CHAPTER 3

MATRICES

TRUE-FALSE QUESTIONS

Read the statements and state true and false.

- 1. If order of two matrices are same then addition is possible
- 2. The diagonal elements of skew symmetric matrix are necessarily zero
- 3. For all the matrices AB=BA
- 4. If $A^T = A$ then A is symmetric matrix
- 5. In a square matrix, if the all-diagonal elements are same then it is scalar matrix
- 6. Every square matrix can be expressed as sum of symmetric and skew symmetric matrices.
- 7. For every square matrix A, A.I=I.A = I
- 8. For two matrices A and B, if AB=BA=I, then B is inverse of A
- 9. If there are 5 elements then there are two different orders of matrices are exist:
- 10. If $A^2 = I$ then the inverse of A is A itself:
- 11. Identity matrix is a skew symmetric matrix.
- 12. Suppose that Ais an m×n matrix and B is an n×mmatrix. Then $(AB)^T = A^T B^T$
- 13. Addition of two matrices is possible only if both the matrices are of same order.
- 14. Suppose that A is an n×n matrix and assume $A^2 = 0$, where O is the zero matrix. Then A=O.
- 15. If A, B are symmetric matrices of same order, then AB BA is a skew symmetric matrix
- 16. If the product of two matrices AB is square matrix, then A and B must be square matrices.
- 17. AA^T is always a symmetric matrix for any matrix A.
- 18. The number of elements in an $m \times n$ matrix will be 2^{mn}
- 19. Matrix addition is commutative.
- **20**. Suppose that A and B are n×n matrices. Then $(A + B) \cdot (A + B) = A^2 + 2AB + B^2$
- 21. If A and B are two matrices of same order then B-A=A-B
- 22. Matrices of different order cannot be subtracted
- 23. If A is a symmetric matrix then A² is a skew symmetric matrix
- 24. If each of the three matrix of the same order are symmetric then their sum is symmetric matrix
- 25. A matrix denotes a number
- 26. Matrix addition is associative as well as commutative
- 27. A square matrix where every element is unity is called a identity matrix
- 28. Two matrices are said to be equal if they have the same number of rows and same number of columns
- 29. Transpose of a column matrix is a column matrix
- 30. Matrix multiplication is commutative
- 31. Matrix multiplication is distributive over matrix addition

- 32. $\begin{bmatrix} 0 & -2 & 5 \\ 2 & 8 & 3 \\ -5 & -3 & 6 \end{bmatrix}$ is skew symmetric matrix
- 33. For any square matrix A, A(Adj A)=|A|I
- 34. If A is singular matrix then adjA is also singular.
- 35. For any square matrix A_{A}^{-1} always exists
- 36. If $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ then $A^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$
- 37. If A is a square matrix of order 3 such that |adjA|=64, then |A|=-8
- 38. Matrices of any order can be added
- 39. If A and B are two square matrices of the same order, then A + B = B + A.
- 40. If A and B are two matrices of the same order, then A B = B A.
- 41. If matrix AB = O, then A = O or B = O or both A and B are null matrices.
- 42. A matrix which is not a square matrix is rectangular matrix
- 43. The elements of a null matrix may be 2
- 44. A row matrix has only one column
- 45. If P, Q are square matrices of order 3, P is a non- singular matrix and PQ =O, then Q is a null matrix
- 46. If a matrix has 10 elements, then it may have an order 10 x 10
- 47. We can multiply matrix A and matrix B if the no of columns of matrix A is not equal to the no of rows of matrix B
- 48. The no of all possible matrices of order 3 x 3 with each entry 1 or 0 is 512
- 49. A square matrix has all the elements zero
- 50. If A is a matrix of order p x n then the transpose of A is of order n x p.
- 51. If A and B are symmetric matrices of the same order, then AB + BA is a symmetric matrix
- 52. For any square matrix A, AA^{T} is a skew-symmetric matrix
- 53. For the matrices A,B,C of same order, A + B = B + A and A + (B + C) = (A + B) + C
- 54. If A is an $m \times n$ matrix such that AB and BA are both defined, then B is a $m \times n$ matrix
- 55. If A is a square matrix such that $A^2 = I$, then $(A I)^3 + (A + I)^3 7A$ is equal to A
- 56. If A and B are square matrices of the same order, then $(AB^{\prime} BA^{\prime})$ is a symmetric matrix.
- 57. Multiplication of diagonal matrices of same order will be commutative.
- 58. If a matrix A is both symmetric and skew-symmetric, then A is a zero matrix
- 59. If $A = \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix}$ and $A^2 KA 5I = 0$, then K = 7
- 60. Total number of possible matrices of order 3×3 with each entry 2 or 0 is 512
- 61. Every matrix has a unique value.
- 62. Every square matrix has a unique inverse
- 63. Transpose of product of two matrices is equal to the product of the transpose of the matrices
- 64. Every non zero matrices can be written as a sum of a symmetric and skew symmetric matrices.
- 65. Every scalar matrix is an identity matrix.
- 66. For two matrices A and B, if AB=BA=I, then A is called inverse of B.
- 67. If the order of a matrix is prime, it must be a row or column matrix.

68. The entries of a matrix are always real or complex numbers

69. The sum of a skew symmetric matrix and its transpose is a zero matrix.

1	Т	2	Т	3	F	4	Т	5	F
6	Т	7	F	8	Т	9	Т	10	Т
11	F	12	F	13	Т	14	F	15	Т
16	F	17	Т	18	F	19	Т	20	F
21	F	22	Т	23	F	24	Т	25	F
26	Т	27	F	28	F	29	F	30	F
31	Т	32	F	33	Т	34	Т	35	F
36	Т	37	Т	38	F	39	Т	40	F
41	F	42	Т	43	F	44	F	45	F
46	F	47	F	48	Т	49	F	50	Т
51	Т	52	F	53	Т	54	F	55	Т
56	F	57	Т	58	Т	59	Т	60	Т
61	F	62	F	63	F	64	F	65	F
66	Т	67	Т	68	Т	69	Т		

ANSWERS

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : GUWAHATI REGION