CHAPTER 10

VECTORS

MULTIPLE CHOICE TYPE QUESTIONS

1	A vector equally inclined to axes is
	(a) $\hat{i} + \hat{j} + \hat{k}$ (b) $\hat{i} - \hat{j} + \hat{k}$
	(c) $\hat{i} - \hat{j} - \hat{k}$ (d) $-\hat{i} + \hat{j} - \hat{k}$
2	If $ \vec{a} = 4$ and $-3 \le \lambda \le 2$ then the range of $ \lambda \vec{a} $ is
	(a) [0, 8] (b) [-12, 8] (c) [0, 12] (d) [8, 12]
3	For what value of 'a' the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear?
	(a) 2 (b) - 4 (c) 4 (d) - 2
4	ABCDEF is a regular hexagon, If
	AB = a, $BC = b$ and $CD = c$ then AE is
	(a) $\vec{a} + b$ (b) $\vec{a} + b + \vec{c}$ (c) $b + \vec{c}$ (d) $2\vec{a} + b + \vec{c}$
5	The value of α for which the vectors $2\hat{i} + \hat{j} + 3\hat{k}$ and $\hat{i} - \alpha\hat{j} + 4\hat{k}$ are orthogonal is
	(a) 12 (b) - 14 (c) 14 (d) - 12
6	The angle between the vectors $\hat{i} - \hat{j} + k$ and $\hat{i} + \hat{j} - k$ is
	(a) 0 (b) $\frac{\pi}{2}$ (c) $\cos^{-1}(\frac{1}{3})$ (d) $\cos^{-1}(-\frac{1}{3})$
7	If \vec{p} is a unit vector and $(\vec{x} - \vec{p}) \cdot (\vec{x} + \vec{p}) = 80$, then $ \vec{x} $ is
	(a) 9 (b) \pm 9(c) - 9 (d) $4\sqrt{5}$
8	If the vectors $2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and $3\hat{\imath} + \beta\hat{\jmath} + 5\hat{k}$ are coplanar then the value of β is
	(a) 2 (b) - 4 (c) 4 (d) - 2
9	The area of the parallelogram having diagonals $3\hat{\imath} + \hat{j} - 2\hat{k}$ and $\hat{\imath} - 3\hat{j} + 4\hat{k}$ is
	(a) 12 $\sqrt{5}$ (b) 364 (c) $10\sqrt{3}$ (d) $5\sqrt{3}$
10	The unit vector perpendicular to both the
	vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$.
	(a) $\hat{\imath} + \hat{\jmath}(b) - \frac{1}{\sqrt{2}}\hat{\imath} + \frac{1}{\sqrt{2}}\hat{\jmath}(c)\frac{1}{\sqrt{2}}\hat{\imath} + \frac{1}{\sqrt{2}}\hat{\jmath}$ (d) $\frac{1}{\sqrt{2}}\hat{\imath} - \frac{1}{\sqrt{2}}\hat{\jmath}$
11	The value of $(\hat{\imath} \times \hat{\jmath}).\hat{k} + \hat{\imath}.\hat{\jmath}$ is
	(a) 1 (b) - 1 (c) 0 (d) - 2
12	The value of $(\hat{\imath} \times \hat{\jmath}).\hat{k} + (\hat{\jmath} \times \hat{k}).\hat{\imath}$ is
	(a) 2 (b) - 1 (c) 1 (d) - 2
13	If the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} + p\hat{j} + 3\hat{k}$ are parallel then the value of p is
	(a) $3/2$ (b) $-3/2$ (c) $2/3$ (d) $-2/3$
14	If $ \vec{a} \times \vec{b} = \sqrt{3}$, $ \vec{a} = 1$ and $ \vec{b} = 2$ then the angle between \vec{a} and \vec{b} is
	(a) 30 ⁰ (b) 60 ⁰ (c) 45 ⁰ (d) 90 ⁰

15	If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them then $\frac{1}{2}(\vec{a}-\vec{b})^2$ is
	(a) $1 + \cos\theta$ (b) $1 - \sin\theta$ (c) $1 + \sin\theta$ (d) $1 - \cos\theta$
16	A vector in the direction of $\vec{a} = \hat{i} - 2\hat{j}$ whose magnitude is 7
	(a) $\frac{7}{\sqrt{5}}\hat{i} - \frac{14}{\sqrt{5}}\hat{j}$ (b) $\frac{7}{\sqrt{5}}\hat{i} + \frac{14}{\sqrt{5}}\hat{j}$ (c) $\frac{7}{\sqrt{5}}(\hat{i} - \hat{j})$ (d) $\frac{7}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{j}$
17	The position vector of a point which divides the join of points with position vectors $\vec{a} + \vec{b}$ and $2\vec{a}$.
	$ec{m{b}}$ in the ratio 1:2 internally is
	(a) $\frac{(3\vec{a}+2\vec{b})}{3}$ (b) \vec{a} (c) $\frac{(5\vec{a}-\vec{b})}{3}$ (d) $\frac{(4\vec{a}+\vec{b})}{3}$
18	A vector in the direction of vector \hat{i} - 2 \hat{j} + 2 \hat{k} that has magnitude 15 is
	(a) $\hat{i} - 2\hat{j} + 2\hat{k}$ (b) 5 ($\hat{i} - 2\hat{j} + 2\hat{k}$) (c) 5 $\hat{i} - 2\hat{j} + 2\hat{k}$ (d) $\hat{i} - 5\hat{j} + 2\hat{k}$
19	If $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} \neq 0$, then
	(a) $\vec{b} = \vec{c}$ (b) $\vec{b} = \vec{0}(C) \vec{b} + \vec{c} = \vec{0}$ (d) $\vec{c} = \vec{0}$
20	If \vec{a} lies in the plane of vectors \vec{b} and \vec{c} , then which of the following is correct?
	(a) $[\vec{a}\vec{b}\vec{c}] = 0$ (b) $[\vec{a}\vec{b}\vec{c}] = 1$ (C) $[\vec{a}\vec{b}\vec{c}] = 3$ (d) $[\vec{b}\vec{c}\vec{a}] = 1$
21	The vector $\cos X \cos Y \hat{\imath} + \cos X \sin Y \hat{\jmath} + \sin X \hat{k}$ is a
	(a) Null vector (b) Unit vector(c) Constant vector (d)None of these
22	ABCD is a parallelogram with AC and BD as diagonals. Then, $\overrightarrow{AC} - \overrightarrow{BD} =$
	(a) $4 \overrightarrow{\mathbf{AB}}$ (b) $3 \overrightarrow{\mathbf{AB}}$ (c) $2 \overrightarrow{\mathbf{AB}}$ (d) $\overrightarrow{\mathbf{AB}}$
23	If $[2\vec{a} + 4\vec{b}\vec{c}\vec{d}] = m[\vec{a}\vec{c}\vec{d}] + n[\vec{b}\vec{c}\vec{d}]$, then m + n =
	(a) 8(b) – 6 (c) 10 (d) 6
24	If the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$, $\hat{i} + 2\hat{j} - \hat{k}$ and $x\hat{i} - \hat{j} + 2\hat{k}$ are coplanar, then $x =$
	(a) 0(b) 5/8 (c) 8/5(d)1
25	For every point P (x, y, z) on the xy – plane,
	(a) $x = 0(b) y = 0 (c) z = 0(d)$ none of these
26	The position vector of the point (1, 0, 2) is (a) $\vec{i} + \vec{j} + 2\vec{k}$ (b) $\vec{i} + 2\vec{j}$ (c) $\vec{2} + 3\vec{k}$ (d) $\vec{i} + 2\vec{k}$
27	The vector a and b satisfy the equation $2a+b=p$ and $a+2b=q$ where $p=i+j$ and $q=i-j$ If θ is the

	angle between a and b , then
	(a) $\cos\theta = 4/5$ (b) $\cos\theta = -4/5$ (c) $\cos\theta = 3/5$ (d) $\cos\theta = 2/5$
20	The modulus of $7i^2 + k^2$
20	$(a) \sqrt{15}(b) \sqrt{55}(c) 3 \sqrt{6}(d) 6$
29	Let a and b be two unit vectors and α be the angle between them, then a+b is a unit vector, if
20	(a) $\alpha = \frac{\pi}{2}$ (b) $\alpha = \frac{2\pi}{2}$ (c), $\alpha = \frac{\pi}{2}$ (d) $\alpha = \pi/6$
30	If $a^{\dagger} = 2i^{\dagger} - 3j^{\dagger} + 4k^{\dagger}$ and $b^{\dagger} = i^{\dagger} + 2j^{\dagger} + k^{\dagger}$ then $a^{\dagger} + b^{\dagger} =$
	(a) $i^{2} + j^{2} + 3k^{2}$ (b) $3i^{2} - j^{2} + 5k^{2}$ (c) $i^{2} - j^{2} - 3k^{2}$ (d) $2i^{2} + j^{2} + k$
31	The scalar product of $5i^{+} + j^{-} - 3k^{-}$ and $3i^{-} - 4j^{+} + 7k^{-}$ is
	(a) 10 (b) -10 (c) 15 (d) -15
32	If $a^{\uparrow} . b^{\uparrow} = 0$, then
	(a) $a \perp b$ (b) $a^{-} \mid \mid b^{-}$ (c) $a^{-} + b^{-} = 0$ (d) $a^{-} - b^{-} = 0$
33	$ \vec{k} \times \vec{j} = (1)$
	(a) 0 (b) 1 (c) i (d) -i
24	
34	a . a = (a) 0 (b) 1 (c) $ a^2 ^2$ (d) $ a^2 $
35	$ 1fa^2 = i^2 - j^2 + 2k^2$ and $b = 3i^2 + 2j^2 - k^2$ then the value of $(a^2 + 3b^2).(2a^2 - b^2)=.$
	(a) 15 (b) -35 (c) 18 (d) -18
36	If $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} + 2\vec{j} + \vec{k}$, then $\cos \theta = (a) c(2\pi)$
	$(a) 6/7 (b) 5/7 (c) 4/7 (d) \frac{9}{2}$
37	$ f a^2 + b^2 = a^2 - b^2 $, then
	(a) $\vec{a} \vec{a} \vec{a}$ (b) $\vec{a} \perp \vec{b}$ (c) $ \vec{a} = \vec{b} $ (d) None of these
38	If for non-zero vectors \vec{a} and \vec{b} , $\vec{a}X\vec{b}$ is a unit vector and $ \vec{a} $ = between $ \vec{b} = \sqrt{2}$, then angle θ
	between vector \vec{a} and \vec{b} is
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $(-\frac{\pi}{2})$
39	The area of a parallelogram whose one diagonal is $2\hat{i}+\hat{j}-2\hat{k}$ and one side is $3\hat{i}+\hat{j}-\hat{k}$ is
	a) $\hat{i} - 4\hat{j} - \hat{k}$ b) $3\sqrt{2}$ Sq. units c) $6\sqrt{2}$ Sq. units d)6 Sq. units
40	Position vector of point A and B area X b and $2a - b$. Then AB equal to
	a) $3a$ b) $-a + 2b$ c) $a - 2b$ d) none of these

ZIET, BHUBANESWAR

41	If $ \vec{a} =5$, $ \vec{b} =13$ and $ \vec{a}\vec{X}\vec{b} =25$, then $\vec{a}\cdot\vec{b}$ is equal to					
	a) 12	b) 5	c) 13		d) 60	
12		2 and 1 = 12.3 th	on the value	of	ic	
42	11 u -0, v -	$5 \text{ and } \alpha, \beta = 12\sqrt{3}, \text{ and } \alpha, \beta = 12\sqrt{3}, \text{ and } \alpha, \beta = 12\sqrt{3}$			15	
	a) 12	D) 12 V 3		C)6	a) 4 v 5	
43	If \hat{a} be a unit	vector then,				
	(a) direction	of \hat{a} is fixed b) ma	gnitude of \hat{a} i	is fixed		
	(c) direction	and magnitude is fixe	ed	(d) an	y one of direction is fixed	
44						
	The angle be	tween the vectors \vec{a} :	$=\hat{i}-\hat{j}+\hat{k}$ and	<i>b</i> = î+ĵ −	k is	
	a) $\cos^{-1}(\frac{1}{3})$	b)sin ⁻¹ (²	$\frac{1}{3}$) c)cos ⁻¹ ($\frac{-1}{3}$	-)	$d) \sin^{-1}(\frac{-1}{3})$	
45	A vector equ	ally inclined to axes i	S	۰î		
	d $l+j+k$	b(l-j + k)	$C_{l} - \frac{1}{k} - \frac{1}{k} C_{l} - \frac{1}{k} C_{l}$	$J - \kappa$		
46	$\vec{a}, \vec{b}, \vec{c}$	are 3 vectors	. such t	hat ā	$\vec{i} + \vec{b} + \vec{c} = 0$	
	$\begin{bmatrix} a, b, c \\ a \\ c \\$					
	a = 1, b = 2, c = 3, then a.b + b.c + c.a is equal to					
	(a) 1		(b) 0			
	(c) -7		(d) 7			
47	A zero v	ector has				
	(a) any	direction	(b)	no d	lirection	
	(c) man	ny directions	(d)	Non	e of these	
48	Let \vec{a} , \vec{b}	\vec{c} be three vec	ctors of ma	gnitud	es 3, 4 and 5	
	respectively. If each one is perpendicular to the sum of the					
	$ \rightarrow \rightarrow \rightarrow$					
	other two	vectors, then a	+ b + c =	=		
	(a) 5		(b) $3\sqrt{2}$	-		
	$(c) = \sqrt{2}$		(d) 12			
	$ \langle \nabla \rangle = 3\sqrt{2}$		(\mathbf{u}) 12			

52	If \vec{a} and \vec{b} are the two vectors such that				
	$\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = 0$, then				
	(a) \vec{a} is parallel to \vec{b} .				
	(b) \vec{a} is perpendicular to \vec{b} .				
	(c) either \vec{a} or \vec{b} is a null vector.				
	(d) None of these.				
53	If θ is the angle between any two vectors a and b, then				
	$ a.b = a \times b $, where θ is equal to				
	(a) zero (b) $\frac{\pi}{4}$				
	π				
	(c) $\frac{1}{2}$ (d) π				
54	For what value of m, are the points with position vector				
	$10\hat{i} + 3\hat{i}$ $12\hat{i} - 5\hat{i}$ and $\hat{m}\hat{i} + 11\hat{i}$ collinear?				
	$() \qquad (1) \qquad (1) \qquad (2)$				
	(a) -8 (b) 8				
	(c) 4 (d) -4				
55	If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 676$ and $ \vec{b} = 2$, then $ \vec{a} $ is equal to				
	(a) 13 (b) 26				
	(c) 39 (d) None of these				
56	A vector whose magnitude is the same as that of a given				
	vector, but direction is opposite to that of it, is called				
	(a) negative of the given vector				
	(b) equal vector				
	(c) null vector				
	(d) collinear vector				
57	Three points (2, -1, 3), (3, -5, 1) and (-1, 11, 9) are				
	(a) Non-collinear (b) Non-coplanar				
	(c) Collinear (d) None of these				

58	For any vector \vec{a} , the value of
	$\left(\vec{a} \times \hat{i}\right)^2 + \left(\vec{a} \times \hat{j}\right)^2 + \left(\vec{a} \times \hat{k}\right)^2$ is equal to
	(a) \vec{a}^2 (b) $3\vec{a}^2$
	(c) $4\vec{a}^2$ (d) $2\vec{a}^2$
59	The Position vector \vec{a} of a point (12,n) is such that $ \vec{a} = 13$ then n =
	(a) ±4 (b) ±3 (c) ±5 (d) ±6
60	If a, b, c and d are the position vectors of the points A, B, C and D such that a + c = b + d, then ABCD is a
	(a) Trapezium (b) Rectangle (c) Square (d) Parallelogram
61	A point from a vector starts is called and where it ends is called its
	(a) Terminal point, end point. (b) initial point, terminal point
	(c) Origin, end point (d) initial point, end point
62	If \vec{a} and \vec{b} are position vectors of the points (-1, 1) and (m, – 2). then for what value of m, the
	vectors \vec{a} and \vec{b} are collinear.
	(a) 1 (b) 2 (c) -1 (d) -2
63	Vectors that may be subject to its parallel displacement without changing its magnitude and direction are called
	(a) Free vectors (b) Coinitial vectors (c) Collinear vectors. (d) Parallel vectors
64	
	Find the value of λ so that the vectors $2\hat{i}-4\hat{j}+\hat{k}$ and $4\hat{i}-8\hat{j}+\lambda\hat{k}$ are parallel.
	(a) -1(b) 3 (c) -4(d) 2
65	The vectors AB = $3\hat{i} + 4\hat{k}$ and BC = AC= $5\hat{i}-2\hat{j}+4\hat{k}$ are the side of a \triangle ABC. The length of the median
	through A is

ZIET, BHUBANESWAR

	(a) √18(b) √72(c) √33(d) √288			
66	The vectors $\lambda \hat{\imath} + \hat{\jmath} + 2\hat{k}, \hat{\imath} + \lambda \hat{\jmath} - \hat{k}$ and $2\hat{\imath} - \hat{\jmath} + \lambda \hat{k}$ are coplanar if				
	(a) λ = -2(b) λ =	$0(c) \lambda = 1(d) \lambda = -1$			
67	lf a – b = a	= b = 1, then the	angle between a and b	is	
	(a) π/3(b) 3π/4	(c) π/2(d) 0			
68	If the angle bet	tweenî+ \hat{k} and \hat{i} + \hat{j} +a	\widehat{k} is $\pi/3$, then the value	e of a is	
	(a) 0 or 2(b) -4	or 0(c) 0 or -3(d) 2 c	or -2		
69	The projection of (1, 2, – 1) on $\hat{\iota}$ is				
	$(a)\frac{1}{\pi}$	(b) $\frac{-1}{-1}$	(c) 1	(d) – 1	
	√√6	√6	(-)	(-7	
70	The projection	of the vector (–4, –	2, 4) on (2, 1, 1) is		
	(a) (–2, 1, 1)	(b) (-2, -1, -1)	(c) (1, −1, −2)	(d) (-1, 1, 2)	
			A		
71	Find the magni	tude of vector 3î +2	j +12 k		
	(a) √157(b) 4√1	L1(c) √213(d) 9√3			

ANSWERS

MultpleChoice question		
Q.No.1	Answer	
1	а	
2	С	
3	b	
4	С	
5	C	
6	d	
7	a	
8	b	
9	d	
10	b	
11	a	
12	а	
13	С	
14	b	
15	d	
16	(a) $\frac{7}{\sqrt{5}}\hat{1} - \frac{14}{\sqrt{5}}\hat{1}$	
17	(d) $\frac{(4\vec{a}+\vec{b})}{3}$	
18	(b) 5 $(\hat{i} - 2 \hat{j} + 2 \hat{k})$	
19	$(a) \vec{b} = \vec{c}$	
20	(a) $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = 0$	
21	(b) unit vector	
22	(c) 2 AB	
23	(d) 6	
24	(c) 8/5	
25	(c) z = 0	
26	D	
27	В	
28	C	
29	В	
30	В	
31	В	
32	A	

33	D
34	C
35	В
36	В
37	В
38	C
39	В
40	C
41	D
42	Α
43	В
44	C
45	Α
46	C
47	В
48	C
49	C
50	C
51	C
52	C
53	В
54	В
55	A
56	A
57	C
58	D
59	(c)
60	(d)
61	(b)
62	(b)
63	(a)
64	(d)
65	(c)
66	(a)
67	(a)
68	(b)
69	(c)
70	(b)
71	(a)

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : SILCHAR REGION