CHAPTER 6

APPLICATION OF DERIVATIVES

MULTIPLE CHOICE TYPE QUESTIONS

	A function $y = f(x)$ is said to have a local maximum value if	
1	$A)\frac{dy}{dx} = 0 \ \&\frac{d^2y}{dx^2} = 0 \qquad \qquad B)$	$\frac{dy}{dx} = 0 \ \& \frac{d^2y}{dx^2} > 0$
	C) $\frac{dy}{dx} = 0 \ \& \frac{d^2 y}{dx^2} < 0$ D)	$\frac{dy}{dx} = 0 \& \frac{d^2y}{dx^2} \le 0$
	The sign of $f'(x)$ changes from positive	to negative as x increases through x = a then
2	A) $x = a$ is a point of local minimum	B) $x = a$ is a point of local maximum
	C) $x = a$ is a point of inflection	D) None of these
	The sign of $f'(x)$ changes from negativ	e to positive as x increases through x = a then
3	A) $x = a$ is a point of local minimum	B) $x = a$ is a point of local maximum
	C) $x = a$ is a point of inflection	D) None of these
	Maximum value of sin x. cos x is	
4	A) $\frac{1}{2}$ B) $\frac{1}{4}$	C) $\sqrt{2}$ D) $2\sqrt{2}$
5	Maximum slope of the curve $y = -x^3 + 3$	$3x^2 + 9x - 27$ is
	A) 0 B) 12 C)	16 D) 32
	The function $f(x) = 2x^3 - 3x^2 - 12x^3$	+ 4, has
6	A) two points of local maximum	B) two points of local minimum
	C) one maxima and one minimum	D) neither maximum nor minimum
	At x = $\frac{5\pi}{2}$, f(x) = 2 sin 3x + 3 cos 3x has a	
-	6	

8	$f(x) = x^x$ has a stationery point at x =				
	A) e	B) $\frac{1}{e}$	C) 1	D) \sqrt{e}	
	For all real values of x, the minimum value of $\frac{1-x+x^2}{1+x+x^2}$				
9	A) 0	B) 1	C) 3	D) $\frac{1}{3}$	
	The maximum va	alue of $\left(\frac{1}{x}\right)^x$ is			
10	A) e	B) <i>e^e</i>	C) $e^{\frac{1}{e}}$	D) $\left(\frac{1}{e}\right)^e$	
11	The maximum ar	nd minimum value	es of f(x) = x + sin	$2x$ in the interval [0, 2π] are	
	A) 2π , 0	B) 0, 2π	C) 0, 0	D) None of these	
	Let f(x) be a func	tion such that f'	(a) $\neq 0$. Then at x =	a, f(x)	
12	A) cannot have a	a maximum	B) can	not have a minimum	
	C) have neither a	a maximum nor a	a minimum D) None	of these	
12	Two numbers wh	nose sum is 24 and	d whose product is as	large as possible. Then the two	numbers are
15	The critical point	(s) of f(x) = $x^2 e^{-x}$	is/are	<i>Dj</i> 11, 15	
14	A) 0	B) 2	C) both A & <i>I</i>	B D) None of these	
	The function f(x)	$= x^2 e^{-x}$ has			
15	A) local minimun	n at x = 0 only	B) local	maximum at x = 2 only	C) both
	A and B		D) None of the	se	
	The function $f(x)$) is said to be stric	ctly decreasing if		
	(A) <i>f</i> ′(<i>x</i>)>0				
	(B) $f'(x) \ge 0$				
	(C) <i>f</i> ′(<i>x</i>)< 0				
	(D) $f'(x) \le 0$				
16					
	The function give	en by f (x) = 3x + 1	7 is		
	(A) strictly increa	sing on R.			
	(B)strictly decrea	sing on R.			
17	(C)Neither increa	ising nor decreasi	ng on R.		

	(D)decreasing on R.
	The function given by $f(x) = e^{2x}$ is
	(A) strictly increasing on R.
	(B)strictly decreasing on R.
	(C)Neither increasing nor decreasing on R.
18	(D)decreasing on R.
	The intervals in which the function f given by $f(x) = 2x^2 - 3x$ is strictly increasing is
	$(A)\left(\frac{3}{4}, \infty\right)$
	$(B)\left[\frac{3}{4}, \infty\right)$
	$(C)\left(-\infty,\frac{3}{4}\right)$
19	$(D)(-\infty,\frac{3}{4}]$
	The logarithmic function f(x) = log x is
	(A) strictly decreasing on (0, ∞).
	(B) strictly increasing on (0, ∞).
	(C) increasing on $(0, \infty)$.
20	(D) Neither increasing nor decreasing on $(0, \infty)$.
	Which of the following functions is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$?
	(A) cos x
	(B) cos 2x
	(C) cos 3x
21	(D) tan x
	The interval in which $y = x^2 e^{-x}$ is increasing is
	(A) (−∞, ∞)
	(B) (- 2, 0)
	(C) (2, ∞)
22	(D) (0, 2)
	The function f given by $f(x) = \log \sin x$ is strictly increasing $on\left(0, \frac{\pi}{2}\right)$
	(A) is increasing on $\left(0, \frac{\pi}{2}\right)$
	(B) is decreasing on $\left(0, \frac{\pi}{2}\right)$
23	(C) is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$

ZIET, BHUBANESWAR

	(D) is strictly increasing on $\left(0, \frac{\pi}{2}\right)$
	The least value of a such that the function f given by $f(x) = x^2 + ax + 1$ is strictly increasing on (1, 2) is
	(A) 2
	(B) -2
	(C) 4
24	(D) -4
	The slope of the tangent to the curve $y = x^3 - x$ at $x = 2$.
	$(A)\frac{1}{11}$
	$(B) - \frac{1}{11}$
	(C) -11
25	(D) 11
	The slope of the tangent to the curve given by x = a sin ³ t, y = b cos ³ t at a point where $t = \frac{\pi}{2}$ is
	(A)∞
	(B) 0
	(C) 1
26	(D) -1
	The slope of the normal to the curve $y = 2x^2 + 3 \sin x$ at $x = 0$ is
	(A) 3
	(B) 1/3
	(C) -3
27	(D) - 1/3
	The equation of the normal to the curve $y = \sin x$ at (0, 0) is
	(A) y = 0
	(B) x = 0
	(C) $x + y = 0$
28	(D) $x - y = 0$
	If the tangent to a curve is parallel to the x-axis then its slope is
	(A) 0
	(B) undefined
	(C) -1
29	(D) 1

	If the tangent is parallel to the y-axis then
	$(A)\frac{dy}{dx}$ is 0
	(B) $\frac{dx}{dy}$ is 0
	$(C)\frac{dy}{dx}$ is -1
30	$(D)\frac{dx}{dy}$ is undefined
	The point where the tangent to the curve $y = x^2 - 4x + 5$ is parallel to x – axis is
31	(2,1) (b) (1,2) (c) (2,4) (d) (-4,5)
32	The interval in which the function $f(x) = 2x^2 + 4x - 5$ is increasing is $(-\infty, -1]$ (b) $[-1, \infty)$ (c) $[2, 4]$ (d) None of these
02	Which of the following is strictly decreasing on $\left(0,\frac{\pi}{2}\right)$
22	which of the following is strictly decreasing on $\left(0, \frac{1}{2}\right)$
33	$\cos x$ (b) $\cos 2x$ (c) $\cos 3x$ (d) a & b both The slope of normal to the curve $x = x^2 + 3$ at x=1 is
	The slope of normal to the curve $y = x^2 + 3$ at x=1 is
34	2 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) none of these
	For what value of x, the slope of tangent to the curve $y = x^3 + x + 1$ is 10
35	3 (b) -3 (c) $\sqrt{3}$ (d) None of these
20	In which of the following intervals the function $f(x) = x^2 e^{-x}$ is increasing in
36	$(-\infty,\infty)$ (b) $(-2,0)$ (c) $(2,\infty)$ (d) $[0,2]$
37	$(-\infty - 2) \cup (0, \infty)$ (b) [-2, 0] (c) $-\infty \infty$ (d) None of these
57	The interval in which the function $f(r) = r^2 - 6r + 3$ is increasing is
38	$(1, \infty)$ (b) $(3, \infty)$ (c) $(1, 2)$ (d) None of these
	The slope of tangent of the curve $y = 2x^2 + 3sinx$ at $x = 0$ is
39	3 (b) – 3 (c) 4 (d) None of these
	The points on the curves $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangent is parallel to x – axis is
40	$(-1, \pm 4)$ (b) $(0, \pm 4)$ (c) $(-1, \pm 8)$ (d) $(\pm 3, 0)$
	The point on the curve $y = x^3 - 11x + 5$ at which the tangent is $y = x - 11$ is
41	(-2,0) (b) (3,7) (c) (0,2) (d) (2,-9)
	The slope of tangent to the curve $x = a(t - sint)$, $y = a(1 - cost)$ at $t = \frac{\pi}{2}$ is
42	1 (b) -1 (c) 2 (d) -2
42	Function $f(x) = x^3 - 27x + 5$ is monotonically increasing, when
43	$x < -3$ (D) $ x > 3$ (C) $x \le -3$ (D) $ x \ge 3$
44	0 < x < 1 (b) $x > 1$ (c) $x < 1$ (d) $x > 0$
	Function $f(x) = a^x$ is increasing on R, if
45	a > 0 (b) a < 0 (c) 0 < a < 1 (d) a > 1
	Function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically decreasing when
46	x < 2 (b) x > 2 (c) x > 3 (d)1 < x < 2
	The function $f(x) = x^x$ decreases on the interval
47	(0, e) (b) (0,1) (c) $(0, \frac{1}{e})$ (d) None of these
48	The function $f(x) = \frac{\log x}{x}$ is increasing in the interval

	(1,2e) (b) (0,e) (c) (2,2e) (d) $\frac{1}{e}$, 2e)
	For the function $f(x) = x \cos^{\frac{1}{2}}$, $x \ge 1$, $f(x)$ is
	(a) Strictly increasing in $(1, \infty)$
	(b) Strictly decreasing in $(1, \infty)$
	(c) Neither increasing nor decreasing in $(1, \infty)$
49	None of these
	The point on the curve $y = 12x - x^2$ where the slope of the tangent is zero is
50	(0,0) (b) (2,16) (c) (3,9) (d) None of these
	The points on the curve $9y^2 = x^3$ where normal to the curve makes equal intercepts with the axis are
	(a) $\left(4,\frac{8}{3}\right) or \left(4,\frac{-8}{3}\right)$
	(b) $\left(-4,\frac{8}{2}\right)$
	(1) (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3
	(c) $\left(-4, \frac{-4}{3}\right)$
51	None of these
	The equation of the normal to the curve $y = x(2 - x)$ at point (2,0) is
	(a) $x - 2y = 2$ (b) $x - 2y + 2 = 0$
	(c) $2x + y = 4$
52	x + 2y = 4
	If $x + y = k$ is normal to curve $y^2 = 12x$ then value of k is
53	-3 (b) 3 (c) 9 (d) -9
	The value of the function $f(x) = (x - 1)(x - 2)^2$ at its maxima is
54	$\frac{5}{27}$ (b) $\frac{4}{27}$ (c) 2 (d) 1
	The Maximum and Minimum values of the function $ \sin 4x + 3 $ are
55	1, 2 (b) 4, 2 (c) 2, 4 (d) 1, 1
	Local Maximum and Local Minimum values of the function $(x - 1)(x + 2)^2$ are
56	4, 0 (b) 0, 4 (c) -4, 0 (d) None of these
	The function $x^3 - 5x^4 + 5x^3 - 10$ has a maximum, when x = ?
57	3 (D) 2 (C) 1 (d) U The maximum value of function $w^3 = 12w^2 + 26w + 17$ in the interval [1, 10] is
58	The maximum value of function $x^2 - 12x^2 + 36x + 17$ in the interval [1, 10] is 177 (b) 17 (c) 77 (d) None of these
50	The maximum value of the function $x^3 + x^2 + x - 4$ is
59	127 (b) 4 (c) Does not have a maximum value (d) None of these
	The function $x^2 \log x$ in the interval $(1, e)$ has
	(a) A point of maximum (b) A point of minimum
60	(c) Points of maximum as well as minimum (d) Neither a point of maximum nor minimum
	The minimum value of $ x + x + \frac{1}{2} + x - 3 + x - \frac{5}{2} $ is
61	0 (b) 2 (c) 4 (d) 6
	Local maximum value of the function $\frac{\log x}{d}$ is
62	33e (b) 1 (c) $\frac{1}{2}$ (d) 2e
	If two sides of a triangle be given then the area of triangle will be maximum if the angle between the
	given sides be
63	$\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$
	The minimum value of the function $2 \cos 2x - \cos 4x$ in $0 < x < \pi$ is
C 4	0 (b) 1 (c) $\frac{3}{2}$ (d) -3
64	

	If from a wire of length 36 metre a rectangle of greatest area is made, then its two adjacent sides in	
	metre are	
65	6, 12 (b) 9, 9 (c) 10, 8 (d) 13, 5	
	The sum of two non-zero numbers is 4. The minimum value of the sum of their reciprocals is	
66	$\frac{1}{4}$ (b) $\frac{1}{5}$ (c) 1 (d) None of these	
	The minimum value of $x^2 + \frac{250}{r}$ is	
67	75 (b) 50 (c) 25 (d) 55	
	If $x + y = 10$, then the maximum value of xy is	
68	5 (b) 20 (c) 25 (d) None of these	
	Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is	
69	\sqrt{ab} (b) $\frac{a}{b}$ (c) $2ab$ (d) ab	
	If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area	
	of the triangle is π	
70	π (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$	
	The equation of the normal to the curve $y = sinx$ at (0,0) is	
74	a)x = 0b)y = 0 $c)x + y = 0$ $d)x - y = 0$	
/1	The tangent to the surve $y = e^{2x}$ at the point (0.1) meets y axis at	
	The tangent to the curve $y = e^{-3}$ at the point (0,1) meets x-axis at	
72	$a_1(0,2)b_1(2,0)$ $c_1(-\frac{1}{2},0)a_1$ None of these	
72	The area of the triangle formed by any tangent to the curve $2xy = a^2$ and the co-ordinate axes is a^2a^2 b^2a^2 c^2a^2 d^2a^2	
/3	The slope of the tangent to the curve $r = t^2 + 3t - 8$, $v = 2t^2 - 2t - 5$ at $t = -1$ is	
74	a)22/7 b)6/7 c)-6 d)1/7	
	The equation of tangent to the curve $y = 1 - \rho^{\frac{x}{2}}$ at the point of intersection with y-axis is	
75	$a_{1}x + 2y = 0$ $b_{1}2x + y = 0$ $c_{1}x - y = 2$ $d_{1}x + y = 0$	
	If the equation of tangent to the curve $y^2 = ax^3 + b$ at the point (2,3) is $y = 4x - 5$, then	
76	a) a=2, b =7 b) a=7, b=2 c) a=2, b=-7 d) a=-2, b=7	
	A straight line is parallel to the line $2x - y + 5 = 0$ and is tangent to the curve $y^2 = 4x + 5$. The	
	point of contact of the tangent and the curve is	
//	a) (2,1) b) (3,4) c) (1,3) d) (-1,1) The point on the survey $x^2 = x$ where the tangent values on angle π with x onic is	
	The point on the curve $y' = x$ where the tangent makes an angle $\frac{1}{4}$ with x-axis is	
78	a) $(\frac{1}{2}, \frac{1}{4})$ b) $(\frac{1}{4}, \frac{1}{2})$ c) $(4, 2)$ d) $(2, 4)$	
70	The intervals in which $f(x) = x(x - 3)^2$ is decreasing strictly for	
79	$d = x^{3} + x^{3} + x^{3} + x^{5}$ is decreasing for	
80	a)1 < x < 5 b) $x < 1$ c) $x > 1$ d) all real values of x.	
	The function $f(x) = -2x^3 + 3x^2 + 12x + 6$ is	
	a) strictly increasing in the interval $(-\infty, 1) \cup (2, \infty)$	
	b)strictly decreasing in the interval $(-\infty, -1) \cup (2, \infty)$	
	c) strictly decreasing in the interval(1,2)	
81	d) strictly increasing in the interval $(-2,1)$	
	The function $f(x) = \frac{x}{1+x^2}$ increases in the interval	
82	$a)(-\infty,-1) \cup (1,\infty) \qquad b)(-\infty,0) \cup (1,\infty) \qquad c)[0,\infty) \qquad d)(-1,1)$	
83	The angle of intersection of the curves $y = x^2$ and $x = y^2$ at (1,1) is	

	a) $tan^{-1}(\frac{4}{3})b)\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $tan^{-1}(\frac{3}{4})$		
	The function $f(x) = x^2 - x + 1$ in the interval (0,1) is		
84	a) strictly increasing b) strictly decreasing c) neither increasing nor decreasing d) decreasing $\frac{\pi}{\pi}$		
	Which of the following function is decreasing in $(0, \frac{\pi}{2})$		
85	a) cotx b) cos3x c) tanx d) sin	2x	
	Find the absolute maximum vo	alue of $f(x) = \sin \sin x - \cos \cos x$ wher	$e \ x \in [0,\pi]$
	a. 0	b. 1	
	c -1	$d \sqrt{2}$	
86	0. 1	u. v2	
	Let f(a) be local maximum value of the fu	inction f(x) if	
	a. $f''(a) < 0$	b. $f''(a) > 0$	
	f'(z) < 0	f'(x) < 0	
87	c. $f(a) < 0$	d. $f(a) < 0$	
	The maximum value of $(\frac{1}{x})^x$ is		
		b a ^e	
	a. e	Б. Е	
	$\int \frac{1}{\rho e}$	$d \left(\frac{1}{2}\right)^{\frac{1}{e}}$	
88			
	-	·	
	The function $f(x) = 2x^3 - 3x^2 - 12x + 12x^3 - 3x^2 - 12x^3 + 12x^3$	4 has	
	a. Two points of local minima	b. Two points of local maxima	
	c One maximum and one	d No maxima and no minima	
	minimum		
89			
	If $f(x) = \frac{1}{1 + 2 + 2 + 1}$ then the maximum va	lue is	
	a. 0	b. 4/3	
	c. 5	d. Not exist.	
90		b	
	The least value of the function $f = ax + $	$\frac{2}{x}$ where a, b, $x > 0$ is	
	a. a/b	b. $2\sqrt{ab}$	
		4	
91	c. U	d. a	
51		II	
	If f be a function such that $f' \neq 0$. then the	ne function must have	
	a. No maxima	b. No minima	
92	c. Neither maxima nor a minima	d. May have maxima or minima	
	The maximum value of f= ciny, eacy is		
	$\frac{1}{2} = \frac{1}{4}$		
93			

	c. √2	d. $2\sqrt{2}$
	If X+Y=8 the maximum value of XY is	
	a. 8	b. 16
94	c. 20	d. 24
	The maximum and minimum value of $f = x$	$x + \sin 2x$ in the interval [0, 2π] is
	a. Maximum value= 2π	b. Maximum value=0
	Minimum value-0	Minimum value -2π
	c. Maximum value=0	d. Maximum value= 2π
	Minimum value= $-\pi$	Minimum value= π
95		
	Minimum values of $f(x) = x^2 + 4x + 8$	is:
	a. 1	D. 2
96	c. 3	d. 4
50	Maximum and minimum values of $f(x)$ -	$-\sin^2\gamma + \pi$
	$a \pi - 1 \pi + 1$	$h_{1} - \pi_{1} + \pi_{1}$
97	Cπ, -π	d 1, 0
	Maximum and minimum values of $f(x)$ =	$= x^3 + x^2 + x + 1$
	a. 1, 0	b. 4, 3
98	c. 15, 10	d. Both do not exist
	Find the maximum of $f(x) = x^2 - 24x$	+ 150 in [12, 15]
	a. 12	b. 13
	c. 15	d. 150
99		
	Find two positive numbers whose sum is	16 and sum of whose cubes is minimum.
	a. 8, 8	b. 6, 10
	c 9 7	d 5 11
100	C. 5, 7	
	Find the interval in which $f(x) = -x^2 - 2x + 1$.5 is increasing
	(a) (−1,∞)	(b) (−∞ , -1)
104	(C) (1,∞)	(a) $(-1, \infty)$
101	Find the interval in which the function of	$(1 - 2)x^3 = 0x^2 + 12x + 15$ is decreasing
	$(a)(-\infty, 1)$	$(b) (2 \infty)$
	$(u)(-\infty, 1)$ $U(2, \infty)$	$(0) (2, \infty)$ (d) (1.2)
102	$(c) (-\infty, 1) \cup (2, \infty)$	(u) (1,2)
102	Find the values of K for which $f(x) = kx^3$	$\Delta k v^2 \pm \Omega v \pm 3$ is increasing on P
102	$x = 1$ and the values of K for which $f(x) = KX^{-1}$	

	(a) (−∞,0)	(b) (0 , 1/3)	
	(c) (1,∞)	(d) (-∞,1)	
	The interval in which the fun	ction f given by $f(x) = x^2 e^{-x}$ is strictly increasing is	
	(a) (—∞,∞)	(b) (<i>−∞</i> , 0)	
	(b) (c) (2, ∞)	(d) (0,2)	
104			
	Which of the following func	ion is decreasing on $(0, \pi/2)$	
	(a) tan2x	(b) cosx	
105	(c) cos 3x	(d) none of these	
	The function $f(x) = \frac{2x^2 - 1}{x}$, x	>0 . decreases in the interval	
	(a) $(-\infty 0)$	$(h) [1 \infty)$	
	(a) (³³ , ³)		
	(c) [-1 , 1]	(d) None of these	
106			
	The function $f(x) = 2 \log(x - 2)$) – x ² +4x +1 increases in the interval	
	(a) (1,2)	(b) (2,3)	
107	(C) (1,3)	(d) (2, 4)	
107	The equation of the normal t	o the curve $y = x(2-x)$ at the point $(2, 0)$ is	
	(a) $X - 2y = 2$	(b) $x - 2y + 2 = 0$	
	(c) 2x + y =4	(d) $2x + y - 4 = 0$	
108			
	The point on the curve $y^2 = x$	where tangent makes an angle 45° with X axis is	
	(a) (½,¼)	(b) (¼ , ½)	
	(c)(42)	(d)(1,1)	
109	(0) (1) -)		
	The slope of the tangent to t	he curve x= 3 t^2 +1 , y = t^3 -1 at x=1 is	
	(a) ½	(b) 0	
110	(c) -2	(d) ∞	
110			
	(a) 1	(b) 2	
	(a) I	(b) Z	
	(c) 3	(d) ½	
111		•••	
	The curve y= 2e ^x and y= ae ^{-x}	intersect orthogonally , then the value of a=	
	(a) ½	(b) -1/2	
	(-) 2		
112	(C) Z	(a) 2e ²	
112	The equation of the normal t	a the curve $3x^2 - x^2 = 8$ which is parallel to $x + 3x = 8$ is	
113	the equation of the normal	0 the curve 5x -y - o which is parallel to x+ 3y =0 is	

	(a) X-3y = 8 (b) >	x- 3y +8 =0	
	. (c) x+ 3y ± 8 =0 (d) x	κ+3γ =0	
	The Value of 'a' for which $y = x^2 + ax + 25$ touches the X axis are		
	(a) 0 (b) :	± 10	
		+ F	
114	(c) 4, -0 (u)	<u>1</u> 3	
	The slope of the normal to the curve 2 x ² +3 sin x at x=0 is		
	(a) 3 , (b) 1/3	
	(c) -3 (d)	-1/3	
115		1,5	
	116		
	Find the intervals in which the funct	tions $f(x) = x^2 - 4x + 6$ is strictly increasing	
	$(a) (-\infty, 2) \cup (2, \infty)$	(b) (2,∞)	
	$(c) (-\infty, 2)$	$\frac{(0)(2, \infty)}{(d)(-\infty, 2] \cup [2, \infty)}$	
	117		
	The function $f(x) = 3 - 4x + 2x^2 - \frac{1}{2}x^3$	is	
	(a) Increasing on \Re	(b) Decreasing on %	
	c) Neither increasing nor decreasing	d) None of these	
	118		
	The tangent to the parabola $x^2 = 2y$ at t	he point $(1, \frac{1}{2})$ makes with the x – axis an	
	angle of	2	
	(a) 0°	(b) 45°	
	(c) 30°	(d) 60°	
	140		
	The survey $u = u^{\frac{1}{2}}$ has at (0, 0)		
	(a) A vertical tangent (parallel to v	(b) A porizontal tangent (parallel to x -	
	– axis)	axis)	
	(c) An oblique tangent	(d) No tangent	
	120	*	
	The slope of the normal to the curve $x =$	$a(\theta - \sin\theta), y = a(1 - \cos\theta)$ at $\theta = \frac{\pi}{2}$ is	
	(a) O	(b) undefined	
	(c) – 1	(d) 1	
	121 Tanganta ta tha aunua $x^2 + x^2 = 0$ at the r	where $(1, 1)$ and $(-1, 1)$ are	
	(a) Parallel	(b) Perpendicular	
	© Intersecting but not at right angles	d) None of these	
l			
I			

122	
The point at which the normal to the curv	we $y = x + \frac{1}{x}, x > 0$ is perpendicular to the
line $3x - 4y - 7 = 0$ is:	
(a) $\left(2, \frac{5}{2}\right)$	(b) $\left(\pm 2, \frac{5}{2}\right)$
(c) $\left(-\frac{1}{2},\frac{5}{2}\right)$	(d) $\left(\frac{1}{2}, \frac{5}{2}\right)$
123	
The tangent to the curve $y = e^{2x}$ at the po	int (0, 1) meets x – axis at
(a) (0, 1)	(b) $\left(-\frac{1}{2}, 0\right)$
(c) (2, 0)	(d) (0, 2)
124	
The function $f(x) = tanx - x$	
(a) Always increases	(b) Always decreases
(c) Never increases	d) Sometimes increases and sometimes decreases
125	
The function $f(x) = x + \sin x$ is	
(a) Always increasing	(b) Always decreasing
(c) Increasing for certain range of x	(d) None of these
.26	
The function $f(x) = -x^3 + 3x^2 - 3x + 100$,	$\forall x \in \mathcal{R} \text{ is }$
(a) Strictly increasing	(b) Strictly decreasing
(c) Neither increasing nor decreasing	(d) Decreasing
127	
In which interval the function $f(x) = 3x^2 - 1$	7x + 5 is strictly increasing
$(a)\left(-\infty,\frac{7}{2}\right)$	(b) (−∞, ∞)
$(0) \begin{pmatrix} 0 \\ -6 \end{pmatrix}$	$(d) \begin{pmatrix} 7 \\ m \end{pmatrix}$
(c) $\left(0, \frac{-}{6}\right)$	(d) $\left(\frac{-}{6}, \infty\right)$
$\frac{128}{128}$	$0.3 \pm 0.2 \pm 40.4$ dia dagang gaing is
The interval on which the function $f(x) = 2$	$2X^2 + 9X^2 + 12X - 1$ is decreasing is
(a) $[-1, \infty)$ (c) $(-\infty, -2]$	(b) $[-2, -1]$ (d) $[-1, 1]$
(c) (-a, -2)	
$\frac{1}{29}$	
The function $f(x) = 1 - x^3 - x^5$ is decre	asing for
The function $f(x) = 1 - x^3 - x^5$ is decre (a) $1 \le x \le 5$	asing for (b) $x \le 1$ (d) all values of x
The function $f(x) = 1 - x^3 - x^5$ is decre (a) $1 \le x \le 5$ (c) $x \ge 1$	asing for (b) $x \le 1$ (d) all values of x
The function $f(x) = 1 - x^3 - x^5$ is decre (a) $1 \le x \le 5$ (c) $x \ge 1$ 130	asing for (b) x ≤ 1 (d) all values of x
The function $f(x) = 1 - x^3 - x^5$ is decre (a) $1 \le x \le 5$ (c) $x \ge 1$ 130 The function $f(x) = x - \frac{1}{x}, x \in \Re, x \ne 0$ is	asing for (b) x ≤ 1 (d) all values of x
The function $f(x) = 1 - x^3 - x^5$ is decre (a) $1 \le x \le 5$ (c) $x \ge 1$ 130 The function $f(x) = x - \frac{1}{x}, x \in \Re, x \ne 0$ is (a) Increasing for all $x \in \Re$	asing for (b) $x \le 1$ (d) all values of x (b) Decreasing for all $x \in \Re$

	The interval in which the function $f(x)=x^2-4x+6$ is strictly decreasing is
	(A) (-∞,-2)
	(B) (-2, 3)
	(C) (3, 2)
131	(D) (3,∞)
	The interval in which y=x ² e ^{-x} is increasing is
	(A) (-∞,∞)
	(B) (-2, 0)
	(C) (2, ∞)
132	(D) (0,2)
	Which of the following functions are strictly decreasing on $(0,\pi/2)$
	(A) tanx
	(B) cos2x
	(C) cos3x
	(D) none of these
133	
155	The interval in which y=Logx is strictly increasing is
	(A) (-∞,∞)
	(B) (-∞, 0)
	(C) (0, ∞)
134	(D) (0,2)
	Find the interval in which function $f(x) = sinx+cosx$, $0 \le x \le 2\pi$ is decreasing.
	a) (π/4, 5π/4)
	b) (-π/4, 5π/4)
	c) (π/4, -5π/4)
	d) (-π/4, π/4)
135	
	Nature of the function $f(x) = e^{2x}$ is
	a) increasing
	b) decreasing
	c) constant
136	d) increasing and decreasing
137	For all x in the given interval if derivative of f(x)>0 then f(x) is

	(A) decreasing in the interval
	(B) increasing in the interval
	(C) constant in the interval
	(D) undefined in the function
	The range of values of x for which the function $y=5-8x-2x^2$ is increasing is
	(A) x<3
	(B) x>2
	(C) x<-2
138	(D) X>-2
	Find the tangent to the curve $y=3x^2+x+4$ at $x=3$.
	a) 19
	b) 1.9
	c) 18
139	d) 16
	Find the slope of the tangent to the curve $x=4 \cos^3 3\theta$ and
	y=5 sin ³ 3 θ at θ = $\pi/4$.
	a) -3/4
	b) -1/4
	c) 5/4
	d) -5/4
140	
	Find the equation of all the lines having slope 0 which are tangent to the curve $y=6x^2-7x$.
	a) 24/49
	b) –24/49
	c) 49/24
141	d) –49/24
	The slope of the normal to the curve y=2x ² +3sinx at x=0 is
	(A) 3
	(B) 1/3
	(C) -3
142	(D) -1/3

	The line y=x+1 is a tangent to the curve y ² =4x at the point
	(A) (1,2)
	(B) (2, 1)
	(C) (1, -2)
143	(D) (-1,2)
	The curves $x = y^2$ and $xy = k$ cut at right angles if
	$(B) \otimes R^{-1}$
	(C) k ² =1
144	(D) k ² =8
	The two curves $x^3-3xy^2+2=0$ and $3x^2y-y^3=2$
	(A) touch each other
	(B) Cut at right angle
	(C) Cut at an angle π/3
145	(D) Cut at an angle $\pi/4$
	The maximum value of $\sin x \cdot \cos x$ is
	(A) $\frac{1}{4}$
	(B) $\frac{1}{2}$
	$\frac{2}{\sqrt{2}}$
	(C) $\sqrt{2}$ (D) $2\sqrt{2}$
146	$\frac{3}{2} + 2 \frac{2}{2} + 0 = 27$
	Viaximum slope of the curve $y = -x^2 + 3x^2 + 9x - 27$ is
	(B) 12
	(C) 16
147	(D) 32 The smallest value of the polynomial $x^3 = 18x^2 + 06x in [0, 0]$ is
	The smallest value of the polynomial $x = 18x + 96x \ln[0,9]$ is
	(C) (B)
	(C)
148	(D) The function $f(x) = 2x^3 + 2x^2 + 4$ has
	The function $f(x) = 2x - 3x - 12x + 4$ has
	(B) Two points of local minimum
	(C) One maxima and one minima
149	(D) No maxima or minima
	If x is real, the minimum value of $x^2 - 8x + 17$ is
150	

	(C) 1 (D) 2
	The maximum value of $\left(\frac{1}{x}\right)^x$ is
	(A) e
	(B) e^{e} (C) $e^{1/e}$
151	(D) $\left(\frac{1}{e}\right)^{1/e}$
	If $x > 0$ what is the minimum value of $x + \frac{4}{x}$
	(A) 3 (B) 2
	(B) 2 (C) 4
152	(D) 1
	If $x < 0$ what is the maximum value of $x + \frac{1}{x}$
	(A) -2
	(B) 0 (C) 2
153	(D) 4
	Minimum value of $\sqrt{3} \sin x + \cos x$ is
	(A) 2
	(B) 3 (C) 2
154	(C) \\3 (D) -2
	Maximum value of $\frac{1}{x^2 + x + 1}$, $x \in R$
	(A) $\frac{3}{4}$
	(B) $\frac{1}{-}$
	(C) $\frac{2}{3}$
155	(D) $\frac{4}{3}$
	The minimum value of $\sin x \cdot \cos x$ is
	(A) $\frac{1}{2}$
	(B) $-\frac{1}{2}$
	(C) $\frac{3}{2}$
156	(D) $-\frac{3}{2}$
157	Maximum value of $a \sin x + b \cos x$, $x \in R$

	(A) a											
	(B) $-\sqrt{a^2}$	$+b^2$										
	(C) $\sqrt{a^2}$ +	$\overline{b^2}$										
	(D) <i>b</i>	(D) <i>b</i>										
	Maximum value of $f(x) = x - x^2$ is											
	(A) $\frac{1}{4}$											
	(B) 4											
	(C) 3											
158	(D) $\frac{3}{4}$											
	Minimum	value of x^x , $x > 0$										
	(A) $\frac{1}{a}$											
	(B) $e^{-1/e}$											
	$(1)^{1/e}$											
	$(C) \begin{pmatrix} -\\ e \end{pmatrix}$											
159	(D) <i>e^e</i>											
	For what	value of x, does the function $f(x) = x^{2/3}$ have a local minimum value.										
	(A) 1											
	(B) -1 (C) 0											
160	(0) 2											
	The real r	number x when added to its inverse gives the minimum value of the sum at x equal to :										
	(i)	1										
	(ii)	-1										
	(iii)	-2										
161	2											
	Angle bet	ween the tangent to the curve $y = x^2 - 5x + 6$ at the points (2,0) and (3,0) is:										
	(i)	$\frac{\pi}{2}$										
	(ii)	$\frac{\pi}{3}$										
	(iii)	$\frac{\pi}{6}$										
		π										
162		$\overline{4}$										
	The norm	hal to the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta)$ at any point ' θ ' is such that:										
	(i)	It makes angle $\frac{\pi}{2} + \theta$ with the x axis.										
	(ii)	It passes through the origin.										
163	(iii)	It is a constant distance from the origin.										

	It passes through $\left(\frac{a\pi}{2}, -a\right)$									
	The curve $y = x^{\frac{1}{5}}$ has at (0,0)									
	(i)	(i) A vertical tangent (parallel to y-axis).								
	(ii)	A horizontal tangent (parallel to x-axis)								
	(iii) An oblique tangent									
164	No tange	No tangent								
	The equation of the tangent to the curve $y = x + \frac{4}{x^2}$ that is parallel to the x-axis, is									
	(i)	Y=0								
	(ii)	Y=1								
	(iii)	Y=2								
165	Y=3									
	If the cur	ve $ay + x^2 = 7andx^3 = y$ cut orthogonally at (1,1), then the value of a is :								
	(i)	1								
	(ii)	0								
	(iii)	-6								
166	6									
	The poin	The points at which the normal to the curve $y = x + sinxcosx$ at $x = \Pi/2$ is								
	(i)	2x = Π								
	(ii)	X = 2Π								
	(iii)	X = Π/4								
167	X = 2									
	The equa	tion of tangent to the curve $y(1 + x^2) = 2 - x$, where it crosses x-axis is :								
	(i)	X + 5y =2								
	(ii)	X-5y = 2								
	(iii)	5x - y = 2								
	(iv)	5x + y = 2								
168	In case of	strictly increasing function, slope of the tangent and hence derivative is :								
	(i)	Zero								
	(ii)	Either positive or zero								
169	(**)									

	(iii)	Negative							
	Positive								
	The value of k in order that $f(x) = sinx - cosx - kx + b$ decreases for all real values is given by:								
	(i)	$k < \sqrt{2}$							
	(ii)	$k \ge \sqrt{2}$							
	(iii)	k < 1							
170		$k \ge 1$							
	The inter	The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is :							
	(i)	[-1 , ∞)							
	(ii)	[-2, -1]							
	(iii)	(-∞, -2]							
171	[-1,1]								
	Let the <i>f</i>	$R \to R$ be defined by $f(x) = 2x + cosx$, then f:							
	(i)	has a minimum at x = П							
	(ii)	has a maximum at x=0							
	(iii)	is a decreasing function							
172	is a increa	asing function							
	Every inv	Every invertible function is							
	(i)	monotonic function							
	(ii)	constant function							
	(iii)	identity function							
173	not neces	ssarily monotonic function							
	If the fur	action $f(x) = x^2 - kx + 5$ is increasing on [2, 4], then							
	(i)	<i>k</i> € (2,∞)							
	(ii)	<i>k</i> € (−∞, 2)							
	(iii)	<i>k</i> ∈ (4,∞)							
174		$k \in (-\infty, 4)$							
	The funct	ion $f(x) = x^x$ decreases on the interval							
	(i)	(0, e)							
	(ii)	(0,1)							
	(iii)	(0, 1/e)							
175	(iv)	(1/e, e)							

ANSWERS

1	С	16	С	31	Α	46	D	61	D	76	С	91	В	106	(b)
2	В	17	А	32	В	47	С	62	С	77	D	92	D	107	(b)
3	А	18	А	33	D	48	В	63	D	78	В	93	В	108	(a)
4	А	19	А	34	С	49	В	64	D	79	А	94	В	109	(b)
5	В	20	В	35	С	50	В	65	В	80	D	95	А	110	(b)
6	С	21	А	36	D	51	А	66	С	81	В	96	D	111	(a)
7	А	22	D	37	В	52	А	67	А	82	А	97	А	112	(a)
8	В	23	D	38	В	53	С	68	С	83	D	98	D	113	С
9	D	24	В	39	А	54	В	69	D	84	С	99	С	114	b
10	С	25	D	40	А	55	В	70	D	85	С	100	А	115	d
11	А	26	В	41	D	56	В	71	С	86	D	101	(a)	116	b
12	D	27	D	42	А	57	С	72	С	87	А	102	(d)	117	b
13	В	28	С	43	D	58	А	73	В	88	С	103	(b)	118	b
14	С	29	А	44	В	59	С	74	С	89	С	104	(d)	119	а
15	С	30	В	45	В	60	D	75	А	90	В	105	(b)	120	С

121	b	136	(A)	146	В	161	i
122	а	137	(B)	147	В	162	i
123	b	138	(C)	148	В	163	i
124	а	139	(A)	149	С	164	i
125	а	140	(C)	150	С	165	iv
126	b	141	(D)	151	С	166	iv
127	а	142	(D)	152	С	167	i
128	а	143	(A)	153	А	168	i
129	d	144	(B)	154	D	169	ii
130	а	145	(B)	155	D	170	ii
131	(B)			156	В	171	ii
132	(D)			157	С	172	iv
133	(B)			158	А	173	i
134	(D)			159	В	174	ii
135	(A)			160	С	175	iii

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : KOLKATA REGION