CLASS-XII CHAPTER-01 RELATION AND FUNCTION 05 MARKS TYPE QUESTIONS

Q. No.	QUESTION	MARK
1.	Two integers a and b are said to be congruence modulo m	5
	if a-b is divisible by m which is as $a \equiv b(m)$.	
	Show that the relation $a \equiv b(5)$ on the set Z of all integers is an equivalence relation. Also	
	find equivalence class [2].	
2.	Consider a function $f: R \to R$ defined by $f(x) = x^2 + 5x - 7$. Check whether f is one-one or onto or both. If not, then what will be the domain and co-domain show that f will be bijective?	5
3.	If A = R-{3} and B = R-{1}. Consider the function f: A \rightarrow B defined by f(x) x-2/x-3 for all x \in A. Then show that f is bijective.	5
4.	If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b): a, b \in Z \text{ and } a - b \text{ is divisible by 5}\}$. Prove that R is an equivalence relation	5
5.	If we throw two dices, the total number of possible outcomes is 36. Show how it is an equivalence relation.	5
6.	Let A = R -{3} and B = R - {1}. Consider the function f: A \rightarrow B defined by f (x) = (x- 2)/ (x -3). Is f one-one and onto? Justify your answer.	5
7.	Prove that the relation in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a,b): a-b $ is an even} is an equivalence relation	5
8.	Kendriya Vidyalaya Sangathan conducted cycle race under two different categories- Boys and Girls. There were 32 participants in all. Among all them, finally three from category -1 and two from category-2 were selected for the final race. Amit form two sets B and G with these participants form his college project. Let $B=\{b_1, b_2b_3\}$, and $G=(g_1, g_2)$, where B represents the set of Boys selected and G the set of Girls selected for the final race. We find the set of Girls selected for the final race (A) How many relation from B to G ?	5
	(A) How many relation from B to G ?(B) Among all the possible relations from B to G, how many functions can be formed from B to G?	

	A function $f: B \to G$ be defined by $f: B \to G$ defined by $f=\{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$. Check f is bijective or not ?	
9.	Show that the relation R on the set A={ $x \in Z$, $0 \le x \le 12$ }, given by R = {(a,b), a-b is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 i.e. equivalence class [1].	5
10.	A function f:[-4,4] \rightarrow [0,4] is given by f(x) = $\sqrt{16 - x^2}$, show that f is a onto function but not one-one. Find all possible values of "a" for which f(x)= $\sqrt{7}$	5
11.	Let R be the relation in N × N <i>defined by</i> (a, b) R (c, d) . If $a + d = b + c$ for (a, b) , (c, d) in $N \times N$. Prove that R is an equivalence relation.	5
12.	Show that $f: N \to N$ is given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is bijective (both one-one and onto).	5

ANSWER CHAPTER-01 RELATION AND FUNCTION 05 MARKS TYPE QUESTIONS

Q.No	ANSWERS	Mark
1.	<u>Reflexive</u> : For every integer x , $x - x = 0$ is divisible by 5.	5
	So $x \equiv x \pmod{5}$.	
	Therefore the relation congruence modulo 5 is reflexive.	
	<u>Symmetric:</u> Let $x \equiv y \pmod{5}$ then $x - y$ is visible by 5. Let $x - y = 5k$, Then $y = 5k$ and $5k$ which is deviatible by 5. Hence $x = y \pmod{5}$	
	Then $y - x = -5k$ which is also divisible by 5. Hence $y \equiv x \pmod{5}$. Therefore the relation concernes are tall 5 is concernation.	
	Therefore the relation congruence modulo 5 is symmetric	
	<u>Transitive</u> : Assume that $x \equiv y \pmod{5}$ and $y \equiv z \pmod{5}$.	
	$\Rightarrow x - y = 5k \text{ and } y - z = 5l.$	
	$\Rightarrow x - z = (x - y) + (y - z) = 5(k + l)$ is also divisible by 5.	
	Hence $x \equiv z \pmod{5}$.	
	Therefore the relation congruence modulo 5 is symmetric	
	As congruence modulo 5 is reflexive, symmetric and transitive, so it is an equivalence relation.	
2.	$f(x) = x^2 + 5x - 7$. Check whether f is one-one or onto or both. If not, then what will be	5
	the domain and co-domain show that f will be bijective?	
	For Injective: let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$	
	$\Rightarrow x_1^2 + 5x_1 - 7 = x_2^2 + 5x_2 - 7$	
	$\Rightarrow x_1^2 - x_2^2 + 5x_1 - 5x_2 = 0$	
	$\Rightarrow (x_1 - x_2)(x_1 - x_2 + 5) = 0$	
	$\Rightarrow (x_1 - x_2) = 0 \text{ or } (x_1 + x_2 + 5) = 0$	
	$\Rightarrow x_1 = x_2 or x_1 = x_2 - 5$	
	There fore f is not one-one. To be one-one $x_1 + x_2 + 5$ should not be zero. It will happen only	
	when $x_1, x_2 \in [0, \infty)$. So to be injective, Domain must be $[0, \infty)$.	
	For Surjective: Let $x^2 + 5x - 7 = y$	
	$\Rightarrow x^{2} + 5x - 7 - y = 0$ -5 + $\sqrt{25 + 4(y + 7)}$	
	$\Rightarrow x = \frac{2}{2}$	
	To be onto $x = \frac{-5 \pm \sqrt{25 + 4(y+7)}}{2} \ge 0$	
	$\Rightarrow x = \frac{-5 \pm \sqrt{25 + 4(y+7)}}{2}$ To be onto $x = \frac{-5 \pm \sqrt{25 + 4(y+7)}}{2} \ge 0$ $\Rightarrow \sqrt{25 + 4(y+7)} \ge 5$	
	$\Rightarrow y \ge -7$	
	Range = $[-7, \infty) \neq$ Co-domain. So f is not onto.	
	Therefore, f will be surjective if Co-domain=Range= $[-7, \infty)$	
	So, f will be bijective if domain is $[0, \infty)$ and Co-domain is $[-7, \infty)$.	

3.	Given, function is f: $A \rightarrow B$, where $A = R - \{3\}$	5
	and B=R-{1}, such that $f(x) = x-2/x-3$.	
	For One-one	
	Let f(x1) = f(x2), for all x1, x2 \in A	
	\Rightarrow x2-2/x1-3=x2-2/x2-3	
	\Rightarrow (x1 - 2) (x2-3) = (x1-2)(x? - 3)	
	$\Rightarrow x1x2 - 3x1 - 2x2 + 6 = x1x2 - 3x1 - 2x2 + 6$	
	$\Rightarrow -3x12x2 = -3x1 - 2x2$	
	-3(x1 - x2) + 2(x1 - x2) = 0	
	-(x1 - x2) = 0	
	Or, x1 - x2= 0	
	This implies, $x1 = x2$.	
	Since, $f(x1) = f(x2)$	
	\Rightarrow x1 = x2, for all x1, x2 \in A.	
	So, $f(x)$ is a one-one function.	
	Onto	
	To show $f(x)$ is onto, we show that range of $f(x)$ and its codomain are same.	
	Now,	
	let. $y = x - 2 / x - 3$	
	or, xy-3y=x-2	
	$\Rightarrow xy - x = 3y - 2$	
	$\Rightarrow x(y-1) = 3y - 2$	
	⇒x=3y-2/y-1Eqn (1)	
	Since, $x \in R-\{3\}$, for all $y \in R-\{1\}$, the range of f(x)=R-{1}.	
		i i

	Also, the given codomain of $f(x) = R-\{1\}$	
	Therefore, Range = Codomain.	
	Hence, $f(x)$ is an onto function.	
	Therefore, $f(x)$ is a bijective function.	
4.	The given relation is $R = \{(a, b): a, b \in Z \text{ and } a - b \text{ is divisible by 5}\}$. To prove R is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any $x \in Z$, we have $x - x = 0$, which is divisible by 5. $\Rightarrow (x - x)$ is divisible by 5. $\Rightarrow (x, x) \in R$, $V x \in Z$ Therefore, R is reflexive.	5
	Symmetric: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by 5. [by definition of R] $\Rightarrow x - y = 5A$ for some $A \in Z$. $\Rightarrow y - x = 5(-A)$ $\Rightarrow (y - x)$ is also divisible by 5. $\Rightarrow (y, x) \in R$ Therefore, R is symmetric.	
	Transitive: Let $(x, y) \in R$,where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by 5. $\Rightarrow x - y = 5A$ for some $A \in Z$ Again, let $(y, z) \in R$, where $y, z \in Z$. $\Rightarrow (y - 1)$ is divisible by 5. $\Rightarrow y - z = 5B$ for some $B \in Z$.	
	Now, $(x - y) + (y - 2) = 5A + 5B$ $\Rightarrow x - z = 5(A + B)$ $\Rightarrow (x - z)$ is divisible by 5 for some $(A + B) \in Z$ $\Rightarrow (x, z) \in R$ Therefore, R is transitive. Thus, R is reflexive, symmetric and transitive. Hence, it is an equivalence relation	
5.	If we note down all the outcomes of throwing two dices, we get the following possible relations:	5

	$R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (3,4), \dots \}$ Reflexive:	
	For the relation to be reflexive (a, a) $\in \mathbb{R}$ for all $a \in \mathbb{R}$	
	Since, $(1,1)$, $(2,2)$, $(3,3)$, $\in \mathbb{R}$	
	Hence, the relation is reflexive.	
	Symmetric:	
	For the relation to be symmetric $(a, b) \in \mathbb{R} \Longrightarrow (b, a) \in \mathbb{R}$ for all $a, b \in \mathbb{R}$	
	In this relation,	
	$(1,2) \in \mathbb{R} \Longrightarrow (2,1) \in \mathbb{R}$	
	$(2,3) \in \mathbb{R} => (3,2) \in \mathbb{R}$ $(3,4) \in \mathbb{R} => (4,3) \in \mathbb{R}$	
	$(3,4) \in \mathbb{R} \longrightarrow (4,3) \in \mathbb{R}$	
	Hence, it satisfies the condition of symmetric.	
	Hence, the function is symmetric.	
	Transitive:	
	For the relation to be transitive (a, b) $\in \mathbb{R}$ and (b, c) $\in \mathbb{R}$	
	$(a, c) \in \mathbb{R}$ for all $a, b, c \in \mathbb{R}$	
	In this relation,	
	$(1,2) \in \mathbb{R} \& (2,3) \in \mathbb{R} \implies (1,3) \in \mathbb{R}$	
	$(2,3) \in \mathbb{R} \& (3,2) \in \mathbb{R} => (2,2) \in \mathbb{R}$	
	$(4,5) \in \mathbb{R} \& (5,2) \in \mathbb{R} => (4,2) \in \mathbb{R}$	
	Hence, it satisfies the condition of transitivity.	
	Hence, the relation is transitive.	
	Since, the relation R is reflexive, symmetric as well as transitive, the relation R is	
	equivalence relation.	
	Hence, throwing two dices is an example of equivalence relation.	
6.	Given function:	5
	f(x) = (x-2)/(x-3)	
	Checking for one-one function: f(x1) = (x1-2)/(x1-3)	
	$f(x_1) = \frac{(x_1 - 2)}{(x_1 - 3)}$ f(x_2) = (x_2 - 2)/(x_2 - 3)	
	Putting $f(x_1) = f(x_2)$	
	(x1-2)/(x1-3) = (x2-2)/(x2-3)	
	(x1-2) (x2-3) = (x1-3) (x2-2)	
	x1 (x2-3)-2 (x2-3) = x1 (x2-2) - 3 (x2-2)	
	x1 x2 - 3x1 - 2x2 + 6 = x1 x2 - 2x1 - 3x2 + 6	
	-3x1-2x2 = -2x1 - 3x2 3x2 - 2x2 = -2x1 + 3x1	
	$3x^2 - 2x^2 = -2x^1 + 3x^1$ $x^1 = x^2$	
	Hence, if $f(x_1) = f(x_2)$, then $x_1 = x_2$	
	Thus, the function f is one-one function.	
	Checking for onto function:	

f (x) = (x-2)/(x-3) Let $f(x) = y$ such that y B i.e., $y \in R - \{1\}$ So, $y = (x - 2)/(x - 3)$	
$S_0, y = (x - 2)/(x - 3)$	
$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$	
y(x-3) = x-2	
$\begin{array}{c} y (x - y) - x - 2 \\ xy - 3y = x - 2 \end{array}$	
xy - x = 3y-2	
x (y - 1) = 3y - 2	
x = (3y - 2)/(y-1)	
For $y = 1$, x is not defined but it is given that. $y \in R - \{1\}$	
Hence, $x = (3y-2)/(y-1) \in \mathbb{R} - \{3\}$ Hence, f is onto.	
7. The given relation in the set $A = \{1, 2, 3, 4, 5\}$ given by	5
$\mathbf{R} = \{(a,b): a - b \text{ is an even} \}.$	-
Reflexive:- As $ x - x = 0$ is even $\forall x \in A$	
Hence R is reflexive relation (1)	
Symmetric Relation:-	
Let $(x,y) \in \mathbb{R} \Rightarrow x - y $ is even (by definition of given relation	
$\Rightarrow y - x $ is also even	
since $ a = -a \forall a \in A$	
$\Rightarrow (y,x) \in \mathbb{R} \ \forall x, y \in A$	
$\therefore \text{ R is symmetric relation.} \qquad (1\frac{1}{2})$	
Transitive Relation:-	
Let $(x,y) \in \mathbb{R}$ and $(y,z) \in \mathbb{R}$	
\Rightarrow x - y is even (by definition of given relation	
$\Rightarrow x - y = \pm 2l$ (l is an integer)(1)	
$\Rightarrow y - z $ is even (by definition of given relation	
$\Rightarrow y - z = \pm 2m$ (m is an integer)(2)	
Add equation(1) and equation(2)	
$(x - y) + (y - z) = \pm 2l \pm 2m = \pm 2k$ is an integer.	
$\Rightarrow x - z = \pm 2k$	
$\Rightarrow x - z \text{ is an even integer number }.$ (2)	
\Rightarrow (x,z) \in R	
\therefore R is transitive relation.	
P = (h, h, h) = C = (a, a)	
8. $\mathbf{B} = \{b_1, b_2 b_3\}$ $\mathbf{G} = = \{g_1, g_2\}$	5
n(B)=3 $n(G)=2$	
since $n(B \times G) = n(B) \times n(G) = 3 \times 2$ (1)	
(A) Number of relation from B to $G=2^6$ (1)	
(B) Number of functions from B to $G=2^{n(B\times G)}$	
$=[n(G)]^{n(B)} = 2^3 = 8 \qquad (1)$	
(C) f={ $(b_1, g_1), (b_2, g_2), (b_3, g_1)$ }.	
Since $f(b_1) = g_1$ and $f(b_3) = g_1$	
$\Rightarrow f(b_1) = f(b_3) \text{ but } (b_1) \neq (b_3)$	
As b_1 and b_1 represents two different boys.	
$\Rightarrow f is not one-one.$	
$\Rightarrow f \text{ is not bijective map.} $ (2)	

9.	Reflexivity:	5
9.	For $a \in A$, we have	3
	a-a =0, which is a multiple of 4 R is reflexive.	
	Symmetric Let (a, b) C D	
	Let $(a,b) \in R$	
	a-b is a multiple of 4	
	b-a will also multiple of 4	
	$(b,a) \in R$	
	R is symmetric.	
	Transitive:	
	Let (a,b) , $(b,c) \in R$	
	a-b is a multiple of 4	
	$ a-b =4\Lambda$, $a-b=\pm 4\Lambda$	
	b-c is a multiple of 4	
	$ \mathbf{b}-\mathbf{c} = 4\mu$, $\mathbf{b}-\mathbf{c}=\pm 4\mu$	
	Therefore a-c= $\pm 4 \pm 4\mu$	
	$(a,c) \in R$	
	R is transitive.	
	For equivalence class:	
	x-1 = 0,4,8,12	
	X = 1,5,9	
10.	$y = \sqrt{16 - x^2}$	5
	$y^2 - 16 - x^2$	5
	$y^{2} = \frac{16 - x^{2}}{x = \sqrt{16 - y^{2}}}$	
	clearly for x to be $x \in [-4,4]$	
	$16 - y^2 \ge 0$	
	$(y-4)(y+4) \le 0$	
	$0 \le y \le 4$	
	Therefore it is onto	
	When $x=4$, $y=0$	
	When $x=-4$, $y=0$	
	So it is not one one	
	Also—	
	$F(a) = \sqrt{7}$	
	$\sqrt[4]{\sqrt{16-a^2}} = \sqrt{7}$	
	$16 - a^2 = 7$	
	a∈ [-3,3]	
11.	For Reflexive	1
11.	(a, b) R (a, b) \Rightarrow a + b = b + a which is true since addition is commutative on N.	1
	$\Rightarrow R \text{ is reflexive.}$	
	For Symmetric	
	Let (a, b) R (c, d) \Rightarrow a + d = b + c	
	\Rightarrow b + c = a + d	2
	\Rightarrow c + b = d + a	
	$\Rightarrow (c, d) R (a, b)$	

	\Rightarrow R is symmetric.	
	For Transitive	
	for (a, b), (c, d), (e, f) in $N \times N$ Let (a, b) \mathbf{P} (a, d) and (a, d) \mathbf{P} (a, f)	2
	Let (a, b) R (c, d) and (c, d) R (e, f) $\Rightarrow a + d = b + c$ and $c + f = d + e$	2
	$\Rightarrow (a+d) - (d+e) = (b+c) - (c+f)$	
	$\Rightarrow a - e = b - f \Rightarrow a + f = b + e$	
	$\Rightarrow (a, b) R (e, f)$ $\Rightarrow R is transitive.$	
	Hence, R is an equivalence relation.	
12.	One-One: Suppose $f(x_1) = f(x_2)$.	
	Case 1 : When x_1 is odd and x_2 is even.	
	In this case $f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 - 1 \Rightarrow x_2 - x_1 = 2$	1
	This is a contradiction, since the difference between an even natural number and an odd	
	natural number can never be 2.	
	Thus in this case $f(x_1) \neq f(x_2)$.	
	Similarly, When x_1 is even and x_2 is odd, then $f(x_1) \neq f(x_2)$.	
	Case 2 : When x_1 and x_2 are both odd.	
	In this case $f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2$	1
	\therefore f is one-one.	
	Case 3 : When x_1 and x_2 are both even.	
	In this case $f(x_1) = f(x_2) \Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$	1
	\therefore f is one-one.	
	Onto: Let $y \in N$ (<i>codomain</i>).	
	Case 1 : When y is odd then $y + 1$ is even.	
	f(y+1) = (y+1) - 1 = y	1
	Case 2 : When y is even then $y - 1$ is odd.	-
	$\therefore f(y-1) = (y-1) + 1 = y.$	1
	Thus each $y \in N$ (<i>codomain</i>)has its pre-image in dom(f).	
	$\therefore f$ is onto.	
	Hence f is both one-one and onto (bijective).	