RELATIONS & FUNCTIONS

Be Happy. Dt's Maths time now!

RECAPITULATION & RELATIONS

IMPORTANT TERMS, DEFINITIONS & RESULTS

01. TYPES OF INTERVALS

- a) Open interval: If a and b be two real numbers such that a < b then, the set of all the real numbers lying strictly between a and b is called an *open interval*. It is denoted by]a,b[or (a,b) i.e., $\{x \in \mathbb{R} : a < x < b\}$.
- **b)** Closed interval: If a and b be two real numbers such that a < b then, the set of all the real numbers lying between a and b such that it includes both a and b as well is known as a closed interval. It is denoted by [a,b] i.e., $\{x \in \mathbb{R} : a \le x \le b\}$.
- c) Open Closed interval: If a and b be two real numbers such that a < b then, the set of all the real numbers lying between a and b such that it excludes a and includes only b is known as an *open closed interval*. It is denoted by [a,b] or (a,b] i.e., $\{x \in \mathbb{R} : a < x \le b\}$.
- **Closed Open interval:** If a and b be two real numbers such that a < b then, the set of all the real numbers lying between a and b such that it includes only a and excludes b is known as a *closed open interval*. It is denoted by [a,b[or [a,b) i.e., $\{x \in \mathbb{R} : a \le x < b\}$.

RELATIONS

02. Defining the Relation: A relation R, from a non-empty set A to another non-empty set B is mathematically defined as an arbitrary subset of $A \times B$. Equivalently, any subset of $A \times B$ is a relation from A to B.

Thus, R is a relation from A to B \Leftrightarrow R \subseteq A \times B

$$\Leftrightarrow$$
 R \subseteq { (a,b) : $a \in A, b \in B$ }.

Illustrations:

- a) Let $A = \{1, 2, 4\}$, $B = \{4, 6\}$. Let $R = \{(1, 4), (1, 6), (2, 4), (2, 6), (4, 6)\}$. Here $R \subseteq A \times B$ and therefore R is a relation from A to B.
- **b)** Let $A = \{1, 2, 3\}, B = \{2, 3, 5, 7\}$. Let $R = \{(2, 3), (3, 5), (5, 7)\}$. Here $R \not\subset A \times B$ and therefore R is not a relation from A to B. Since $(5, 7) \in R$ but $(5, 7) \notin A \times B$.
- c) Let $A = \{-1,1,2\}$, $B = \{1,4,9,10\}$. Let a R b means $a^2 = b$ then, $R = \{(-1,1),(1,1),(2,4)\}$.

♡ Note the followings:

- A relation from A to B is also called a relation from A into B.
- $(a,b) \in R$ is also written as aRb (read as **a** is **R** related to **b**).
- Let A and B be two non-empty finite sets having p and q elements respectively. Then $n(A \times B) = n(A).n(B) = pq$. Then total number of subsets of $A \times B = 2^{pq}$. Since each subset of $A \times B$ is a relation from A to B, therefore total number of relations from A to B is given as 2^{pq} .

03. DOMAIN & RANGE OF A RELATION

a) **Domain of a relation:** Let R be a relation from A to B. The domain of relation R is the set of all those elements $a \in A$ such that $(a,b) \in R$ for some $b \in B$. Domain of R is precisely written as Dom.(R) symbolically.

Thus, Dom.(R) = $\{a \in A : (a,b) \in R \text{ for some } b \in B\}$.

That is, the domain of R is the set of first component of all the ordered pairs which belong to R.

b) Range of a relation: Let R be a relation from A to B. The range of relation R is the set of all those elements $b \in B$ such that $(a,b) \in R$ for some $a \in A$.

Thus, Range of $R = \{b \in B : (a,b) \in R \text{ for some } a \in A\}$.

That is, the range of R is the set of second components of all the ordered pairs which belong to R.

c) Codomain of a relation: Let R be a relation from A to B. Then B is called the codomain of the relation R. So we can observe that codomain of a relation R from A into B is the set B as a whole.

Illustrations:

a) Let $A = \{1, 2, 3, 7\}, B = \{3, 6\}$. Let aRb means a < b.

Then we have $R = \{(1,3), (1,6), (2,3), (2,6), (3,6)\}$.

Here $Dom.(R) = \{1, 2, 3\}$, Range of $R = \{3, 6\}$, Codomain of $R = B = \{3, 6\}$.

b) Let $A = \{1, 2, 3\}$, $B = \{2, 4, 6, 8\}$. Let $R_1 = \{(1, 2), (2, 4), (3, 6)\}$,

 $R_2 = \{(2,4),(2,6),(3,8),(1,6)\}$. Then both R_1 and R_2 are relations from A to B because

 $R_1 \subseteq A \times B$, $R_2 \subseteq A \times B$. Here Dom. $(R_1) = \{1, 2, 3\}$, Range of $R_1 = \{2, 4, 6\}$;

 $Dom.(R_2) = \{2,3,1\}, Range \ of \ R_2 = \{4,6,8\}.$

04. TYPES OF RELATIONS FROM ONE SET TO ANOTHER SET

a) **Empty relation:** A relation R from A to B is called an empty relation or a void relation from A to B if $R = \phi$.

For example, let $A = \{2,4,6\}, B = \{7,11\}.$

Let $R = \{(a,b) : a \in A, b \in B \text{ and } a-b \text{ is even} \}$. Here R is an empty relation.

b) Universal relation: A relation R from A to B is said to be the universal relation if $R = A \times B$.

For example, let $A = \{1,2\}$, $B = \{1,3\}$. Let $R = \{(1,1),(1,3),(2,1),(2,3)\}$. Here $R = A \times B$, so relation R is a universal relation.

05. RELATION ON A SET & ITS VARIOUS TYPES

A relation R from a non-empty set A into itself is called a relation on A. In other words if A is a non-empty set, then a subset of $A \times A = A^2$ is called a relation on A.

Illustrations:

Let $A = \{1, 2, 3\}$ and $R = \{(3, 1), (3, 2), (2, 1)\}$. Here R is relation on set A.

NOTE If A be a finite set having *n* elements then, number of relations on set A is $2^{n \times n}$ i.e., 2^{n^2} .

a) Empty relation: A relation R on a set A is said to be empty relation or a void relation if $R = \phi$. In other words, a relation R in a set A is empty relation, if no element of A is related to any element of A, i.e., $R = \phi \subset A \times A$.

For example, let $A = \{1,3\}$, $R = \{(a,b) : a \in A, b \in A \text{ and } a+b \text{ is odd}\}$. Here R contains no element, therefore it is an empty relation on set A.

b) Universal relation: A relation R on a set A is said to be the universal relation on A if $R = A \times A$ i.e., $R = A^2$. In other words, a relation R in a set A is universal relation, if each element of A is related to every element of A, i.e., $R = A \times A$.

For example, let $A = \{1,2\}$. Let $R = \{(1,1),(1,2),(2,1),(2,2)\}$. Here $R = A \times A$, so relation R is universal relation on A.

NOTE The void relation *i.e.*, ϕ and universal relation *i.e.*, $A \times A$ on A are respectively the *smallest* and *largest* relations defined on the set A. Also these are sometimes called *Trivial Relations*. And, any other relation is called a *non-trivial relation*.

- **The relations** $R = \emptyset$ and $R = A \times A$ are two *extreme relations*.
- c) Identity relation: A relation R on a set A is said to be the identity relation on A if $R = \{(a,b) : a \in A, b \in A \text{ and } a = b\}$.

Thus identity relation $R = \{(a, a) : \forall a \in A\}$.

The identity relation on set A is also denoted by I_A .

For example, let $A = \{1,2,3,4\}$. Then $I_A = \{(1,1),(2,2),(3,3),(4,4)\}$. But the relation given by $R = \{(1,1),(2,2),(1,3),(4,4)\}$ is not an identity relation because element 1 is related to elements 1 and 3.

NOTE In an identity relation on A every element of A should be related to itself only.

d) Reflexive relation: A relation R on a set A is said to be reflexive if $a R a \forall a \in A$ i.e., $(a,a) \in R \ \forall a \in A$.

For example, let $A = \{1,2,3\}$, and R_1 , R_2 , R_3 be the relations given as $R_1 = \{(1,1),(2,2),(3,3)\}$, $R_2 = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3)\}$ and

 $R_3 = \{(2,2),(2,3),(3,2),(1,1)\}$. Here R_1 and R_2 are reflexive relations on A but R_3 is not reflexive as $3 \in A$ but $(3,3) \notin R_3$.

<u>NOTE</u> The identity relation is always a reflexive relation but the opposite may or may not be true. As shown in the example above, R_1 is both identity as well as reflexive relation on A but R_2 is only reflexive relation on A.

e) Symmetric relation: A relation R defined on a set A is symmetric if $(a,b) \in \mathbb{R}$ $\Rightarrow (b,a) \in \mathbb{R} \ \forall a,b \in A \text{ i.e., } a \mathbb{R} b \Rightarrow b \mathbb{R} a \text{ (i.e., whenever } a\mathbb{R} b \text{ then, } b\mathbb{R} a \text{)}.$

For example, let $A = \{1, 2, 3\}$, $R_1 = \{(1, 2), (2, 1)\}$, $R_2 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$,

 $R_3 = \{(2,3),(3,2),(2,2),(2,2)\}$ i.e. $R_3 = \{(2,3),(3,2),(2,2)\}$ and $R_4 = \{(2,3),(3,1),(1,3)\}$.

Here R_1 , R_2 and R_3 are symmetric relations on A. But R_4 is not symmetric because $(2,3) \in R_4$ but $(3,2) \notin R_4$.

f) Transitive relation: A relation R on a set A is transitive if $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R} \Rightarrow (a,c) \in \mathbb{R}$ i.e., $a \otimes b = a \otimes c$.

For example, let $A = \{1,2,3\}$, $R_1 = \{(1,2),(2,3),(1,3),(3,2)\}$ and $R_2 = \{(1,3),(3,2),(1,2)\}$. Here R_2 is transitive relation whereas R_1 is not transitive because $(2,3) \in R_1$ and $(3,2) \in R_1$ but $(2,2) \notin R_1$.

- **g)** Equivalence relation: Let A be a non-empty set, then a relation R on A is said to be an equivalence relation if
 - (i) R is reflexive i.e. $(a,a) \in R \ \forall a \in A \ i.e., \ aRa$.
 - (ii) R is symmetric i.e. $(a,b) \in R \Rightarrow (b,a) \in R \ \forall a,b \in A \ i.e., \ aRb \Rightarrow bRa$.
 - (iii) R is transitive i.e. $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \ \forall a,b,c \in A$ i.e., aRb and

 $bRc \Rightarrow aRc$.

For example, let $A = \{1,2,3\}$, $R = \{(1,2),(1,1),(2,1),(2,2),(3,3)\}$. Here R is reflexive, symmetric and transitive. So R is an equivalence relation on A.

- **Equivalence classes:** Let A be an equivalence relation in a set A and let $a \in A$. Then, the set of all those elements of A which are related to a, is called equivalence class determined by a and it is denoted by a. Thus, $a = b \in A$.
- **NOTE** (i) Two equivalence classes are either disjoint or identical.
 - (ii) An equivalence relation R on a set A partitions the set into mutually disjoint equivalence classes.

An important property of an equivalence relation is that it divides the set into pair-wise disjoint subsets called **equivalence classes** whose collection is called **a partition of the set**. Note that the union of all equivalence classes gives the whole set.

e.g. Let R denotes the equivalence relation in the set Z of integers given by $R = \{(a, b) : 2 \text{ divides } a - b\}$. Then the equivalence class [0] is $[0] = \{0, \pm 2, \pm 4, \pm 6, ...\}$

06. TABULAR REPRESENTATION OF A RELATION

In this form of representation of a relation R from set A to set B, elements of A and B are written in the first column and first row respectively. If $(a,b) \in R$ then we write '1' in the row containing a and column containing b and if $(a,b) \notin R$ then we write '0' in the same manner.

For example, let $A = \{1, 2, 3\}, B = \{2, 5\}$ and $R = \{(1, 2), (2, 5), (3, 2)\}$ then,

R	2	5	
1	1	0	
2	0	1	
3	1	0	

07. INVERSE RELATION

Let $R \subseteq A \times B$ be a relation from A to B. Then, the inverse relation of R,

to be denoted by R^{-1} , is a relation from B to A defined by $R^{-1} = \{(b, a) : (a, b) \in R\}$.

Thus $(a,b) \in \mathbb{R} \Leftrightarrow (b,a) \in \mathbb{R}^{-1} \ \forall a \in \mathbb{A}, b \in \mathbb{B}$.

Clearly, Dom. (R^{-1}) = Range of R, Range of R^{-1} = Dom. (R).

Also, $(R^{-1})^{-1} = R$.

For example, let $A = \{1,2,4\}$, $B = \{3,0\}$ and let $R = \{(1,3),(4,0),(2,3)\}$ be a relation from A to B then, $R^{-1} = \{(3,1),(0,4),(3,2)\}$.

Summing up all the discussion given above, here is a recap of all these for quick grasp:

01.	a) A relation R from A to B is an empty relation or void relation iff $R = \phi$.					
	b) A relation R on a set A is an empty relation or void relation iff $R = \phi$.					
02.	a) A relation R from A to B is a universal relation iff R=A×B.					
	b) A relation R on a set A is a universal relation iff $R=A \times A$.					
03.	A relation R on a set A is reflexive iff $aRa, \forall a \in A$.					
04.	A relation R on set A is symmetric iff whenever aRb , then bRa for all $a,b \in A$.					

05.	A relation R on a set A is transitive iff whenever aRb and bRc , then aRc .
06.	A relation R on A is identity relation iff $R = \{(a, a), \forall a \in A\}$ i.e., R contains only elements of the type $(a, a) \forall a \in A$ and it contains no other element.
07.	A relation R on a non-empty set A is an equivalence relation iff the following conditions are satisfied: i) R is reflexive i.e., for every $a \in A$, $(a,a) \in R$ i.e., aRa .
	ii) R is symmetric i.e., for $a,b \in A$, $aRb \Rightarrow bRa$ i.e., $(a,b) \in R \Rightarrow (b,a) \in R$.
	iii) R is transitive i.e., for all $a,b,c \in A$ we have, aRb and $bRc \Rightarrow aRc$ i.e., $(a,b) \in R$ and
	$(b,c) \in \mathbb{R} \Rightarrow (a,c) \in \mathbb{R}$.

EXERCISE FOR PRACTICE

- **Q01.** Let N = set of all natural numbers and R = $\{(x, y) : x + 2y = 0; y \in N\}$. Is R a relation on N? Give the reason in support of your answer.
- **Q02.** Let $A = \{2,4,5\}$, $B = \{1,2,3,4,6,8\}$ and let R be a relation from A to B defined by $xRy \Leftrightarrow x$ divides y. Find the relation (in roster form), its domain and range.
- **Q03.** Let $A = \{1, 2, 3, 4, 6\}$ and let R be a relation on A defined by $R = \{(a, b) : a, b \in A; a \text{ divides } b\}$. Find the relation, its domain and range.
- **Q04.** Determine the domain and range of the relation $R = \{(x, y) : y = |x 1|, x \in \mathbb{Z} \text{ and } |x| \le 3\}$.
- **Q05.** Write the domain and range of relation $R = \{(x+1, x+5) : x \in \{0,1,2,3,4,5\}\}$.
- **Q06.** Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 4, ..., 65\}$. Let R be a relation from A to B defined by aRb iff a is cube root of b. Find R and its domain and range.
- **Q07.** Let $R = \{(1,-1),(2,0),(3,1),(5,3)\}$. Find the inverse of R i.e., R^{-1} and its domain and range.
- **Q08.** Let $A = \{1, 2\}$. How many relations are possible on set A. List all of the relations.
- **Q09.** Let $A = \{3,5\}$, $B = \{7,11\}$. Let $R_1 = \{(a,b) : a \in A, b \in B, a-b \text{ is odd}\}$ and $R_2 = \{(a,b) : a \in A, b \in B, a-b \text{ is even}\}$. Show that the relations R_1 and R_2 are respectively empty and universal relation from A into B.
- **Q10.** Let $A = \{1,2,3\}$ and $R = \{(a,b): a,b \in A,a \text{ divides } b \text{ and } b \text{ divides } a\}$. Show that R is an identity relation on A.
- Q11. Let N be the set of all natural numbers and the relation R on N be defined by $xRy \Leftrightarrow x$ divides $y \forall x, y \in N$. Examine whether R is reflexive, symmetric or transitive.
- Q12. Check whether the relation R defined in the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive.
- Q13. Show that the relation R in the set $A = \{1,2,3\}$ given by $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive. Is it equivalence relation? Why?
- **Q14.** Check if the relation R in the set $A = \{1, 2, 3, ..., 14\}$ defined by $R = \{(x, y) : 3x y = 0\}$ is reflexive, symmetric or transitive.
- Q15. Determine whether the relation R which is defined in the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(x, y) : y \text{ is divisible by } x\}$ is reflexive, symmetric or transitive.
- **Q16.** Show that the relation R in the set Z of integers given by $R = \{(a,b) : 2 \text{ divides } a-b\}$ is an equivalence relation.

- Q17. Show that the relation R on set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a b| \text{ is even}\}$ is equivalence relation.
- **Q18.** Let R be a relation on the set of all lines in a plane defined by $(l_1, l_2) \in \mathbb{R} \iff l_1$ is parallel to l_2 . Show that R is an equivalence relation.
- Q19. Prove that the relation R on the set Z of all integers defined by $(x, y) \in \mathbb{R} \Leftrightarrow x y$ is divisible by n, is an equivalence relation on Z.
- **Q20.** a) Let $A = \{1, 2, 3\}$. Then show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is four.
 - **b)** Show that the number of equivalence relation in the set $\{1,2,3\}$ containing (1,2) and (2,1) is two.
- **Q21.** Show that the relation R on the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a,b) : |a-b| \text{ is a multiple of 4}\}$ is an equivalence relation. Hence find the set of all elements related to 1 in R.
- Q22. Let R be the relation in the set N given by $R = \{(a,b) : a = b-2, b > 6\}$. Which of the following is true? a) $(2,4) \in R$ b) $(3,8) \in R$ c) $(6,8) \in R$ d) $(8,7) \in R$.
- **Q23.** If R_1 and R_2 are equivalence relations in a set A, show that $R_1 \cap R_2$ is also an equivalence relation.
- **Q24.** Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2) : T_1 \text{ is congruent to } T_2\}$. Show that R is an equivalence relation.
- **OR** Let T be the set of all triangles in a plane with R as relation in T given by $R = \{(T_1, T_2) : T_1 \cong T_2\}$. Show that R is an equivalence relation.
- **Q25.** Let L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2\}$. Show that R is symmetric but neither reflexive nor transitive.
- **Q26.** Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R (u, v) if and only if xv = yu. Show that R is an equivalence relation.
- **Q27.** Show that the relation R on the set R of real nos., defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.
- **Q28.** Let $A = \{1, 2, 3\}$. Find the number of equivalence relations containing (1, 2).
- Q29. Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ is an equivalence relation where R = $\{(a, b) : a = b\}$. Hence find the set of all elements related to 1 in R.
- **Q30.** Let Z be the set of all integers and R be a relation on Z defined as $R = \{(a,b) : a,b \in Z \text{ and } (a-b) \text{ is divisible by 5} \}$. Prove that R is an equivalence relation.
- Q31. Show that the relation R in the set $A = \{1,2,3,4,5\}$ given by $R = \{(a, b): |a b| \text{ is even}\}$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.
- Q32. Let $A = \{1, 2, 3\}$. Find the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive.
- Q33. Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2, 5)].
- Q34. (a) If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R.
 - (b) Let R be the equivalence relation in the set $A = \{0, 1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : 2 \text{ divides } (a b)\}$. Write the equivalence class [0].
 - (c) Write the smallest equivalence relation R on set $A = \{1, 2, 3\}$.
 - (d) Let $R = \{(a, a^3) : a \text{ is a prime number less than 5}\}$ be a relation. Find the range of R.

- Q35. Determine whether the relation R defined on the set R of all real numbers as $R = \{(a,b): a,b \in R \text{ and } a-b+\sqrt{3} \in S, \text{ where S is the set of all irrational numbers}\}$, is reflexive, symmetric and transitive.
- Q36. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a,b)R(c,d) if ad(b+c) = bc(a+d). Show that R is an equivalence relation.

FUNCTIONS & ITS VARIOUS TYPES

IMPORTANT TERMS, DEFINITIONS & RESULTS

01. CONSTANT & TYPES OF VARIABLES

- a) Constant: A constant is a symbol which retains the same value throughout a set of operations. So, a symbol which denotes a particular number is a constant. Constants are usually denoted by the symbols *a*, *b*, *c*, *k*, *l*, *m*,... etc.
- **b)** Variable: It is a symbol which takes a number of values i.e., it can take any arbitrary values over the interval on which it has been defined. For example if x is a variable over R (set of real numbers) then we mean that x can denote any arbitrary real number. Variables are usually denoted by the symbols x, y, z, u, v,... etc.
- c) Independent variable: That variable which can take an arbitrary value from a given set is termed as an independent variable.
- **d) Dependent variable:** That variable whose value depends on the independent variable is called a dependent variable.
- **02. Defining A Function:** Consider A and B be two non-empty sets then, a rule f which associates **each element of A with a unique element of B** is called a *function* or the *mapping from A to B* or f *maps A to B*. If f is a mapping from A to B then, we write $f: A \to B$ which is read as 'f is a mapping from A to B' or 'f is a function from A to B'.

If f associates $a \in A$ to $b \in B$, then we say that 'b is the image of the element a under the function f' or 'b is the f - image of a' or 'the value of f at a' and denote it by f(a) and we write b = f(a). The element a is called the **pre-image** or **inverse-image** of b.

Thus for a function from A to B,

- (i) A and B should be non-empty.
- (ii) Each element of A should have image in B.
- (iii) No element of A should have more than one image in B.
- (iv) If A and B have respectively m and n number of elements then the number of functions defined from A to B is n^m .

03. Domain, Co-domain & Range of a function

The set A is called the domain of the function f and the set B is called the co-domain. The set of the images of all the elements of A under the function f is called the range of the function f and is denoted as f(A).

Thus range of the function f is $f(A) = \{f(x) : x \in A\}$. Clearly $f(A) \subseteq B$.

⋄ Note the followings:

- (i) It is necessary that every f-image is in B; but there may be some elements in B which are not the f-images of any element of A i.e., whose pre-image under f is not in A.
- (ii) Two or more elements of A may have same image in B.
- (iii) $f: x \to y$ means that under the function f from A to B, an element x of A has image y in B
- (iv) Usually we denote the function f by writing y = f(x) and read it as 'y is a function of x'.

POINTS TO REMEMBER FOR FINDING THE DOMAIN & RANGE

Domain: If a function is expressed in the form y = f(x), then domain of f means set of all those real values of x for which y is real (i.e., y is well - defined).

- * Remember the following points:
- (i) Negative number should not occur under the square root (even root) i.e., expression under the square root sign must be always ≥ 0 .
- (ii) Denominator should never be zero.
- (iii) For $\log_b a$ to be defined a > 0, b > 0 and $b \ne 1$. Also note that $\log_b 1$ is equal to zero i.e. 0.

Range: If a function is expressed in the form y = f(x), then range of f means set of all possible real values of f corresponding to every value of f in its domain.

- * Remember the following points:
- (i) Firstly find the domain of the given function.
- (ii) If the domain does not contain an interval, then find the values of y putting these values of x from the domain. The set of all these values of y obtained will be the range.
- (iii) If domain is the set of all real numbers R or set of all real numbers except a few points, then express x in terms of y and from this find the real values of y for which x is real and belongs to the domain.
- **04.** Function as a special type of relation: A relation f from a set A to another set B is said be a function (or mapping) from A to B if with every element (say x) of A, the relation f relates a unique element (say y) of B. This y is called f-image of x. Also x is called pre-image of y under f.
- **05.** Difference between relation and function: A relation from a set A to another set B is any subset of $A \times B$; while a function f from A to B is a subset of $A \times B$ satisfying following conditions:
 - (i) For every $x \in A$, there exists $y \in B$ such that $(x, y) \in f$
 - (ii) If $(x, y) \in f$ and $(x, z) \in f$ then, y = z.

Sl. No.	Function	Relation		
01.	Each element of A must be related to some element of B.	There may be some element of A which are not related to any element of B.		
02.	An element of A should not be related to more than one element of B.	An element of A may be related to more than one elements of B.		

06. Real valued function of a real variable: If the domain and range of a function f are subsets of R (the set of real numbers), then f is said to be a real valued function of a real variable or a real function.

07. Some important real functions and their domain & range

FUNCTION	REPRESENTATION	DOMAIN	RANGE
a) Identity function	$I(x) = x \ \forall x \in \mathbf{R}$	R	R
b) Modulus function or Absolute value function	$f(x) = x = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$	R	$[0,\infty)$
c) Greatest integer function or Integral function or Step function	$f(x) = [x] \text{ or } f(x) = [x] \forall x \in \mathbb{R}$	R	Z
d) Smallest integer function	$f(x) = \lceil x \rceil \ \forall x \in \mathbf{R}$	R	Z
e) Signum function	$f(x) = \begin{cases} \frac{ x }{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \text{ i.e., } f(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$	R	{-1,0,1}

f) Exponential function	$f(x) = a^x \ \forall a \neq 1, a > 0$	R	$(0,\infty)$
g) Logarithmic function	$f(x) = \log_a x \forall a \neq 1, a > 0$ and $x > 0$	$(0,\infty)$	R

08. TYPES OF FUNCTIONS

a) One-one function (Injective function or Injection): A function $f : A \to B$ is one-one function or injective function if distinct elements of A have distinct images in B.

Thus,
$$f : A \to B$$
 is one-one $\Leftrightarrow f(a) = f(b) \Rightarrow a = b \ \forall a, b \in A$
 $\Leftrightarrow a \neq b \Rightarrow f(a) \neq f(b) \ \forall a, b \in A$.

- If A and B are two sets having m and n elements respectively such that $m \le n$, then **total** number of one-one functions from set A to set B is ${}^{n}C_{m} \times m!$ i.e., ${}^{n}P_{m}$.
- \bullet If n(A) = n then the number of injective functions defined from A onto itself is n!.

ALGORITHM TO CHECK THE INJECTIVITY OF A FUNCTION

STEP1- Take any two arbitrary elements *a*, *b* in the domain of *f*.

STEP2- Put f(a) = f(b).

STEP3- Solve f(a) = f(b). If it gives a = b only, then f is a one-one function.

b) Onto function (Surjective function or Surjection): A function $f : A \to B$ is onto function or a surjective function if every element of B is the f-image of some element of A. That implies f(A) = B or range of f is the co-domain of f.

Thus, $f: A \to B$ is onto $\Leftrightarrow f(A) = B$ i.e., range of f = co-domain of f.

ALGORITHM TO CHECK THE SURJECTIVITY OF A FUNCTION

STEP1- Take an element $b \in B$.

STEP2- Put f(x) = b.

STEP3- Solve the equation f(x) = b for x and obtain x in terms of b. Let x = g(b).

- **STEP4-** If for all values of $b \in B$, the values of x obtained from x = g(b) are in A, then f is onto. If there are some $b \in B$ for which values of x, given by x = g(b), is not in A. Then f is not onto.
 - c) One-one onto function (Bijective function or Bijection): A function $f: A \to B$ is said to be one-one onto or bijective if it is both one-one and onto i.e., if the distinct elements of A have distinct images in B and each element of B is the image of some element of A.
- Also note that a bijective function is also called a one-to-one function or one-to-one correspondence.
- \bullet If $f: A \to B$ is a function such that,

i) f is one-one
$$\Rightarrow n(A) \le n(B)$$
.

$$ii)$$
 f is onto $\Rightarrow n(B) \le n(A)$.

- iii) f is one-one onto $\Rightarrow n(A) = n(B)$.
- For an ordinary finite set A, a one-one function $f: A \to A$ is necessarily onto and an onto function $f: A \to A$ is necessarily one-one for every finite set A.
 - **d)** Identity Function: The function $I_A: A \to A$; $I_A(x) = x \forall x \in A$ is called an identity function on A.

<u>NOTE</u> Domain $(I_A) = A$ and Range $(I_A) = A$.

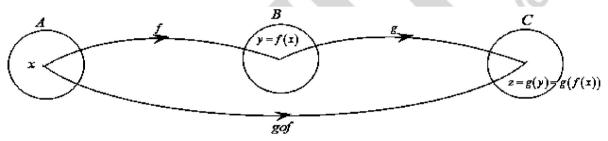
e) Equal Functions: Two function f and g having the same domain D are said to be equal if f(x) = g(x) for all $x \in D$.

09. COMPOSITION OF FUNCTIONS

Let $f: A \to B$ and $g: B \to C$ be any two functions. Then f maps an element $x \in A$ to an element $f(x) = y \in B$; and this y is mapped by g to an element $z \in C$. Thus, z = g(y) = g(f(x)). Therefore, we have a rule which associates with each $x \in A$, a unique element z = g(f(x)) of C. This rule is therefore a mapping from A to C. We denote this mapping by $g \circ f$ (read as $g \circ f$) and call it the 'composite mapping of f and g'.

Definition: If $f: A \to B$ and $g: B \to C$ be any two mappings (functions), then the composite mapping gof of f and g is defined by gof: $A \to C$ such that (gof)(x) = g(f(x)) for all $x \in A$.

- The composite of two functions is also called the **resultant of two functions** or **the function of a function**.
- Note that for the composite function *gof* to exist, it is essential that range of *f* must be a subset of the domain of *g*.
- Observe that the order of events occur from the right to left i.e., *gof* reads composite of *f* and *g* and it means that we have to first apply *f* and then, follow it up with *g*.
- Dom.(gof) = Dom.(f) and Co-dom.(gof) = Co-dom.(g).
- Remember that gof is well defined only if Co-dom.(f) = Dom.(g).
- If gof is defined then, it is not necessary that fog is also defined.
- If gof is one-one then f is also one-one function. Similarly, if gof is onto then g is onto function.



10. INVERSE OF A FUNCTION

Let $f: A \to B$ be a bijection. Then a function $g: B \to A$ which associates each element $y \in B$ to a unique element $x \in A$ such that f(x) = y is called the inverse of f i.e., $f(x) = y \Leftrightarrow g(y) = x$. The inverse of f is generally denoted by f^{-1} .

Thus, if $f: A \to B$ is a bijection, then a function $f^{-1}: B \to A$ is such that $f(x) = y \Leftrightarrow f^{-1}(y) = x$.

ALGORITHM TO FIND THE INVERSE OF A FUNCTION

STEP1- Put f(x) = y where $y \in B$ and $x \in A$.

STEP2- Solve f(x) = y to obtain x in terms of y.

STEP3- Replace x by $f^{-1}(y)$ in the relation obtained in STEP2.

STEP4- In order to get the required inverse of f i.e. $f^{-1}(x)$, replace y by x in the expression obtained in STEP3 i.e. in the expression $f^{-1}(y)$.

EXERCISE FOR PRACTICE

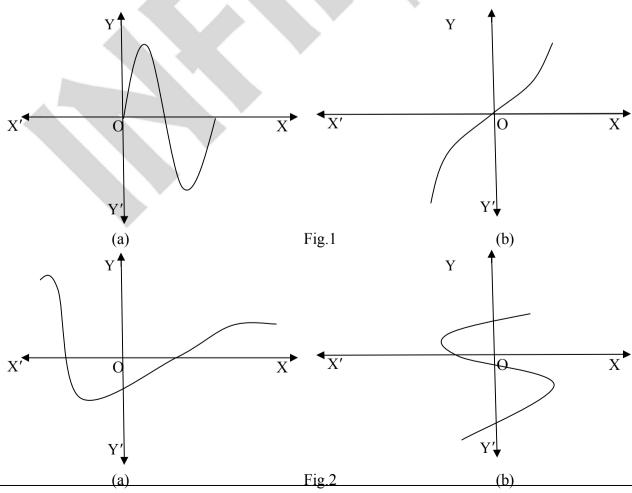
- **Q01.** Check whether $f: \mathbb{R} \to \mathbb{R}$ given as $f(x) = x^3 + 2$ for all $x \in \mathbb{R}$ is one- one or not.
- **Q02.** Discuss the surjectivity of $f: Z \to Z$ given as $f(x) = 3x + 2 \quad \forall x \in Z$.
- **Q03.** Prove that $f: Q \to Q$ given by $f(x) = 2x 3 \ \forall x \in Q$ is a bijection.
- **Q04.** Show that $f: \mathbb{N} \to \mathbb{N}$ given by f(x) = 2x is one- one but not onto.
- **Q05.** Show that $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is neither one- one nor onto.

- **Q06.** For the function $f: R \to R$ given by f(x) = 2x, prove that the function f is one- one and onto both. Is it a bijection?
- **Q07.** Show that $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b where $a, b \in \mathbb{R}$, $a \ne 0$ is a bijection.
- **Q08.** Show that $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = 5x^3 + 4$ is bijective.
- **Q09.** Let $A = R \{2\}$, $B = R \{1\}$. If $f : A \to B$ is a mapping defined by $f(x) = \frac{x-1}{x-2}$ then, show that f is bijection.
- **Q10.** If $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^2$ and $g: \mathbb{R} \to \mathbb{R}$ be another function defined by g(x) = 2x + 1 then, find $f \circ g$ and $g \circ f$. Also deduce that $f \circ g \neq g \circ f$.
- **Q11.** Find fog and gof if $f: R \to R$ and $g: R \to R$ are given by f(x) = |x| and g(x) = |5x 2|.
- Q12. If $f: R \to R$; $f(x) = \sin x$ and $g: R \to R$; $g(x) = x^2$, find gof and fog.
- Q13. a) If $f: R \to R$ is defined by $f(x) = x^2 3x + 2$, find f(f(x)). b) If $f: R \to R$ is given by $f(x) = (3 - x^3)^{1/3}$, find f(f(x)).
- Q14. If $f,g: \mathbb{R} \to \mathbb{R}$ are defined respectively by $f(x) = x^2 + 3x + 1$, g(x) = 2x 3, then find: a) $f \circ g$ b) $g \circ f$ c) $f \circ f$ d) $g \circ g$.
- Q15. Let $f, g: \mathbb{R} \to \mathbb{R}$ be two functions such that $f \circ g(x) = \sin x^2$ and $g \circ f(x) = \sin^2 x$. Find the functions f(x) and g(x).
- **Q16.** a) If $f, g : \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = x^2 + 1$ and $g(x) = \sin x$ then, find $f \circ g$ and $g \circ f$. b) If the mapping f and g are given by $f = \{(1,2),(3,5),(4,1)\}$ and $g = \{(2,3),(5,1),(1,3)\}$, find $f \circ g$.
- Q17. If $f(x) = e^x$ and $g(x) = \log_e x$, x > 0 then, find fog and gof. Check whether fog = gof?
- Q18. If $f(x) = \sqrt{x}$, $x \ge 0$ and $g(x) = x^2 1$ are two real functions then, find fog and gof. Is $f \circ g = g \circ f$?
- Q19. Show that the function $f: \mathbb{N} \to \mathbb{N}$ given by f(1) = f(2) = 1 and f(x) = x 1 for all x > 2 is onto but not one-one.
- **Q20.** a) Show that $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is both one- one and onto.
 - **b)** Show that $f: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ given by $f(n) = \begin{cases} n+1, & \text{if } n \text{ is even} \\ n-1, & \text{if } n \text{ is odd} \end{cases}$ is bijection. Also show that $f^{-1} = f$.
 - c) Let $f: W \to W$, be defined as f(x) = x 1, if x is odd and f(x) = x + 1, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
- **Q21.** a) Show that an onto function $f:\{1,2,3\} \rightarrow \{1,2,3\}$ is always one-one.
 - **b)** Show that a one-one function $f:\{1,2,3\} \rightarrow \{1,2,3\}$ must be onto.
- Q22. Show that the signum function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \end{cases}$ is neither one-one nor onto.
- **Q23.** Let $A = R \{3\}$ and $B = R \{1\}$, consider the function $f : A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Is f one-one and onto? Give reasons.
- **Q24.** Show that if $f: R \left\{ \frac{7}{5} \right\} \to R \left\{ \frac{3}{5} \right\}$ is defined by $f(x) = \frac{3x + 4}{5x 7} \& g: R \left\{ \frac{3}{5} \right\} \to R \left\{ \frac{7}{5} \right\}$

is defined by
$$g(x) = \frac{7x+4}{5x-3}$$
 then, $f \circ g = I_A$ & $g \circ f = I_B$, where $A = R - \left\{\frac{3}{5}\right\}$, $B = R - \left\{\frac{7}{5}\right\}$; $I_A(x) = x \ \forall x \in A$, $I_B(x) = x \ \forall x \in B$ are called the **identity functions** on the sets A and B

- respectively. **Q25.** Show that if $f: A \to B$ and $g: B \to C$ are one-one then, $g \circ f: A \to C$ is also one-one.
- **Q26.** Show that if $f: A \to B$ and $g: B \to C$ are onto then, $g \circ f: A \to C$ is also onto.
- **Q27.** Let $f: \{2,3,4,5\} \rightarrow \{3,4,5,9\}$ and $g: \{3,4,5,9\} \rightarrow \{7,11,15\}$ be the functions which are defined as f(2) = 3, f(3) = 4, f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find $g \circ f$.
- **Q28.** Find gof and fog if $f: R \to R$ and $g: R \to R$ are given by $f(x) = \cos x$ and $g(x) = 3x^2$. Show that gof and fog are not the same.
- **Q29.** Let $f: \mathbb{N} \to \mathbb{Y}$ be a function defined as f(x) = 4x + 3 where, $Y = \{y \in \mathbb{N} : y = 4x + 3 \text{ for some } x \in \mathbb{N}\}$. Show that f is invertible. Find the inverse of f.
- **Q30.** Let $Y = \{n^2 : n \in N\} \subset N$. Consider $f : N \to Y$ as $f(n) = n^2$. Show that f is invertible and if the inverse exists, find it.
- Q31. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$ where, S is the range of f, is invertible. Find the inverse of f.
- Q32. Consider $f: \mathbb{N} \to \mathbb{N}$, $g: \mathbb{N} \to \mathbb{N}$ and $h: \mathbb{N} \to \mathbb{R}$ defined as f(x) = 2x, g(y) = 3y + 4 and $h(z) = \sin z$ for all $x, y, z \in \mathbb{N}$. Show that ho(gof) = (hog)of.
- Q33. If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, show that $f \circ f(x) = x$ for all $x \neq \frac{2}{3}$. Write the expression for f^{-1} .
- Q34. Consider $f: \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible such that $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$.
- Q35. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$. Is f a one- one function?
- Q36. Given f(x) = [x] and g(x) = |x|, find the followings: a)(gof)(5/3) - (fog)(5/3) b)(gof)(-5/3) - (fog)(-5/3) c)(f + 2g)(-1).
- Q37. If $f(x) = \frac{1}{2x+1}$, $x \neq -\frac{1}{2}$ then, show that $f(f(x)) = \frac{2x+1}{2x+3}$, $x \neq -\frac{1}{2}$, $-\frac{3}{2}$.
- **Q38.** If $f: \mathbb{R} \to \mathbb{R}$ is a bijection given by $f(x) = x^3 + 3$ then, find $f^{-1}(x)$.
- Q39. Check whether $f: R \{-1\} \to R \{1\}$ defined by $f(x) = \frac{x}{x+1}$ is invertible. If it is invertible then, find f^{-1} .
- **Q40.** If $A = \{0,1,2,3\}$, $B = \{7,9,11,13\}$ and a rule f from A to B is defined by $f(x) = 2x + 7 \ \forall x \in A$, then prove that f is one-one and onto.
- **Q41.** Let $A = \{1, 2, 3\}, B = \{2, 4, 6\}$. If $f : A \rightarrow B$ is a function defined as f(1) = 2, f(2) = 4, f(3) = 6. Write down f^{-1} as a set of ordered pairs.
- **Q42.** Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b for all $x \in \mathbb{R}$. Find the constants a and b such that $f \circ f = I_{\mathbb{R}}$.
- **Q43.** Find inverse of $f: R_0 \to R_0$ defined as f(x) = 1/x for all $x \in R_0 = R \{0\}$, if it exists.
- **Q44.** Let $A = \{1,2,3\}, B = \{4,5,6,7\}$ and let $f = \{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is a one-one function.

- **Q45.** Let $f = \{(1,2), (2,3), (4,5)\}$, $g = \{(2,3), (3,5), (5,2)\}$. Find fog and gof whichever is possible.
- **Q46.** If the function $f: \mathbb{R} \to (0,2)$ defined by $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} + 1$ is invertible then, find $f^{-1}(x)$.
- Q47. Consider a function $f:[0,\pi/2] \to \mathbb{R}$ given by $f(x) = \sin x$ and $g:[0,\pi/2] \to \mathbb{R}$ given by $g(x) = \cos x$. Show that f and g are one-one, but f+g is not one- one.
- **Q48.** If $f(x) = x^2 + 1$ and g(x) = 1/(x-1) then, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- **Q49.** Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \cos(5x + 2)$. Is f invertible? Justify your answer.
- **Q50.** Find the number of all one-one functions from set $A = \{1, 2, 3\}$ to itself.
- **Q51.** a) If X and Y are two sets having 2 and 3 elements respectively then, find the number of functions from X to Y.
 - **b)** If $A = \{1, 2, 3\}$ and $B = \{a, b\}$, write the total number of function from A to B.
 - c) If $A = \{a, b, c\}$ and $B = \{-2, -1, 0, 1, 2\}$, write the total number of one-one functions defined from A to B.
 - d) Write the total number of one-one functions from $\{1, 2, 3, 4\}$ to $\{a, b, c\}$.
 - e) Find the number of all onto functions from the set $\{1, 2, 3, ..., n\}$ to itself.
- **Q52.** What is the range of the function $f(x) = \frac{|x-1|}{(x-1)}$?
- **Q53.** (a) If the function $f:[1,\infty) \to [1,\infty)$ defined by $f(x) = 2^{x(x-1)}$ is invertible then, find $f^{-1}(x)$.
 - **(b)** If the function $f: \mathbb{R} \to (-1,1)$ defined by $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$ is invertible then, find $f^{-1}(x)$. **Q54.** Find $f^{-1}(x)$, if $f(x) = [4 (x 7)^3]^{1/4}$.
- **Q55.** Which one graph of the Fig.2 represents a one-one function?
- **Q56.** Which one graph of the Fig.1 represents a function?



Q57. Let
$$f: N \to N$$
 be defined as $f(n) = \begin{cases} \frac{n+1}{2}, & \text{when } n \text{ is odd} \\ \frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$ for all $n \in N$.

State whether the function f is bijective. Justify your answer.

- **Q58.** If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ be given by $g(x) = \frac{x}{x-1}$, $x \ne 1$, find $f \circ g$ and $g \circ f$ and hence find $f \circ g$ (2) and $g \circ f$ (-3).
- **Q59.** If $f, g : R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| x, for all $x \in R$. Then find the value of $f \circ g$ and $g \circ f$.
- **Q60.** Consider $f: R_+ \to [-9, \infty)$ given by $f(x) = 5x^2 + 6x 9$. Prove that f is invertible with $f^{-1}(y) = \frac{\sqrt{54 + 5y} 3}{5}$.
- **Q61.** Prove that the function $f: N \to N$, defined by $f(x) = x^2 + x + 1$ is one-one but not onto.
- **Q62.** Consider $f: \mathbb{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where \mathbb{R}_+ is the set of all non-negative real numbers.

TEN YEARS OF RELATIONS AND FUNCTIONS

- ♦ Note that **BINARY OPERATION** has been Deleted for session 2019-2020.
- Note that the Questions marked with (#) have been deleted for session 2019-20.

VERY SHORT ANSWER TYPE QUESTIONS - I

■ 1 Mark

Q01. Write the smallest equivalence relation R on set $A = \{1, 2, 3\}$.

[SP 2014

- **Q02.** If $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{2x-7}{4}$ is an invertible function, write $f^{-1}(x)$. [Compt.'12]
- #Q03. The binary operation *: $R \times R \rightarrow R$ is defined as a*b = 2a + b. Find (2*3)*4. [2012 AI
- **#Q04.** If the binary operation * on the set Z of integers is defined by a * b = a + b 5, then write the identity element for the operation * in Z. [2012 F
- #Q05. Let * be a binary operation on N given by $a*b = LCM(a,b) \forall a, b \in N$. Find 5*7. [2012 D
- **Q06.** Find $f \circ g(x)$, if f(x) = |x| and g(x) = |5x 2|.

[2011 F

Q07. If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x + 2, define f[f(x)].

[2011 F, '10 C

- Mathematics Notes By Deepika Ma'm (M. 8743011101) Write fog, if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by $f(x) = 8x^3$ and $g(x) = x^{1/3}$. O08. [2011 F
- O09. Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether *f* is one-one or not? [2011 AI
- **O10.** State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1,2), (2,1)\}$ not to be transitive. [2011 D
- What is the range of the function $f(x) = \frac{|x-1|}{(x-1)}$? Q11. [2010 D
- **Q12.** If $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = (3 x^3)^{\frac{1}{3}}$, determine f(f(x)). [2010 AI
- Q13. If f is an invertible function, defined as $f(x) = \frac{3x-4}{5}$, write $f^{-1}(x)$. [2010 F
- #Q14. If the binary operation * defined on Q, is defined as a * b = 2a + b ab for all a, $b \in Q$, find the value of 3*4.
- #Q15. Let * be a binary operation on N given by a * b = HCF of a and b where a, $b \in N$. Write the value [2009 AI
- #Q16. If binary operation * on the set of integers Z, is defined by a * $b = a + 3b^2$, then find the value of [2009 D
- **Q17.** If f(x) = x + 7 and g(x) = x 7, $x \in \mathbb{R}$, find $f \circ g(7)$. [2008 D
- #Q18. Let *: $R \times R \to R$ given by (a, b) $\to a + 4b^2$ is a binary operation. Compute (-5) * (2*0). [Compt. 2014 AI
- Q19. Let R be the equivalence relation in the set $A = \{0, 1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : 2 \text{ divides }\}$ (a - b). Write the equivalence class [0]. [Compt. 2014 D
- **Q20.** Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 2), (3, 5), (4, 1)\}$ $\{(1, 3), (2, 3), (5, 1)\}$. Write down gof. [Compt. 2014 AI
- State the reason why the relation $R = \{(a,b): a \le b^2\}$ on the set **R** of real numbers is not **O21.** reflexive.
- #Q22. If * is a binary operation on the set R of real numbers defined by a * b = a + b 2, then find the identity element for the binary operation *. **ISP 2017**
- Q23. Let $f: R \to R$ and $g: R \to R$ be defined by $f(x) = 3x^2 5$, $g(x) = \frac{x}{x^2 + 1}$. Find gof. [SP '17]
- **Q24.** Let $A = \{1, 2, 3, 4\}$. Let R be the equivalence relation on $A \times A$ defined by (a, b) R (c, d) iff a + d = b + c. Find the equivalence class [(1, 3)]. **ISP 2018**
- #Q25. Determine whether the binary operation * on the set N of natural numbers defined by $a*b = 2^{ab}$ is associative or not. **[SP 2018**]
- #Q26. If a * b denotes the larger of 'a' and 'b' and if a o b = (a*b)+3, then write the value of (5) o (10), where * and o are binary operations. [Delhi 2018

VERY SHORT ANSWER TYPE QUESTIONS – II

2 Marks

How many equivalence relations on the set $\{1, 2, 3\}$ containing (1, 2) and (2, 1) are there in all? Q01. Justify your answer. **ISP 2017**

SHORT ANSWER TYPE QUESTIONS

4 Marks

#Q01. Let S be the set of all rational numbers except 1 and * be defined on S by a*b = a + b - ab, $\forall a, b \in S$. Prove that:

- a) * is a binary on S.
- b) * is commutative as well as associative. Also find the identity element of *. [SP 2014
- Q02. Prove that the function $f: N \to N$, defined by $f(x) = x^2 + x + 1$ is one-one function but not onto. [SP 2013
- **Q03.** Let $A = R \{2\}$ and $B = R \{1\}$. If $f : A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that f is one-one and onto. Hence find f^{-1} .
- Q04. Let $A = R \{2/3\}$ and $B = R \{2/3\}$. If $f: A \to B$ and $f(x) = \frac{2x-1}{3x-2}$, then prove that the function f is one-one and onto. [Compt. 2013]
- Q05. Show that the function f in $A = R \left\{ \frac{2}{3} \right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto. Hence find f^{-1} .
- **Q06.** If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, show that $f\circ f(x) = x$ for all $x \neq \frac{2}{3}$. What is the inverse of f? ['12 F
- **Q07.** Let $f: \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = \begin{cases} \frac{n+1}{2}, & \text{when } n \text{ is odd} \\ \frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$ for all $n \in \mathbb{N}$.

State whether the function f is bijective. Justify your answer. [Compt. 2012, 09 AI

- **Q08.** Show that $f: \mathbb{N} \to \mathbb{N}$, given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is both one-one and onto. ['12 AI
- #Q09. Consider the binary operations *: $R \times R \rightarrow R$ and o: $R \times R \rightarrow R$ defined as a * b = |a b| and $a \circ b = a$ for all $a, b \in R$. Show that '*' is commutative but not associative, 'o' is associative but not commutative. [2012 AI
- **Q10.** Let $A = \mathbb{R} \{3\}$ and $B = \mathbb{R} \{1\}$. Consider the function $f : A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and hence find f^{-1} .
- OR Let $A = R \{3\}$, $B = R \{1\}$. Let $f : A \to B$ be defined by $f(x) = \left(\frac{x-2}{x-3}\right)$, for all $x \in A$. Then show that f is bijective. Hence find $f^{-1}(x)$.
- Q11. Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $g \circ f = f \circ g = I_R$. [2011 AI
- #Q12. A binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ is defined as:

$$a * b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element 'a' of the set is invertible with '6-a', being the inverse of 'a'. [2011 AI

Q13. Consider $f: R_+ \to [4,\infty]$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real nos. [2011 AI

- #Q14. Is the binary operation defined on set N, given by a * b = $\frac{a+b}{2}$ for all a, b \in N, commutative? Is the above binary operation associative? [2011, 08 D]
- #Q15. Consider the binary operation * on the set $\{1, 2, 3, 4, 5\}$ defined by $a * b = \min.\{a, b\}$. Write the operation table of the operation *. [2011 D
- **Q16.** Show that the function $f: R \to R$ given by f(x) = ax + b, where $a, b \in R$, $a \ne 0$, is a bijection. [Compt. 2010]
- Q17. Consider $f: \mathbb{R}_+ \to [-5, \infty]$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible and $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$.
- OR Consider $f: \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$. Hence find (i) $f^{-1}(10)$ (ii) y if $f^{-1}(y) = 4/3$. [2017 D for 6 Marks
- #Q18. Let $A = N \times N$ and * be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Also, find the identity element for * on A, if any. ['10 F
- Q19. Show that the relation R on the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : |a b| \text{ is multiple of 4}\}$ is an equivalence relation. [2010 AI
- **Q20.** Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a,b): a,b \in Z \text{ and } (a-b) \text{ is divisible by 5}\}$. Prove that R is an equivalence relation. [2010 D
- #Q21. Let * be a binary operation on Q defined by $a * b = \frac{3ab}{5}$. Show that the operation * is commutative as well as associative. Also find its identity element, if it exists. [2010 D
- Q22. Show that the relation S in the set R of real numbers, defined as $S = \{(a,b) : a,b \in R \text{ and } a \le b^3\}$ is neither reflexive, nor symmetric nor transitive. [2010 D
- Q23. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a b| \text{ is even}\}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

 [2009 D, 2015 AI for 6 Marks
- Q24. Show that the relation R on the set R of real numbers, defined as $R = \{(a,b): a \le b^2\}$ is neither reflexive, nor symmetric nor transitive. [2009 F
- Q25. Let T be the set of all triangles in a plane with R as relation in T given by $R = \{(T_1, T_2) : T_1 \cong T_2\}$. Show that R is an equivalence relation. [2008 AI
- **Q26.** Let $f,g:R\to R$ be two functions defined as f(x)=|x|+x and g(x)=|x|-x, for all $x\in R$. Then find $f \circ g$ and $g \circ f$.
- #Q27. Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b ab, for all $a, b \in S$.

Prove that

- (i) * is a binary operation on S.
- (ii) * is commutative as well as associative.

[Compt. 2014 D

Q28. Let R be a relation defined on the set of natural numbers N as follows: $R = \{(x, y) : x \in \mathbb{N}, y \in \mathbb{N} \text{ and } 2x + y = 24 \}$. Find the domain and range of the relation R. Also, find if R is an equivalence relation or not. **[Compt. 2014 D**]

Q29. Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2, 5)]. [2014 Delhi

LONG ANSWER TYPE QUESTIONS

■ 6 Marks

- Q01. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a,b)R(c,d) if ad(b+c)=bc(a+d). Show that R is an equivalence relation. [2015 Delhi
- **Q02.** Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where S is the range of f, is invertible. Also find the inverse of f. [2015 F]
- Q03. Determine whether the relation R defined on the set R of all real numbers as $R = \{(a,b): a,b \in R \text{ and } a-b+\sqrt{3} \in S \text{, where S is the set of all irrational numbers} \}$, is reflexive, symmetric and transitive. [2015 Al
- #Q04. Let $A = R \times R$ and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Prove that * is commutative and associative. Find the identity element for * on A. Also write the inverse element of the element (3, -5) in A. [2015 AI]
- Q05. Consider $f: R_+ \to [-9, \infty)$ given by $f(x) = 5x^2 + 6x 9$. Prove that f is invertible with $f^{-1}(y) = \frac{\sqrt{54 + 5y} 3}{5}$.
- #Q06. A binary operation * is defined on the set $X = R \{-1\}$ by x * y = x + y + xy, $\forall x, y \in X$. Check whether * is commutative and associative. Find the identity element and also find the inverse of each element of X. [2015 AI
- **#Q07.** On the set $\{0, 1, 2, 3, 4, 5, 6\}$, a binary operation * is defined as : $a*b = \begin{cases} a+b, & \text{if } a+b < 7 \\ a+b-7, & \text{if } a+b \geq 7 \end{cases}$.

Write the operation table of the operation * and prove that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with '7 – a' being the inverse of 'a'. [2015 AI

- #Q08. Let $A = Q \times Q$, where Q is the set of all rational numbers, and * be a binary operation on A defined by (a,b)*(c,d) = (ac,b+ad) for $(a,b),(c,d) \in A$. Then find
 - (i) The identity element of * in A.
 - (ii) Invertible elements of A, and hence write the inverse of elements (5, 3) and $\left(\frac{1}{2}, 4\right)$. ['15 AI
- **OR** Let $A = Q \times Q$, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a,b)*(c,d) = (ac,b+ad) for all $(a,b),(c,d) \in A$. Then find
 - (i) the identity element in A.
 - (ii) the invertible element of A.

[2015 AI

Q09. Let $f: W \to W$ be defined as $f(n) = \begin{cases} n-1, & \text{if } n \text{ is odd} \\ n+1, & \text{if } n \text{ is even} \end{cases}$.

Show that f is invertible and find the inverse of f. Here, W is the set of all whole numbers.

[2015 AI

#Q10. Check whether the operation * defined on the set $A = R \times R$ as

$$(a,b)*(c,d) = (a+c, b+d)$$

is a binary operation or not, where R is the set of all real numbers. If it is a binary operation, is it commutative and associative too? Also find the identity element of *. [2015 AI

- **Q11.** Let $A = \{-1,0,1,2\}$, $B = \{-4,-2,0,2\}$ and $f, g: A \to B$ be functions defined by $f(x) = x^2 x$, $x \in A$ and $g(x) = 2 \left| x \frac{1}{2} \right| 1$, $x \in A$. Find gof(x) and hence show that f = g = gof. [2015 AI
- Q12. If the function $f: R \rightarrow R$ be defined by f(x) = 2x 3 and $g: R \rightarrow R$ by $g(x) = x^3 + 5$, then find the value of $(f \circ g)^{-1}(x)$. [2015 AI
- Q13. Let $f: N \to N$ be a function defined as $f(x) = 9x^2 + 6x 5$. Show that $f: N \to S$, where S is the range of f, is invertible. Find the inverse of f and hence find $f^{-1}(43)$ and $f^{-1}(163)$. [2016 D
- Q14. If $f,g:R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| x, $\forall x \in R$. Then find fog and gof. Hence find f(x) = |x| + x and g(x) = |x| x, $\forall x \in R$. Then
- Q15. Let $f: N \to N$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$ is invertible (where S is the range of f). Find the inverse of f and hence find $f^{-1}(31)$ and $f^{-1}(87)$. [2016 AI
- #Q16. Let $A = R \times R$ and * be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Find the identity element for * on A. Also, find the inverse of every element $(a, b) \in A$.
- #Q17. Show that the binary operation * on $A = R \{-1\}$ defined as a * b = a + b + ab for all $a, b \in A$ is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible. [2016 AI
- Q18. Show that the relation R defined by (a,b)R(c,d) ⇒ a+d=b+c on the A×A, where A = {1,2, 3,...,10} is an equivalence relation.
 Hence write the equivalence class [(3, 4)]; a,b, c,d∈A.
 [2016 AI
- Q19. Show that the function $f: R \to \{x \in R: -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function. Hence find $f^{-1}(x)$.
- **Q20.** Let $f:[0,\infty) \to \mathbb{R}$ be a function defined by $f(x) = 9x^2 + 6x 5$. Prove that f is not invertible. Modify, only the codomain of f to make f invertible and then find its inverse. [2017 SP]
- #Q21. Let * be a binary operation defined on $Q \times Q$ by (a, b) * (c, d) = (ac, b + ad), where Q is the set of rational numbers. Determine, whether * is commutative and associative. Find the identity element for * and the invertible elements of $Q \times Q$. [2017 SP, 2017 AI
- Q22. Consider $f: \mathbb{R} \left\{-\frac{4}{3}\right\} \to \mathbb{R} \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is bijective. Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$. [2017 AI
- Q23. Let $f: \mathbb{R} \left\{-\frac{4}{3}\right\} \to \mathbb{R}$ be a function defined as $f(x) = \frac{4x}{3x+4}$. Show that, in $f: \mathbb{R} \left\{-\frac{4}{3}\right\} \to \mathbb{R}$ Range of f, f is one-one and onto. Hence find f^{-1} in Range of $f \to \mathbb{R} \left\{-\frac{4}{3}\right\}$. ['17 C Delhi

- #024. Let $A = \mathbb{R} \times \mathbb{R}$ and * be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Find the identity element for * on A, if any. ['17 C Delhi
- **#Q25.** Determine whether the operation * defined below on Q is binary operation or not : a * b = ab + 1. If yes, check the commutative and associative properties. Check the existence of identity element and the inverse of all elements in Q. **[SP 2017**
- #Q26. Discuss the commutativity and associativity of binary operation '*' defined on

 $A = Q - \{1\}$ by the rule a * b = a - b + ab for all $a, b \in A$. Also find the identity element of * in A and hence find the invertible elements of A. [2017 D

NOTE that * is not binary here. Let's see how! Assume that $a, b \in A = Q - \{1\}$.

If we take a = 0, b = -1 then, $0*(-1) = 0 - (-1) + 0(-1) = 1 \notin A$. That is, $a*b \notin A \forall a, b \in A$.

Hence * is not binary operation.]

- If the function $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x 3 and $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = x^3 + 5$, then find fog and show that fog is invertible. Also find $(fog)^{-1}$, hence find $(fog)^{-1}$ (9). SP 2018
- #Q28. A binary operation * is defined on the set \mathbb{R} of real numbers by

 $a*b = \begin{cases} a, & \text{if } b = 0 \\ |a| + b, & \text{if } b \neq 0 \end{cases}. \text{ If at least one of a and b is 0, then prove that } a*b = b*a.$

Check whether * is commutative. Find the identity element for *, if it exists. **[SP 2018**

- **Q29.** Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that $R = \{(a,b): a,b \in A, |a-b| \text{ is divisible by 4}\}\$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]. [Delhi 2018
- Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in R$ is neither one-one nor Q30. onto. Also, if $g: R \to R$ is defined as g(x) = 2x - 1, find fog (x). [Delhi 2018
- O31. Let R be the relation defined in the set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ by $R = \{(x, y) : x, y \in A, x \text{ and } y \in A, y \in A, x \in A,$ y are either both odd or both even. Show that R is an equivalence relation. Write all the equivalence classes of set A. [For Blind Candidate 2018
- #Q32. Let A be the set of all real numbers except -1 and let * be a binary operation on A defined by a * b = a + b + ab, \forall a, b \in A. Prove that (i) * is commutative and associative, and (ii) number 0 is its identity element. [For Blind Candidate 2018

Chapter 1

SOLUTIONS Of EXERCISE FOR PRACTICE

BASED ON RELATION & ITS TYPES

Q02. $R = \{(2,2),(2,4),(2,6),(2,8),(4,4),(4,8)\}$; Dom. $(R) = \{2,4\}$, Range $(R) = \{2,4,6,8\}$

O11. R is reflexive and transitive but not symmetric.

Q12. R is neither reflexive, symmetric nor transitive.

Q13. R is not an equivalence relation.

Q14. R is neither reflexive, symmetric nor transitive.

O15. R is reflexive and transitive but not symmetric.

O21, {1, 5, 9}

 $O22. (6.8) \in \mathbb{R}$.

Q28. The smallest equivalence relation containing (1, 2) is given by, $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 2), (3, 3), (3, 3), (3, 2), (3, 3$

(2, 1)}. Now, we are left with only four pairs i.e., (2, 3), (3, 2), (1, 3), and (3, 1). If we odd any one pair

[say (2, 3)] to R₁, then for symmetry we must add (3, 2). Also, for transitivity we are required to add (1,3) and (3,1). Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1, 2) is two.

Q29. {1}

O32. One

Q33. $[(2,5)] = \{(1,4), (2,5), (3,6), (4,7), (5,8), (6,9)\}$

Q34. (a) {1, 2, 3}

Q34. (b) {0, 2, 4}

O34. (c) $R = \{(1, 1), (2, 2), (3, 3)\}$ O34. (d) $\{8, 27\}$

Q35. R is reflexive, symmetric and transitive.

BASED ON FUNCTION & ITS TYPES

O01. f is one-one O02. f isn't surjective.

Q10. $(2x+1)^2$, $2x^2+1$ Q11. ||5x-2||, |5|x|-2|

Q11.
$$||5x-2||, |5|x|-2|$$

O12. $\sin^2 x$, $\sin x^2$

Q13.a)
$$x^4 - 6x^3 + 10x^2 - 3x$$
 Q13.b) x

Q14.a)
$$fog : R \to R, (fog)(x) = 4x^2 - 6x +$$

Q14.a)
$$f \circ g : R \to R$$
, $(f \circ g)(x) = 4x^2 - 6x + 1$ b) $g \circ f : R \to R$, $(g \circ f)(x) = 2x^2 + 6x - 1$

Q15.
$$f(x) = \sin x$$
 and, $g(x) = x^2$. Q16.a) $1 + \sin^2 x$, $\sin(x^2 + 1)$

c)
$$f \circ f : R \to R$$
, $(f \circ f)(x) = x^4 + 6x^3 + 14x^2 + 15x + 5$ d) $g \circ g : R \to R$, $(g \circ g)(x) = 4x - 9$

$$(x) = \sin x \text{ and, } g(x) = x$$

Q16.b)
$$fog = \{(2,5), (5,2), (1,5)\}.$$

Q18.
$$\sqrt{x^2-1}$$
, $x-1$

Q20. (c)
$$f^{-1}(x) = \begin{cases} x - 1, & \text{if } x \text{ is odd} \\ x + 1, & \text{if } x \text{ is even} \end{cases}$$

Q23. One-one and onto both.

Q28.
$$3\cos^2 x, \cos 3x^2$$

Q29.
$$f^{-1} = \frac{x-3}{4}$$
.

Q30.
$$f^{-1} = \sqrt{n}$$

Q30.
$$f^{-1} = \sqrt{n}$$
 Q31. $f^{-1}(x) = \frac{\sqrt{x-6}-3}{2}$.

Q33.
$$\frac{4x+3}{6x-4}$$

Q35. not one-one. Q36. (a) 1 (b) 0 (c) 1

Q38.
$$f^{-1}(x) = (x-3)^{1/3}$$

Q39.
$$\frac{x}{1-x}$$

Q38.
$$f^{-1}(x) = (x-3)^{1/3}$$
 Q39. $\frac{x}{1-x}$ Q41. $f^{-1} = \{(2,1), (4,2), (6,3)\}$

Q42.
$$a = 1, b = 0$$
 or $a = -1, b \in \mathbb{R}$. Q43. $f^{-1}(x) = x^{-1}, x \in \mathbb{R}_0$.

Q43.
$$f^{-1}(x) = x^{-1}, x \in \mathbb{R}_0$$
.

Q45. fog is not defined and gof =
$$\{(1,3),(2,5),(4,2)\}$$

Q46.
$$\log \sqrt{\frac{y}{2-y}}$$

Q49. Since
$$f$$
 is not one-one. Therefore, f is not invertible.

Q53. (a)
$$\frac{1+\sqrt{1+4\log_2 x}}{2}$$
 Q53. (b) $\log_{10} \sqrt{\frac{1+x}{1-x}}$ Q54. $7+(4-x^4)^{1/3}$

Q53. (b)
$$\log_{10} \sqrt{\frac{1+x}{1-x}}$$

Q54.
$$7 + (4 - x^4)^{1/3}$$

TEN YEARS ANSWERS

CHAPTER 01

(Very Short Answer I)

Q01.
$$R = \{(1, 1), (2, 2), (3, 3)\}$$

Q02.
$$\frac{(4x+7)}{2}$$

Q06.
$$|5x-2|$$

Q07.
$$9x + 8$$

Q06.
$$|5x-2|$$

Q07.
$$9x + 8$$

- Function f is one-one as no two elements of A has the same f-images in B. **O09.**
- As we know that a relation R in a set A is transitive if $(a,b) \in R$ and $(b,c) \in R$ implies **O10.** $(a,c) \in \mathbb{R} \ \forall a,b,c \in \mathbb{A}$. Here it can be observed that $(1, 2), (2, 1) \in \mathbb{R}$ but $(1, 1) \notin \mathbb{R}$. Hence the relation R in the set $\{1, 2, 3\}$ is not transitive.

Q11.
$$\{-1, 1\}$$
Q12. x Q13. $\frac{5x+4}{3}$ Q14. -2 Q15. Q16. 50 Q17. 7 Q19. $\{0, 2, 4\}$ Q20. $\{(1,3), (3,1), (4,3)\}$

Q13.
$$\frac{5x+4}{3}$$

Q21. As
$$\frac{1}{2} > \left(\frac{1}{2}\right)^2 \Rightarrow \left(\frac{1}{2}, \frac{1}{2}\right) \notin \mathbb{R}$$
. Hence R is not reflexive. **Q22.** $e = 2$

Q22.
$$e = 2$$

Q23.
$$gof(x) = \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$

Q24.
$$\{(1,3), (2,4)\}$$
 Q25. * is not associative.

(Very Short Answer II)

Following equivalence relations can be possible in the given conditions these are, $\{(1,1),(2,2),(3,3),(1,2),(2,1)\}\$ and $\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)\}\$. Clearly, only two equivalence relations are there.

(Short Answer)

Q01. Identity element : 0 **Q03.**
$$f^{-1} = \frac{2y-1}{y-1}$$

Q05. $f^{-1}(x) = \frac{4x+3}{6x-4}$ **Q06.** $f^{-1}(x) = \frac{4x+3}{6x-4}$

Q05.
$$f^{-1}(x) = \frac{4x+3}{6x-4}$$

Q06.
$$f^{-1}(x) = \frac{4x+3}{6x-4}$$

Function f is not one-one, so it is not bijective (as a bijective function is necessarily both one-**O07.** one as well as onto function).

Q10.
$$f^{-1} = \frac{3y-2}{y-1}$$
 OR $f^{-1}(x) = \frac{3x-2}{x-1}$ **Q11.** $\frac{x-7}{10}$

Q11.
$$\frac{x-7}{10}$$

Q15.

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Q17. OR (i)
$$f^{-1}(10) = 1$$
 (ii) $y = 19$

Q18. No identity element exists

Q26. Value of
$$f \circ g = \begin{cases} 0, & \text{if } x \ge 0 \\ -4x, & \text{if } x < 0 \end{cases}$$
 and $g \circ f = 0 \ \forall x \in \mathbb{R}$.

Q28.
$$R = \{(1,22),(2,20),(3,18),(4,16),(5,14),(6,12),(7,10),(8,8),(9,6),(10,4),(11,2)\}$$

Dom.(R) = $\{1,2,3,4,5,6,7,8,9,10,11\}$, Range = $\{2,4,6,8,10,12,14,16,18,20,22\}$

Also as $(1,22) \in R$ but $(22,1) \notin R$: R is not symmetric, so R is not an equivalence relation.

Q29.
$$[(2,5)] = \{(1,4), (2,5), (3,6), (4,7), (5,8), (6,9)\}.$$

(Long Answer)

Q02.
$$f^{-1}(x) = \frac{\sqrt{x-6}-3}{2}$$

Q03. R is reflexive, R isn't symmetric and R isn't transitive as well.

Q04. Identity element: (0, 0) and inverse of (3,-5) is (-3,5)

Q06. * is commutative as well as associative; Identity element : 0, Inverse of an element : $-\frac{x}{1+x}$

Q07.

*	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Q08. (i) Identity element : (1, 0)

(ii) Inverse of
$$(a,b) = \left(\frac{1}{a}, -\frac{b}{a}\right)$$
, Inverse of elements $(5,3)$ is $\left(\frac{1}{5}, -\frac{3}{5}\right)$ and of $\left(\frac{1}{2}, 4\right)$ is $\left(2, -8\right)$

Q12. $(\text{fog})^{-1}(x) = \sqrt[3]{\frac{x-7}{2}}$

Q09.
$$f^{-1}(n) = \begin{cases} n-1, & \text{if n is odd} \\ n+1, & \text{if n is even} \end{cases}$$
 i.e., $f^{-1}(n) = f(n)$

Q10. * is a binary operation, * is commutative as well as associative, identity element is (0, 0)

Q11. gof = {
$$(-1,2),(0,0),(1,0),(2,2)$$
}

Q13.
$$f^{-1}(x) = \frac{\sqrt{x+6}-1}{3}$$
, $f^{-1}(43) = 2$ and $f^{-1}(163) = 4$.

Q14.
$$fog(x) = ||x| - x| + |x| - x$$
, $gof(x) = ||x| + x| - |x| - x$, $fog(-3) = 12$, $fog(5) = 0$, $gof(-2) = 0$.

Q15.
$$f^{-1}(x) = \frac{\sqrt{x-6}-3}{2}$$
, $f^{-1}(31) = 1$, $f^{-1}(87) = 3$.

Q16. Identity element is (0, 0), inverse of (a,b) is (-a,-b).

Q17. Identity element:
$$e = 0$$
, Inverse of an element in A is $-\frac{a}{1+a}$.

Q18.
$$[(3,4)] = \{(1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10)\}.$$

Q19.
$$f^{-1}(x) = \begin{cases} \frac{x}{1+x}, & \text{if } x < 0 \\ \frac{x}{1-x}, & \text{if } x > 0 \end{cases}$$

Q20. Modified codomain of f is
$$[-5,\infty)$$
, $f^{-1}:[-5,\infty) \to [0,\infty)$, $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$

Q21. Binary operation * is non commutative but it is associative. Identity element for binary operation * is (1,0) and inverse of an element (a,b) is $\left(\frac{1}{a}, -\frac{b}{a}\right)$.

Q22.
$$f^{-1} = \frac{3-4y}{3y-4}$$
, $f^{-1}(0) = -\frac{3}{4}$, $x = \frac{11}{10}$ **Q23.** $f^{-1}(x) = \frac{4x}{4-3x}$

- **Q24.** Identity element is (0, 0).
- **Q25.** * is binary operation on Q. Also * is commutative but it's not associative. For *, the Identity element doesn't exist. Inverse of an element: Since there is no identity element hence, there is no inverse.

Q27.
$$2x^3 + 7$$
, $\sqrt[3]{\frac{x-7}{2}}$, 1 **Q28.** * is not commutative, identity element = 0.

Q29.
$$\{1, 5, 9\}, [2] = \{2, 6, 10\}.$$
 Q30. $\frac{2x-1}{2(2x^2-2x+1)}.$

Q31.
$$[1] = [3] = [5] = [7] = [9] = \{1, 3, 5, 7, 9\}, [2] = [4] = [6] = [8] = \{2, 4, 6, 8\}.$$