CHAPTER – 10

VECTORS

TRUE / FALSE QUESTIONS

CI	
SL NO	QUESTIONS
1	Mathematically a vector is defined as a "directed line segment."
2	If vectors are equal then their magnitudes are equal but the converse may not be true.
3	If $\overrightarrow{AB} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{BC} = 6\hat{i} + 3\hat{j} - 6\hat{k}$ then the points A, B, C are collinear.
4	The projection of the vector $2\hat{i} - \hat{j} + \hat{k}$ on the vector $\hat{i} - 2\hat{j} + \hat{k}$ is $\frac{4}{\sqrt{6}}$ unit.
5	\vec{a} and $-\vec{a}$ are collinear.
6	Two collinear vectors are always equal in magnitudes.
7	Two vectors having same magnitude are collinear.
8	If for three non-zero vectors, \vec{a} , \vec{b} , \vec{c} , $[\vec{a}\vec{b}\vec{c}] = 0$ then the vectors are coplanar.
9	Two or more vectors are equal if they have same magnitude and direction.
10	For any non-zero vector \vec{a} ,
	$\vec{a} = (\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \vec{j})\vec{j} + (\vec{a} \cdot \vec{k})\vec{k}.$
	a = (a + j) f + (a - j) f + (a - k) k
11	If two wasters have the same magnitude and direction regardless of the positions of their
	If two vectors have the same magnitude and direction regardless of the positions of their
	initial points, then they are unit vectors.
12	The value of $\hat{i}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{i} \times \hat{k}) + \hat{k}.(\hat{i} \times \hat{j})$ is 1
	The value of $i.(j \land k) + j.(i \land k) + k.(i \land j)$ is 1
13	If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = -\frac{3}{2}$
14	If $ \vec{a} = 10$, $ \vec{b} = 2$ and $\vec{b} \cdot \vec{a} = 12$, then the value of $ \vec{b} \times \vec{a} = 16$
15	The vector $\lambda \hat{i} + \hat{j} + 2\hat{k}, \hat{i} + \lambda \hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$ are coplanar, if $\lambda = 0$
16	If $ \vec{a} = 4$ and $-3 \le \lambda \le 2$, then the range of $ \lambda \vec{a} = 12$
17	The number of vectors of unit length perpendicular to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$
18	are two If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} \ge 0$ only when $0 \le \theta \le \frac{\pi}{2}$.
19	For a given vector \vec{a} , the vector $\hat{a} = \frac{\vec{a}}{ \vec{a} }$ gives the unit vector in the direction of \vec{a}
20	If $\vec{a} = \vec{b} + \vec{c}$ then always $ \vec{a} = \vec{b} + \vec{c} $.
21	If $\theta = \frac{\pi}{2}$ then $\vec{a} \times \vec{b} = \vec{a} \vec{b} $.
22	$\vec{a} \times \vec{b}$ is a scalar.
23.	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, then \vec{a} and \vec{b} are perpendicular. State true or false.

24	Direction cosines and direction ratios of a vector are always equal.
25	The direction cosines of \vec{a} are unique but direction ratios of lines are not unique.
26	For any two vectors \vec{a} and \vec{b} , $ \vec{a} + \vec{b} > \vec{a} + \vec{b} $.
27	For any vector \overrightarrow{AB} , $\overrightarrow{AB} \neq \overrightarrow{BA}$ but $ \overrightarrow{AB} = \overrightarrow{BA} $.
28	If two vectors are perpendicular to each other than vector product of the vectors is equal to zero.
29	For two vectors \vec{a} and \vec{b} , $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$.
30	Direction of vector \vec{a} x \vec{b} is perpendicular to the plane containing both vector \vec{a} and vector \vec{b}
31	\vec{a} and \vec{b} represents Two adjacent sides of a triangle then its area is given by $\vec{a} \times \vec{b}$
32	If $ \vec{a} = \vec{b} $ then necessarily it implies $\vec{a} = \pm \vec{b}$
33	Position vector of a point \vec{P} is a vector whose initial point is origin.
34	If \vec{a} and \vec{b} are adjacent sides of a rhombus, then $\vec{a}.\vec{b}=0$
35	For any non-zero vector \vec{a} , $\vec{a} = (\vec{a} \cdot \hat{\imath})\hat{\imath} + (\vec{a} \cdot \hat{\jmath})\hat{\jmath} + (\vec{a} \cdot \hat{k})\hat{k}$.
36	If $\vec{a}X\vec{b} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $ \vec{a} = 2, \vec{b} = 1$, then angle between \vec{a} and \vec{b} is 60°.
37	If \vec{a} and \vec{b} are unit vectors, then $\vec{a} \cdot \vec{b}$ can be $\sqrt{3}$.
38	For any two non-zero vector \vec{a} and \vec{b} , $ \vec{a} \vec{b} + \vec{b} \vec{a}$ is parallel to $ \vec{a} \vec{b} - \vec{b} \vec{a}$.
39	For vector \vec{a} and \vec{b} ; $\vec{a}.\vec{b} = 0 \Leftrightarrow \vec{a} = \vec{0}, \vec{b} = \vec{0}$ or $\vec{a} = \vec{b}$.
40	For a scalar $\lambda(\vec{a}X\vec{b}) = (\vec{\lambda}\vec{a}X\vec{b}) = (\vec{a}X\lambda\vec{b})$, where \vec{a} and \vec{b} are given vectors.
41	If we want to show that two non-zero vectors \vec{a} and \vec{b} are parallel, then we should show that $\vec{a} \cdot \vec{b} = 0$.
42	The value of $(\hat{\imath} \times \hat{\jmath}).\hat{k} + (\hat{\jmath} \times \hat{k}).\hat{\imath} = 2$
43	The value of $p = \frac{2}{3}$ for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors
44	If θ is the angle between two vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ than $\sin \sin \theta = \frac{2\sqrt{6}}{7}$
45	If X.A=0,X.B=0,X.C=0 for some non-zero vector Then [<i>ABC</i>] =0
46	The value of the expression $\left \vec{a} \times \vec{b}\right ^2 + \left(\vec{a} \cdot \vec{b}\right)^2 = \left \vec{a}\right ^2 \cdot \left \vec{b}\right ^2$.
47	The area of triangle whose adjacent sides are $3\hat{i} + \hat{j} + 4\hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is 42.

ZIET, BHUBANESWAR

48	The projection of $2\hat{\imath} - \hat{\jmath} + \hat{k}$ on $\hat{\imath} - 2\hat{\jmath} + \hat{k}$ is $\frac{5}{\sqrt{6}}$.
49	If $(\vec{a} + \vec{b})$. $(\vec{a} - \vec{b}) = 0$ then $ \vec{a} = \vec{b} $.
50	If $ \vec{a} \times \vec{b} ^2 + (\vec{a}.\vec{b})^2 = 144$ and $ \vec{a} = 4$, then $ \vec{b} = 8$.
51	A vector quantity has only magnitude.
52	A scalar quantity has only magnitude.

ANSWERS

True False Questions		
Q.No.	Answer	
1	false	
2	true	
3	true	
4	false	
5	true	
6	false	
7	false	
8	true	
9	false	
10	True	
11	false	
12	true	
13	true	
14	true	
15	false	
16	true	
17	true	
18	T T	
19	F	
20 21	Г Т	
21 22	F	
22	True	
24	False	
25	True	
26.	False	
27.	True	
28.	False	
29.	False	
30	Т	
31	F	
32	T	

33	Т
34	F
35	Т
36	Т
37	F
38	F
39	F
40	Т
41	F
42	True
43	True
44	True
45	True
46	True
47	False
48	True
49	True
50	False
51	False
52	True

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : SILCHAR REGION