + 5\hat{i}$ (c) $8\hat{i} + 9\hat{i}$ (d) $9\hat{i} + 8\hat{i}$			
	(iii) Find the vector \overrightarrow{BC} in terms of \hat{i} , \hat{j}			
	(a) $\hat{\imath} - 2\hat{\jmath}$ (b) $\hat{\imath} + 2\hat{\jmath}$ (c) $2\hat{\imath} + \hat{\jmath}$ (d) $2\hat{\imath} - \hat{\jmath}$			
	(iv) Length of vector \overline{AD} is			
	(a) $\sqrt{67}$ units (b) $\sqrt{85}$ units (c) 90 units (d) 100 units			
	(V) If $M = 4j + 3k$, then its unit vector is (a) $4k + 3k$ (b) $4k + 3k$ (c) $4k + 3k$ (c) $4k + 3k$			
	$\begin{bmatrix} (a) & \frac{1}{5}i + \frac{1}{5}j & (b) & \frac{1}{5}i - \frac{1}{5}j & (c) & -\frac{1}{5}i + \frac{1}{5}j & (a) & -\frac{1}{5}i - \frac{1}{5}j \\ \hline CSD2.$	_		
р.		5		

	A building is to be constructed in the form of a triangular pyramid, <i>ABCD</i> as shown in the figure.	
	Let its angular points are $A(0, 1, 2)$, $B(3, 0, 1)$, $C(4, 3, 6)$ and $D(2, 3, 2)$ and G be the point of intersection of the medians of ΔBCD . Based on the above information, answer the following questions. (i) The coordinates of point G are (a) (2, 3, 3) (b) (3, 3, 2) (c) (3, 2, 3) (d) (0, 2, 3) (ii) The length of vector \overrightarrow{AG} is	
	(a) $\sqrt{17}$ units (b) $\sqrt{11}$ units (c) $\sqrt{13}$ units (d) $\sqrt{19}$ units (iii) Area of $\triangle ABC$ (in sq. units) is (a) $\sqrt{10}$ (b) $2\sqrt{10}$ (c) $3\sqrt{10}$ (d) $5\sqrt{10}$ (iv) The sum of lengths of \overrightarrow{AB} and \overrightarrow{AC} is (a) 5 units (b) 9.32 units (c) 10 units (d) 11 units	
	(v) The length of the perpendicular from the vertex <i>D</i> on the opposite face is	
	(a) $\frac{6}{\sqrt{10}}$ units (b) $\frac{2}{\sqrt{10}}$ units (c) $\frac{3}{\sqrt{10}}$ units (d) $8\sqrt{10}$ units	
7.	Two vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$, represent the two side vectors \overrightarrow{AB} and \overrightarrow{AC} respectively of a triangle ABC. Find the length of the median through A.	5
8.	Let $\vec{a} = 4\hat{\imath} + 5\hat{\jmath} - \hat{k}$, $\vec{b} = \hat{\imath} - 4\hat{\jmath} + 5\hat{k}$ and $\vec{c} = 3\hat{\imath} + \hat{\jmath} - \hat{k}$. find the vector \vec{d}	5
	which is perpendicular to both \vec{c} and \vec{b} and \vec{d} . $\vec{a} = 21$.	
9.	Read the following passage and answer the following questions A person purchased an air plant , plant holder which is in shape of tetrahedron .Let A,B,C, D be the co-ordinates of the air plant holder where $A(1,2,3),B(3,2,1),C(2,1,2),D(3,4,3)$. (i)Find the vector \overrightarrow{AB} .	5(1+1+1+2)
	(ii)Find the vector \overrightarrow{CD} . (iii)Find the unit vector along \overrightarrow{BC} vector. (iv)Find the area \triangle BCD.	
10.	Show that area of the parallelogram whose diagonals are given by \vec{a} and \vec{b} is $ \vec{a} \times \vec{b} /2$.	5(3+ 2)
	(i)Also find the area of parallelogram, whose diagonals are $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} - \hat{k}$.	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$\vec{d} \text{ is } \perp \text{ to } \vec{a} \text{ and } \vec{b}$ So, we take the cross product of \vec{a} and \vec{b} i.e. $(\hat{r} + 4\hat{f} + 2\hat{R}) \times (3\hat{r} - 2\hat{f} + 7\hat{R})$ $= 0 - 2\hat{r} \times \hat{f} + 7\hat{r} \times \hat{R} + 12\hat{f} \times \hat{r} - 0 + 28\hat{f} \times \hat{R} + 6\hat{R} \times \hat{r} - 4\hat{R} \times \hat{f} + 0$ $= -2\hat{R} - 7\hat{f} - 12\hat{R} + 28\hat{r} + 6\hat{f} + 4\hat{r}$ $= 32\hat{r} - \hat{f} - 14\hat{R}$ \vec{d} would be a multiple of the obtained cross product, such that $c.\vec{d} = 15$ $\Rightarrow (2\hat{r} - \hat{f} + 4\hat{R}).(32\lambda\hat{r} - \lambda\hat{f} - 14\lambda\hat{R}) = 15$ $\Rightarrow 64\lambda + \lambda - 56\lambda = 15$ $\therefore 9\lambda = 15$ $\therefore \lambda = \frac{5}{3}$ $\therefore \vec{d} = \frac{160\hat{r} - 5\hat{f} - 70\hat{R}}{3}$	5
2.	To prove: $\overline{a} + \overline{b} + \overline{c}$ is equally inclined to $\overline{a}, \overline{b}$ and \overline{c} . Given: $\overline{a}.\overline{b} = \overline{b}.\overline{c} = \overline{a}.\overline{c} = 0$ Angle between: $\overline{a} + \overline{b} + \overline{c}$ and \overline{a} : $\cos \theta_1 = \frac{(\overline{a} + \overline{b} + \overline{c}).\overline{a}}{ \overline{a} + \overline{b} + \overline{c} . \overline{a} }$ $\Rightarrow \cos \theta_1 = \frac{ \overline{a} ^2 + \overline{a}.\overline{b} + \overline{a}.\overline{c}}{ \overline{a} + \overline{b} + \overline{c} . \overline{a} }$ $\Rightarrow \cos \theta_1 = \frac{ \overline{a} ^2 + 0 + 0}{ \overline{a} + \overline{b} + \overline{c} . \overline{a} }$ $= \frac{ \overline{a} }{ \overline{a} + \overline{b} + \overline{c} }$ Angle between $\overline{a} + \overline{b} + \overline{c}$ and \overline{b} $\Rightarrow \cos \theta_2 = \frac{(\overline{a} + \overline{b} + \overline{c}).\overline{b}}{ \overline{a} + \overline{b} + \overline{c} . \overline{b} }$ $= \frac{\overline{a}.\overline{b} + \overline{b} ^2 + \overline{b}.\overline{c}}{ \overline{a} + \overline{b} + \overline{c} . \overline{b} }$ $= \frac{0 + \overline{b} ^2}{ \overline{a} + \overline{b} + \overline{c} . \overline{b} }$	5

	$= \frac{ \overline{\mathbf{b}} }{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} }$ Angle between $\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}$ and $\overline{\mathbf{c}}$: $\Rightarrow \cos \theta_3 = \frac{(\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}).\overline{\mathbf{c}}}{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} . \overline{\mathbf{c}} }$ $= \frac{\overline{\mathbf{a}}.\overline{\mathbf{c}} + \overline{\mathbf{b}}.\overline{\mathbf{c}} + \overline{\mathbf{c}} ^2}{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} . \overline{\mathbf{c}} }$ $= \frac{0 + 0 + \overline{\mathbf{c}} ^2}{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} . \overline{\mathbf{c}} }$ $= \frac{ \overline{\mathbf{c}} }{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} . \overline{\mathbf{c}} }$ $= \frac{ \overline{\mathbf{c}} }{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} . \overline{\mathbf{c}} }$ $\therefore \overline{\mathbf{a}} = \overline{\mathbf{b}} = \overline{\mathbf{c}} = \mathbf{p}(\mathbf{e}t)$		
	$\therefore \cos \theta_1 = \cos \theta_2 = \cos \theta_3 = \frac{P}{ \overline{a} + \overline{b} + \overline{c} }$ Hence proved.		
3.	$\vec{A} = 2\vec{a}\cdot 3\vec{b}$ $\vec{B} = 3\vec{a}\cdot 2\vec{b}$ The point dividing a line joining points a and b in a ratio m:n internally or externally is given by $\frac{m\vec{b}+n\vec{a}}{m+n}$ and $\frac{m\vec{b}-n\vec{a}}{m-n}$ respectively. \therefore The position vector of the point dividing the line internally in the ratio 2:3 is $\frac{2\times(3\vec{a}-2\vec{b})+3\times(2\vec{a}-3\vec{b})}{2}$ $=\frac{12}{5}\vec{a}\cdot\frac{13}{5}\vec{b}$ And the position vector of the point dividing the line internally in the ratio 2:3 is $\frac{2\times(3\vec{a}-2\vec{b})-3\times(2\vec{a}-3\vec{b})}{2}$		5
4.	Diagonals are represented by the vectors $\vec{d}_1 = 3\hat{\imath}+\hat{\jmath}-2\hat{k}$ and $\vec{d}_2 = \hat{\imath}$ Let \vec{a} and \vec{b} be two adjacent sides of the parallelogram. Thus, $\vec{a}+\vec{b} = 3\hat{\imath}+\hat{\jmath}-2\hat{k}$ and $\vec{a}-\vec{b} = \hat{\imath}-3\hat{\jmath}+4\hat{k}$ Which gives $\vec{a} = 2\hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{b} = \hat{\imath}+2\hat{\jmath}-3\hat{k}$ The area of the parallelogram $ \vec{a} \times \vec{b} = (a_2b_3-b_2a_3)\hat{\imath} + (a_3b_1-a_1b_3)\hat{\jmath} + (a_1b_2-a_2b_1)\hat{k}$ Here $a_1=2, a_2=-1, a_3=1, b_1=1, b_2=2, b_3=-3$ $\therefore \vec{a} \times \vec{b} = (3-2)\hat{\imath} + (1+6)\hat{\jmath} + (4+1)\hat{k} = \hat{\imath} + 7\hat{\jmath} + 5\hat{k}$ $\Rightarrow \vec{a} \times \vec{b} = \sqrt{1+49} + 25 = \sqrt{75} = 5\sqrt{3}$ Hence area = $5\sqrt{3}$ sq. units	-3ĵ+4 <i>ĥ</i> .	5

5.	b d b b a	5
6.	c b c b a	5
7.	Using triangle law of addition $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CAbd} = \frac{1}{2}\overrightarrow{BCAD} = \overrightarrow{AB} + \overrightarrow{BD}$ And solving $ \overrightarrow{AD} = \frac{1}{2}\sqrt{34}$	5
8.	$\frac{1}{3}(-i+16j+13k).$	5
9.	As coordinates of A,B,C are : A(1,2,3), B(3,2,1), C(2,1,2), D(3,4,3). (i) $\overrightarrow{AB} = \overrightarrow{OB} \cdot \overrightarrow{OA} = (3-1) \hat{i} + (1-2) \hat{j} + (1-3) \hat{k}$ $= 2\hat{i} - 2\hat{k}$ Similarly find \overrightarrow{CD} (ii) $\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = \hat{i} + 3\hat{j} + \hat{k}$ (a) $\because \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = (2-3)\hat{i} + (1-2)\hat{j} + (2-1)\hat{k} = -\hat{i} - \hat{j} + \hat{k}$ $\because \overrightarrow{BC} = \frac{\overrightarrow{BC}}{ \overrightarrow{BC} } = \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{(-1)^2 + (-1)^2 + 1^2}} = \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$ $= -\frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$ Which is a unit vector along \overrightarrow{BC} . (b) $\because \overrightarrow{BC} = -\hat{i} - \hat{j} + \hat{k}$ $\overrightarrow{BD} = \overrightarrow{OD} - \overrightarrow{OB} = (3-3)\hat{i} + (4-2)\hat{j} + (3-1)\hat{k}$ $= 2\hat{j} + 2\hat{k}$ $\because \overrightarrow{BC}$ and \overrightarrow{BD} are adjacent sides of $\triangle BCD$. $= \overrightarrow{BC} \times \overrightarrow{BD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 - 1 & 1 \\ 0 & 2 & 2\end{vmatrix} = \hat{i} (-2-2) - \hat{j} (-2-0) + k (-2+0) = -4\hat{i} + 2\hat{j} - 2\hat{k}$ \therefore Area of $\triangle BCD = \frac{1}{2} \overrightarrow{BC} \times \overrightarrow{BD} $ $= \frac{1}{2} \sqrt{(-4)^2 + 2^2 + (-2)^2} = \frac{1}{2} \times \sqrt{16 + 4 + 4}$ $= \frac{1}{2} \sqrt{24} = \frac{1}{2} \times 2\sqrt{6} = \sqrt{6}$ sq. units	5

