CHAPTER 6

APPLICATION OF DERIVATIVES

ASSERTION – REASON QUESTION

In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R), Mark the correct choice as

- A) Both A and R are true and R is the correct explanation of A
- B) Both A and R are true but R is not the correct explanation of A
- C) A is true but R is false
- D) A is false and R is true

1	Let a, $b \in R$ such that the function f given by $f(x) = \ln x + x^2 + ax$, $x \neq 0$ has extreme
	values at $x = -1$ and $x = -2$.
	Assertion : f has a local maximum at $x = -1$ and at $x = 2$
	Reason: $a = \frac{1}{2}$ and $b = -\frac{1}{4}$
2	Assertion : The minimum value of $f(x) = x^2 - 8x + 17$ is 1
	Reason : If $f'(c) = 0$ and $f''(c) > 0$ then f has a local minimum.
3	A function f is given by $f(x) = 2x^3-6x^2+6x+5$
	Assertion : x = 1 is not a point of local maxima
	Reason : x = 1 is not a point of local minima
4	Assertion : If two positive numbers are such that sum is 16 and sum of their cubes is minimum,
	then the numbers are 8 and 8.
	Reason : Let f be twice differentiable at x = c such that $f'(c) = 0$ and $f''(c) > 0$ then f has
	a local minima and f (c) is the local minimum value of f .
5	Assertion (A) : The function $f(x) = x^3 - 3x^2 + 6x - 100$ is strictly increasing on R
	Reason (R) : A strictly increasing functions is an injective function
6	Assertion (A) : The function $f(x) = \log x$ is defined for all $x \in (0, \infty)$
	Reason (R) : If $f'(x) > 0$ then f(x) is strictly decreasing function.
7	Assertion (A) : $f(x) = a(x + \sin x)$ is an increasing function if $a \in (0, \infty)$
	Reason (R) : The given function $f(x)$ is increasing only if $a \in (0, \infty)$
8	Assertion (A) : :The curve $y = x^2$ represents a parabola with vertex at origin.
	Reason (R) : :For a curve Tangent and Normal lines are always perpendicular at thepoint of
	contact.
9	Assertion (A) : For the curve y = tanx , the tangent and normal exists at a point (0, 0).
	Reason (R) : Tangent and Normal lines are $x - y = 0$ and $x + y = 0$.

10	Assertion (A: The function $f(x) = x^3 - 3x^2 + 6x - 100$ is increasing in R								
11	Reason (R) 2: A function will be increasing in an interval if $f'(x) \ge 0$ Assertion (A: The function $f(x) = \log(sinx)$ is strictly increasing $(0, \frac{\pi}{2})$								
11									
	Reason (R): <i>sinx</i> is positive in first quadrant								
12	Assertion (A: The function $f(x) = x^2 - x + 1$ is increasing strictly in the interval (0,1)								
	Reason (R): The function has turning point at $x = \frac{1}{2}$								
13	Assertion (A: The curve $16x^2 - 9y^2 = 144$ has two tangents parallel to x-axis.								
	Reason (R): At the points where tangents drawn to a curve are parallel to x-axis, $\frac{dy}{dx} = 0$								
14	Assertion (A): $f = e^x$ do not have maxima or minima in R.								
	Reason(R): Monotonic functions have maxima or minima at endpoints of Domain.								
15	Assertion (A): Minimum value of $f = 9x^2 + 12x + 2$ is -2.								
	Reason(R): Maximum value of $f = 9x^2 + 12x + 2$ does not exist.								
16	Assertion (A): The function $f = x - 3 $ does not have any critical point.								
17	Reason(R): Critical points of a function are where $f' = 0$ or f is not differentiable.								
17	An open-top box is to be constructed by removing equal squares from each corner of a 3m by								
	8m rectangular sheet and folding up the sides. Assertion (A): Maximum volume of the box is 200/27 cubic meters.								
	Reason(R): Volume is largest when the square of side 2/3 is removed from each corner								
18	Assertion (A): The absolute maximum value of the function								
10	$f = (x - 1)^2 + 3 in [-3, 1]$ is 19								
	Reason(R): The absolute value of function exists only on critical point of a function in I.								
19	Assertion (A): The equation of tangent to the curve $y=\sin x$ at point (0,0) is $y = x$.								
	Reason (R): if y= sin x then $\frac{dy}{dx}$ at x= 0 is 1								
20	Assertion (A): The Normal to the curve $2y + x^2 = 3$ is at point (1, 1) is x- y = 0.								
20	Reason (R) :Slope of the Normal at (1,1) is 1.								
21	Lets consider the function $f(x) = \frac{4x^2 + 1}{x}$								
	Assertion (A) : f(x) is increasing on $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$								
	Reason (R) Critical points are - $\frac{1}{2}$, $\frac{1}{2}$.								
22	The slope of the curve 2 y^2 = a x 2 + b at (1, -1) is -1 then								
	Assertion (A) : Value of 'a' is 2.								
	Reason (R) : Value of 'b' is 0.								
23	Assertion(A):The function $f(x)=x^3-3x^2+6x-100$ is strictly increasing on R								
	Reason(R) :A strictly increasing function is an injective function								
24	Assertion(A):The function $y = [x(x-2)]^2$ is increasing in(0,1)U(2, ∞)								
	Reason(R): <i>dy</i> /dx=0, when x=0,1,2.								
25	Assertion (A):If $f(x)=a(x+sinx)$ is increasing function if $a \in (0,\mathbb{R})$								
	Reason(R):Thegiven function $f(x)$ is increasing only if $a \in (0, \mathbb{Z})$								
26	Assertion (A):For the curve y = tanx,the tangent and normal exists at a point(0,0).								
	Reason(R) :tangent and normal linesare x-y = 0 and x+y=0.								
27	Assertion (A):The curvey $=x^2$ represents a parabola with vertex at origin.								
	Reason(R) :for a curve tangent and normal lines are always perpendicular at the point of								
	contact.								

28	Assertion (A): $f(x) = sin 2x + 3$ is defined for all real values of x.							
	Reason(R) :Minimum value of f(x) is 2and Maximum value is 4.							
	Assertion (A): $f(x)$ =sin(sinx) is defined for all real values of x.							
29	Reason(R) :Minimum and minimum values does not exist.							
	Assertion(A):f()=- x+1 +3isdefinedforallrealvaluesofxexceptx=-1.							
30	Reason(R) :Maximumvalue of f(x) is3and Minimumvalue doesnotexist.							
	AB is the diameter of a circle and C is any point on the circle.							
	Assertion(A):The area of triangle ABC is maximum when it is isosceles.							
31	Reason(R) : Triangle ABC is maximum when it is isosceles.							
32	Assertion(A):Awindow has the shape of a rectangle surmounted by an equilateral Itriangle. If							
52	Assertion(A):Awindow has the shape of a rectangle surmounted by an equilateral itriangle. If the perimeter of the window is 12m,then length1.782m and breadth 2.812m of the rectangle							
	will produce the largest area of the window.							
	Reason(R) : For maximum or minimum $f'(x)=0$.							
33								
	The sum of the surface area (s) of a sphere of radius r and cuboid with sides $\frac{x}{3}$, x and 2x is a							
	constant.							
	Assertion: the sum of their volumes (V) is minimum when x equals three times the radius of the							
	sphere.							
	Reason: V is minimum when $r = \sqrt{\frac{5}{54 + 4\pi}}$.							
	$\sqrt{54+4\pi}$							
34	Assertion: The function $y = \log(1+x) - \frac{2x}{2+x}$ is a decreasing function of x throughout its							
	domain.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$.							
35	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies							
35	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1, \infty)$. AB is a diameter of the circle and c is any point on the circle.							
35	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles.							
35	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1, \infty)$. AB is a diameter of the circle and c is any point on the circle.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles. Reason: $\triangle ABC$ is a right angled triangle.							
35	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles. Reason: $\triangle ABC$ is a right angled triangle.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles. Reason: $\triangle ABC$ is a right angled triangle. A cylinder is inscribed in a sphere of radius R.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles. Reason: $\triangle ABC$ is a right angled triangle.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1, \infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of $\triangle ABC$ is minimum when it is isosceles. Reason: $\triangle ABC$ is a right angled triangle. A cylinder is inscribed in a sphere of radius R.							
36	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units.							
	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units. Assertion: The altitude of the cone of maximum volume that be inscribed in a sphere of radius r							
36	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units. Assertion: The altitude of the cone of maximum volume that be inscribed in a sphere of radius r							
36	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units. Assertion: The altitude of the cone of maximum volume that be inscribed in a sphere of radius r is $\frac{4r}{3}$.							
36	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units. Assertion: The altitude of the cone of maximum volume that be inscribed in a sphere of radius r is $\frac{4r}{3}$.							
36	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units. Assertion: The altitude of the cone of maximum volume that be inscribed in a sphere of radius r is $\frac{4r}{3} \cdot \lambda$ Reason: The maximum volume of the cone is $\frac{8}{27}$ of the volume of the sphere.							
36	Reason: The domain of the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ where maximum and minimum lies is $(-1,\infty)$. AB is a diameter of the circle and c is any point on the circle. Assertion: the area of ΔABC is minimum when it is isosceles. Reason: ΔABC is a right angled triangle. A cylinder is inscribed in a sphere of radius R. Assertion: Height of the cylinder of the maximum volume is $\frac{2R}{\sqrt{3}}$ units. Reason: The maximum volume of the cylinder is $\frac{4\pi R^3}{\sqrt{3}}$ units. Assertion: The altitude of the cone of maximum volume that be inscribed in a sphere of radius r is $\frac{4r}{3}$.							

	<u>Reason</u> : If a differentiable function decreases in an interval (a, b), then its derivative also								
	decreases in (a , b).								
39	<u>Assertion</u> : The function $f(x) = \log \cos x$ is increasing function for $\left[0, \frac{\pi}{2}\right]$.								
	<u>Reason :</u> function is strictly increasing when slope of tangent is positive and function is								
strictly decreasing when the slope of tangent is negative.									
40	(π)								
$\frac{A33ertion}{2}$. If $f(x) = \log stax$, $x > 0$ is strictly decreasing if $\binom{2}{2}$, n).									
	<u>Reason</u> : if $f'(x) \ge 0$, then f(x) is strictly increasing function.								
	Which of the following is true :								
41	<u>Assertion</u> : $x+y-3 = 0$ is the equation of the normal to the curve $x^2 = 4y$ which passes								
	through the point (1, 2).								
	<u>Reason</u> : if slope of the tangent line is zero then $\tan \theta = 0$ and so $\theta = 0$, which means the								
	tangent line is parallel to x- axis.								
42	<u>Assertion</u> : Two curves $ax^2 + by^2 = 1$ and $a'x^2 + b'y^2 = 1$ are orthogonal if $\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{a'}$								
	1								
	$\overline{b'}$								
	<u>Reason</u> : Two curves intersect orthogonally at a point if product of their slope at that point is -								
	1.								
42	Accortion (A) Curve $x = xe^{\chi}$ is minimum at the point $x = -1$								
43	Assertion (A) Curve $y = xe^x$ is minimum at the point $x = -1$. Reason (R) $\frac{dy}{dx} < 0$ at $x = -1$.								
44	Assertion (A) The largest area $A(x)$ rectangular field which can be enclosed with 200m fencing is								
	2500m ² .								
	Reason (R) $A''(x) < 0$ at $x = 50$								
45	Assertion (A) The maximum value of $f(x) = \frac{x}{4+x+x^2}$ on $[-1,1]$ is $\frac{1}{6}$.								
	Reason (R) $f'(x) = 0$ and $f''(x) < 0$ at $x = 1$.								
46	Assertion (A) Absolute maximum and minimum value of function $f(x) = 12x^{4/3} - 6x^{1/3}, x \in$								
	[-1,1] are 18 and 0 at points $x = -1$ and $x = 0$ respectively.								
	Reason (R) For $f(x), f\left(\frac{1}{8}\right) < f(0) < f(1) < f(-1)$.								
47	Assertion (A) The radius of the right circular cylinder of greatest curved surface area which can								
	be inscribed in a given cone is half of the radius of the cone.								
	Reason (R) If x , r and S are radius of cylinder, radius of cone and curved surface area of cylinder								
	then $S'(x) = 0$ at $x = \frac{r}{2}$.								

48	Assertion (A): - Let f:-R-R be a function such that $f(x) = x^3 + x^2 + 3x + \sin x$, then f is one one.								
	Reason (R): f(x) neither increasing nor decreasing function.								
49	Assertion (A):- the curve x=y ² and xy=k cut at right angle if 8k ² =1								
	Reason(R):-Two curves intersect at right angles if the tangents to the curve at the point of								
	intersection are perpendicular to each other i.e. product of their slope is -1.								
50	Assertion (A): The tangent to the curve $y=x^3-x^2-x+2$ at (1, 1) is parallel to the x - axis								
	Reason (R): The slope of the tangent to the curve at (1, 1) is zero								
51	Assertion (A): The function $f(x) = \frac{\log x}{x}$ is increasing in the interval (0, e)								
	Reason (R):A function is increasing if $f'(x)>0$								
52	Assertion (A): The local maximum and minimum values of the function $f(x) = x^3 - 6x^2 + 9x + 9x^2$								
	15, $x \in R$, are 19 and 15 respectively.								
	Reason (R): Point $x = 1$ is a point of local maxima and								
	x = 3 is a point of local minima.								

ANSWERs:

1	А	11	В	21	А	31	А	41	В	51	А
2	А	12	D	22	А	32	А	42	А	52	А
3	В	13	D	23	(B)	33	А	43	С		
4	А	14	А	24	(B)	34	D	44	А		
5	В	15	В	25	(D)	35	А	45	С		
6	С	16	D	26	(A)	36	С	46	D		
7	D	17	А	27	(B)	37	В	47	В		
8	В	18	С	28	А	38	С	48	С		
9	А	19	А	29	С	39	D	49	А		
10	А	20	А	30	D	40	D	50	А		

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : KOLKATA REGION