CHAPTER 12

LINEAR PROGRAMMING

MULTIPLE CHOICE QUESTIONS

Q No	Question			
1	Corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$			
	and (3,0). Let $Z= px+qy$, where p, q>0. Condition on p	and q so that the minimum of Z occurs at		
	(3,0) and (1,1) is			
	(a) $p=2q$ (b) $p=q/2$	2		
	(c) $p=3q$ (d) $p=q$			
2	The set of all feasible solutions of a LPP is a			
	(a) Concave set (b) Con	vex set		
	(c) Feasible set (d) Non	e of these		
3	Corner points of the feasible region for an LPP are (0,2), (3,0), (6,0), (6,8) and (0,5). Let F=4x+6y		
	be the objective function. Maximum of F – Minimum of	of $F =$		
	(a) 60 (b) 48			
	(c) 42 (d) 18			
4		· 1 · · · · · · · · · · · · · · · · · ·		
4	In a LPP, if the objective function $Z = ax+by$ has the sa	me maximum value on two corner points of		
	the feasible region, then every point on the line segmen	t joining these two points give the		
	samevalue.			
	(a) minimum (b) ma	aximum		
	(c) zero (d) no	ne of these		
5	In the feasible region for a LPP is, then the opti	imal value of the objective function $Z =$		
	ax+by may or may not exist.	ax+by may or may not exist.		
	(a) bounded (b) ur	ibounded		
	(c) in circled form (d) in	squared form		
6	A linear programming problem is one that is concerned	with finding the A of a linear function		
	calledB function of several values (say x and y), s	subject to the conditions that the variables		
	areC and satisfy set of linear inequalities called lin	near constraints.		
	(a) Objective, optimal value, negative (b) Optim	nal value, objective, negative		
	(c) Optimal value, objective, nonnegative (d) Obje	ctive, optimal value, nonnegative		
7	Maximum value of the objective function $Z = ax+by$ in a LPP always occurs at only one corner			
	point of the feasible region.			
	(a) true (b) fal	se		
	(c) can't say (d) par	rtially true		

8	Region represented by $x \ge 0, y \ge 0$ is:
	(a) First quadrant (b) Second quadrant
	(c) Third quadrant (d) Fourth quadrant
9	The feasible region for an LPP is shown shaded in the figure. Let $Z = 3x-4y$ be objective function. Maximum value of Z is:
	$(0, 4) (6, 16) (6, 12) (6, 12) (6, 0) \times X$
	(a) (b) 8
	(a) 0 (b) 8 (c) 12 (d) -18
10	In the given figure, the feasible region for a LPP is shown. Find the maximum and minimum value
	of $Z = x+2y$.
	$\left(\frac{3}{13}, \frac{24}{13}\right) \rho \qquad $
	$\begin{array}{c} X \leftarrow O \\ \downarrow \\ S \left(\frac{18}{7}, \frac{2}{7} \right) \end{array} \qquad $
	(a) 8, 3.2 (b) 9, 3.14
	(c) 9, 4 (d) none of these
11	Of all the points of the feasible region for maximum or minimum of objective function the points
	(a) Inside the teasible region (b) At the boundary line of the
	$(c) \qquad \text{Vertex point of the boundary of } (d) \qquad \text{None of these}$
	the feasible region
12	The maximum value of the object function $Z = 5x + 10$ v subject to the constraints $x + 2y < 120$. x
	$+y \ge 60, x - 2y \ge 0, x \ge 0, y \ge 0$ is
	(a) 300 (b) 600
	(c) 400 (d) 800
12	7 = (x + 2) + x + 2x + 2x + 4x + 4x + 4x + 2x + 2x
15	$\sum -0x + 21$ y, subject to $x + 2y \ge 3$, $x + 4y \le 4$, $3x + y \ge 3$, $x \ge 0$, $y \ge 0$. The minimum value of Z occurs at
	(a) $(4 \ 0)$ (b) $(28 \ 8)$
	(0) (0) (20, 0)

ZIET, BHUBANESWAR

	The maximum value of $z^{=2}x^{+5}y$ Subject to constraints given below		
	$2_{x} + 4_{y} \le 8$, $3_{x} + y \le 6$, $x + y \le 4$, $x, y \ge 0$ is		
	(A) 10 (B) 25 (C) 20 (D) 100		
20	The maximum value of $z = 3x + 2y$ subject to constraints		
	$x^{+} 2_{y} \le 10, \ 3_{x}^{+} y \le 15_{, x, y} \ge 0_{is}$		
0.1	(A) 15 (B) 18 (C) 20 (D) 22		
21	Feasible region is the set of points which satisfy (A) The objective function (B) Some of the given constraints (C) All of the given constraints (D) None of these		
22	Corner points of the feasible region for an LPP are $(0,2)$, $(3,0)$, $(6,8)$ and $((0,5)$. Let		
	$Z^{=4}x^{+6}y$ be the objective function. The minimum value of Z occurs at		
	(A) $\binom{0,2}{}$ only (B) $\binom{3,0}{}$		
	(C) any point on the line segment joining the point $(0, 2)$ and $(3, 0)$ (D) $(6, 8)$		
23	The corner points of the feasible region of an LPP are $(0, 0)$ $(0, 8)$, $(2, 7)$, $(5, 4)$ and $(6, 0)$. The		
	maximum profit $P = {}^{3}x + {}^{2}y$ occurs at the point		
24	(A) (5,4) (B) (0,8) (C) (2,7) (6,0)		
24	(a) an objective function		
	(b) an optimal function		
	(c) A feasible function		
	(d) None of these		
25	The maximum value of Z=3x+4y subject to the constraints: $x + y \le 4$, $x \ge 0$, $y \ge 0$ is:		
	(a) 0		
	(b) 12		
	(c)16		
26			
26	Objective function of a LPP is		
	(a) a constraint (b) a function to be optimized		
	(c) a relation between the variables		
	(d)none of these		
27	Maximize $Z = 4x + 6y$, subject to $3x + 2y \le 12$, $x + y \ge 4$, $x, y \ge 0$.		
	(a) 16 at $(4, 0)$		
	(b) 24 at $(0, 4)$		
	(c) 24 at (6, 0)		
	(d) 36 at (0, 6)		
28	The feasible solution of a LPP belongs to		

	(a) First and second quadrants
	(b) First and third quadrants.
	(c) Second quadrant
	(d) Only first quadrant.
29	If the feasible region for a LPP is unbounded, then maximum or minimum or minimum value of the
	objective function $z = ax + by$ may or may not exit.
	(a) True
	(b) False
	(c) Can't say
	(d) Partially true
30	In an LPP, I f the objective function has $Z = ax + by$ has the same maximum value on two corner
	points of the feasible region, then the number of points at which Z max occurs is
	(a) 0
	(b)2
	(c) Finite
	(d) Infinite
31	Which of the term is not used in a linear programming problem :
	(a) Slack inequation
	(b) Objective function
	(c) Concave region
	(d) Feasible Region
32	The maximum value of $Z = 4x + 2y$ subject to the constraints $2x + 3y \le 18$, $x + y \ge 10$, $x, y \le 0$ is
	(a) 36
	(b) 40
	(c) 30
	(d) None of these
33	An equation $3x - y \ge 3$ and $4x - 4y \ge 4$
	(a) Have solution for positive x and y
	(b) Have no solution for positive x and y
	(c) Have solution for all x
	(d) Have solution for all y
34	The maximum value of $Z = 3x + 4y$ subjected to constraints $x + y \le 40$, $x + 2y \le 60$, $x \ge 0$ and $y \ge 0$
	0 is
	(a) 120
	(b) 140
	(c) 100
	(d) 160
35	Maximize $Z = 11 x + 8y$ subject to $x \le 4$, $y \le 6$, $x + y \le 6$, $x \ge 0$, $y \ge 0$.
	(a) 44 at $(4, 2)$
	(b) 60 at (4, 2)
	(c) $62 \text{ at } (4, 0)$
	(d) 48 at (4, 2)
36	Maximize $Z = 7x + 11y$, subject to $3x + 5y \le 26$, $5x + 3y \le 30$, $x \ge 0$, $y \ge 0$
	(a) 59 at $(9/2, 5/2)$
	(b) 42 at (6, 0)
	(c) 49 at (7, 0)
L	(d) 57.2 at (0, 5.2)
37	Maximize $Z = 6x + 4y$, subject to $x \le 2$, $x + y \le 3$, $-2x + y \le 1$, $x \ge 0$, $y \ge 0$
	(a) 12 at (2, 0)

	(b) 140/3 at (2/3, 1/3)		
	(c) 16 at $(2, 1)$		
	(d) 4 at $(0, 1)$		
38	The minimum value of Z = 4x + 3y subjected to the constraints $3x + 2y \ge 160$, $5 + 2y \ge 200$, $2y \ge 100$		
	80; x, y ≥ 0 is		
	(a) 220		
	(b) 300		
	(c) 230		
	(d) none of these		
39	Maximize $Z = 3x + 5y$, subject to $x + 4y \le 24$, $3x + y \le 21$, $x + y \le 9$, $x \ge 0$, $y \ge 0$.		
	(a) 20 at (1, 0)		
	(b) $30 \text{ at } (0, 6)$		
	(c) 3 / at (4, 5)		
40	$\frac{(d) 33 \text{ at } (6,3)}{7 - 7 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$		
40	$Z = /x + y$, subject to $5x + y \ge 5$, $x + y \ge 3$, $x \ge 0$, $y \ge 0$. The minimum value of Z occurs at		
	(a) $(5, 0)$ (b) $(12, 52)$		
	(0)(12,32) (2)(7,0)		
	(c)(7, 0) (d)(0, 5)		
41	7 = 8x + 10y subject to $2x + y > 1$ $2x + 3y > 15$ $y > 2$ $x > 0$ $y > 0$ The minimum value of 7		
	$2 - 0x + 10y$, subject to $2x + y \ge 1$, $2x + 3y \ge 10$, $y \ge 2$, $x \ge 0$, $y \ge 0$. The minimum value of 2		
	(a) (4.5, 2)		
	(b) (1.5, 4)		
	(c)(0,7)		
	(d)(7,0)		
42	The optimal value of the objective function is attained at the points		
	(a) On X-axis		
	(b) On Y-axis		
	(c) Which are comer points of the feasible region		
	(d) None of these		
43	Corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$		
	and (3,0). Let $Z = px+qy$, where p, q>0. Condition on p and q so that the minimum of Z occurs at		
	(3,0) and $(1,1)$ is		
4.4	(a) $p=2q$ (b) $p=q/2$ (c) $p=3q$ (d) $p=q$		
44	The maximum value of $Z = 2x + 3y$ subject to the constraints $x^+ y^{\leq 1}$, $3x^+ y^{\leq 4}$, $x, y^{\geq 0}$ is		
1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
45	The maximum value of $Z = 4x+3y$, if the feasible region for an LPP is as shown below, is		
	(0, 40)		
	C(0, 24) B(16, 16)		
	(48.0)		
	O A \rightarrow X		
	(25, 0)		
	(a) 112 (b) 100 (c) 72 (d) 110		

46	Any feasible solution which maximizes or minimizes the objective		
	(a) A regional feasible solution (b) An optimal feasible solution		
	(a) A regional feasible solution (b) An optimal feasible solution (c) An objective feasible solution (d) None of these		
47	The solution set of the in equation $2x + y > 5$ is		
	(a) Half plane that contains the origin		
	(b) Open half plane not containing the origin $2 + - E$		
	(c) Whole xy^- plane except the points lying on the line $2x^+y^{-5}$		
	(d) None of these		
48	The optimal value of the objective function is attained at the points :		
	(a) Given the intersection of inequations with the axes only		
	(b) Given by intersection of inequations with X-axis only		
	(c) Given by corner points of the feasible region		
	(d) None of these.		
49	If the constraints in a linear programming problem are changed :		
	(a) The problem is to be re-evaluated		
	(b) Solution is not defined		
	(c) The objective function has to be modified		
	(d) The change in constraints is ignored		
50	Which of the following statements is correct?		
	(a) Every L P P admits an optimal solution		
	(b)A L P P admits unique optimal solution		
	(c) If a L P P admits two optimal solution solutions, it has an infinite number of optimal solutions		
	(d) The set of all feasible solutions of a LPP is a finite set.		
51	The value of objective function is maximum under linear constraints		
	(a) At the centre of feasible region		
	(b) At $(0,0)$		
	(c) At any vertex of feasible region (d) The vertex which is at maximum distance from (0,0)		
52	A linear programming of linear functions deals with:		
32	(a) Minimizing (b) Ontimizing (c) Maximizing (d) None		
53			
55	The solution of inequation $x + y = 5$ is		
	(a) Open half plane that contains the origin		
	(b) Closed half plane that contains the origin		
	(c) Open half plane that does not contains the origin		
	(d) Only points lying on the line $x + y = 5$		
54	Corner points of the feasible region determined by the system of linear constraints are $(0, 3)$, $(1, 1)$		
	and (-3, 0).		
	Let $Z = 2px - qy$, where p, q>0. Condition on p and q so that the minimum of Z occurs at (-3, 0)		
	and (1,1) is		
	(a) $p = 2q$		
	(b) $p = q^2$		
	(c) $p = 3q$		
	(d) $8p = q$		
55	If two corner points of a feasible region in LPP have minimum value then		

	(a) All the points in between these corner points have same minimum value		
	(b) All the points in between these corner points have maximum value		
	(c) Solution cannot be determined		
	(d) The question contains insufficient data		
56	The feasible region of an LPP is shown in figure. If $Z = 3x + 9y$, then the minimum value of Z		
	occurs at		
	Y		
	(0,20)		
	(0,10) (15,15)		
	(a) (5,5)		
	(b) (0,5)		
	(c) (0,20)		
	(d) (15,15)		
57	For the given LPP max $Z = 5x + y$ subject to constraints		
	$2x + y \ge 12$, $3x + 2y \ge 20$, $x \ge 0$, $y \ge 0$ the optimal solution set is		
	(a) $(0,0)$		
	(b) (6, 0)		
	(c) $(4, 4)$		
	(d) (0, 10)		
58	Comer points of the feasible region for an LPP are $(0, 2)$, $(3, 0)$, $(6, 0)$, $(6, 8)$ and $(0, 5)$. Let $Z = 4x + 1$		
	6y be the objective function.		
	The Minimum value of Zoccurs at		
	(a) $(0,2)$ only		
	(b) $(3,0)$ only		
	(c) the midpoint of the line segment joining the points $(0,2)$ and $(3,0)$ only		
50	(d) any point on the line segment joining the points (0,2) and (3, 0).		
59	In a LPP, the objective function is always		
	(d) Linear (b) Never a linear		
	(D) Ever a linear		
	(d) constant		
60	The feasible region for an LPP is always a		
	(a) closed polygon		
	(b) onen		
	(c) Can be both closed or open		
	(d) Is never open		
61	The maximum value of $7 - 2y + 2y$ subject to $2y + 2y = 6$, $y + y \ge 2$, $y \ge 0$, $y \ge 0$, $z \ge 0$, $z \ge 0$.		
	$\begin{bmatrix} 1 \text{ In c maximum value of } Z - 2x + 5y \text{ subject to } 5x + 2y \ge 0, & x + y \\ \end{bmatrix}, x = 0, y \text{ or } S$		
	(a) 9		
	(b) 8		
	(c) 7		
	(d) 10		
62			

	If $x + y \le 2$, $x \ge 0$, $y \ge 0$, the	e point at which the maximum v	value of $3x + 2y$ is attained will be
	(a) (0,0) (b) $(\frac{1}{2}, \frac{1}{2})$		
	(c) (0, 2) (d) (2, 0)		
63	The solution of the following	g linear inequations $x - 2y \le 0$,	$2x - y \le -2, x \ge 0, y \ge 0$
	is given by (a) [1,2] (b) Null set		
	(c) $x \ge 1$		
61	(d) Set of all real numbers		
64	Maximize Z = 10x +20y subj	ect to $2x + 3y \le 180$, $x + 4y \le 2$	160, $x \ge 0, y \ge 0$ is
	(a) 1020		
	(b) 1040 (c) 1030		
	(d) 1000		
65	The minimum value of $Z = 6x + 16y$, subject to the constraints $x \le 40, y \ge 20$ and $x, y \ge 10^{-10}$		
	0 is		
	(a) 240 (b) 320		
	(c) 0		
66	(d) 100 Which of the following points	is not in the feasible region of	the constraints :
00	+2 < 8 + 2 < 12	> 0 > 0	the constraints .
	$x^{+} 2y^{-} 0, 3x^{+} 2y^{-} 12, x$, y = 0	
	a) (0, -1)	b) (0 ,1)	
	c) (2, 2)	d) (4 , 0)	
			J
67	Maximum value of $Z = 3x^{-2}$	^{4}y + Minimum value of $Z = ^{3}x$	$x^{-4}y$,
	Where corner points of the fea	sible region determined by the	system of linear constraints are $(0,0)$,
	(0,8),(4,10),(6,8),(6,5)), (5,0) is	
	a) 17	b) 23	
	c) 46	d) -17	

68	Solution of LPP Maximize $Z = x^+ y$		
	Su	bject to the constraints	
	$x \le 2$, $y \le 2$, $x \ge 0$, $y \ge 0$	is	
	a) <u>4</u>	b) <u>2</u>	
	<u>C)1</u>	<u>d) no solution</u>	
69	The feasible region for an L.P.	P is always a	
	a) type of polygon	b) Concave polygon	
	c) Convex polygon	d) Not a polygon	
70	Infeasibility means that the nu constraints is	mber of solutions to the linear p	programming model that satisfies all
	a) At least 3	b) An infinite number	
	c) Zero	d) At least 2	
71	The position of the points O(0	,0) and P(2 , -2) in the region of	f graph of inequation
	$2_{x} - 3_{y} < 5_{,will}$ be		
	a) O inside and P outside	b) O and P both inside	
	c) O and P both outside	d) P inside and O outside	
72	In an LPP, if the objective fur	nction $z^{=}$ ax ⁺ by has the same	ne
	Maximum value on two corne	r points of the feasible region ,t	hen the number of points at which
	Z _{max} occurs is		
	a) 0	b) 2	
	C) finite	c) infinite	
1			

73	The condition $x \ge 0, y \ge 0$ and	re called	
	a) restrictions only	b) negative restrictions	
	c) non-negative	d) constraints	
	restrictions		
			-
74	Which type of problem cann	ot solved by LPP methods.	
	a) <u>Transportation</u>	b) Manufacturing	
	problem	problems	
	c) <u>Traffic signal</u>	d) <u>Diet problem</u>	
	problem		
75	Maximize $Z = 11x + 8y$, sub	ject to $x \le 4$, $y \le 2$, $x \ge 0$, $y \ge 0$.	
	(a) 44 at (4, 2)	(b) 60 at (4, 2)	
	(c) 62 at (4, 0)	(d) 48 at (4, 2)	
76	How many of the following	points satisfy the inequality $2x - (2 - 1)(2 - 1)(1 - 2)$	-3y > -5?
	(1, 1), (-1, 1), (1, -1), (-1, -1)	(-2, 1), (2, -1), (-1, 2) and (-2, -1)	
	<u>(a) 2</u>	<u>(b) 4</u>	
	<u>(c) 6</u>	<u>(d) 5</u>	
77	A toy company manufacture	s two types of toys A and B. Der	nand for toy B is at most half of that if
	type A. Write the correspond	ling constraint if x toys of type A	and y toys of type B are
	manufactured.		
	(a) $x/2 \le y$	(b) $2y - x \ge 0$	
	(c) $x - 2y \ge 0$	(d) $x < 2y$	
78			

	The solution set of the inequation $x^{+2}y^{>3}$ is		
	A. half plane containing the origin.		
	B. open half plane not containing the original	n.	
	C. first quadrant		
	D. none of these.		
79	If the feasible region for an LPP is, then	the optimal value of the objective function	
	$Z^{=}$ ax ⁺ by may or may not exist.		
	A. bounded.		
	B. unbounded.		
	C. in circle form.		
	D. in pentagon form		
80	The corner points of the feasible region determined by the system of linear constraints are $(0, 0), (0, 40), (20, 40), (60, 20)$ and $(60, 0)$. The objective function is $Z = 4_X + 3_y$.		
	Column A	Column B	
	Maximum of Z	325	
	A. The quantity in column A is greater.		
	B. The quantity in column B is greater.		
	C. Two quantities are equal.		
	D. The relationship cannot be determined of	on the basis of the information supplied.	
81	The feasible solution for an LPP is shown in given fig	ure. Let, $Z = 3_x - 4_y$ be the objective	
	function. Minimum of Z occurs at		

ZIET, BHUBANESWAR

	D 18
83	Refer to Q 82, minimum value of <i>F</i> is
	A. 0
	_{В.} – 16
	C. ¹²
	D. does not exist.
84	The corner points of the feasible region determined by the system of linear constraints are $\begin{pmatrix} 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 3 & 0 \end{pmatrix}$, $\begin{pmatrix} 6 & 0 \end{pmatrix}$, $\begin{pmatrix} 6 & 8 \end{pmatrix}$ and $\begin{pmatrix} 0 & 5 \end{pmatrix}$. The objective function is $F^{=4}x^{+6}y$.
	The minimum value of <i>F</i> occurs at
	A. (⁰ , ²) _{only}
	B. (³ , ⁰) _{only}
	C. the mid-point of the line segment joining the points $(0, 2)$ and $(3, 0)$
	D. any point on the line segment joining the points $(0, 2)$ and $(3, 0)$

KEY/ANSWERS

QUESTION NUMBER	ANSWER
1	b
2	a
3	a
4	b
5	b
6	c
7	b
8	a
9	a
10	b
11	С
12	b
13	c

14	a
15	D
16	D
17	С
18	A
19	A
20	В
21	С
22	С
23	A
24	A
25	С
26	В
27	D
28	D
29	В
30	D
31	A
32.	D
33	A
34	В
35	В

36	A
37	С
38	A
39	С
40	D
41	В
42	С
43	В
44	С
45	A
46	В
47	В
48	С
49	A
50	С
51	С
52	В
53	b
54	d
55	a
56	a
57	b
58	d

59	a
60	с
61	a
62	d
63	b
64	b
65	С
66	(a)
67	(d)
68	(c)
69	(c)
70	(c)
71	(a)
72	(d)
73	(c)
74	(c)
75	(b)
76	(d)
77	(c)
78	В
79	В
80	В
81	В
82	С

83	В
84	D

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : TINSUKIA REGION