CHAPTER 6

APPLICATION OF DERIVATIVES

TRUE FALSE QUESTIONS

SI.No.	Question(Read the statements and state TRUE or FALSE.								
1	The function (x) is said to be strictly increasing if $f'(x) > 0$.								
2	The function (x) is said to be strictly decreasing if $f'(x) \leq 0$.								
3	The logarithmic function $f(x) = \log x$ is strictly decreasing on $(0, \infty)$.								
4	The function given by $f(x) = e^{5x}$ is neither increasing nor decreasing on R.								
5	The function $f(x) = \cos x$ is strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.								
6	The slope of the tangent parallel to the the line x + y = 0 is 1.								
7	The tangent to the curve $y = x^3 + 6$ and at the point (-1, 5) and (1, 7) are parallel.								
8	If the normal is parallel to the y-axis then $\frac{dy}{dx}$ is 0.								
9	The tangent to the curve $x = t^2 - 1$ and $y = t^2 - t$ is parallel to the x-axis at								
	t = 0.								
10	At the point (1, 2) the tangent to the curve $y = 2x^2 - x + 1$ is parallel to the line $y = 3x + 9$.								
11	A point x = c is said to be a critical point of f if $f'(c)$ is = 0								
12	Minimum value of f if f(x) = sin x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is 1								
	Let f have second derivative at x = c such that $f'(c) = 0$ and $f''(c) > 0$ then f has a								
13	local maximum								
14	Extreme points of the function $f(x) = x + \frac{1}{x}$ are 1 and – 1								
15	A function $f(x) = 4x^3 - 18x^2 + 27x - 7$ has a point of inflection $\frac{3}{2}$.								
	If a function has first derivative at x = a such that $f'(a) = 0$ and sign of f' is changing								
16	its sign from negative to positive then f has a local minimum.								
17	$f(x) = \sin x + \sqrt{3}\cos x$ has maximum value at $x = \frac{\pi}{6}$								
18	Every continuous function on a closed interval has maximum and a minimum value.								
19	Local minimum value of a function may be greater than the local maximum value.								
20	The minimum value of $x^2 - 8x + 17$ is 1								
21	The equation of the normal to the curve $y = x(2 - x)$ at the point (2,0) is $x - 2y = 2$								
22	The function $f(x) = (x + 2)e^{-x}$ is strictly increasing in the interval (-1, ∞).								

23	The tangent to the curve $y = x^2 + 3x + 4$ at (-2,2) passes through origin.										
24	The curve $y^2 = x^3 - 1$ possess two tangents parallel to the x-axis.										
25	The curves $x = y^2$ and $xy = k$ cut at right angles if $k^2 = 8$.										
26	The function $f(x) = x^3 - 8$ is strictly increasing in the interval (1,2).										
27	The function $f(x) = x^3 - 3x^2 + 4x$ is strictly increasing in R										
	The tangent at any point on the curve $y = 2x^7 + 3x + 5$ makes an obtuse angle with x-										
28	axis.										
29	The normal to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at (a,0) is parallel to x-axis.										
	The normal to the curve $x = a(1 + cos\theta)$, $y = asin\theta$ at any point θ always passes										
30	through the point(a,0)										
31	A monotonic function has its maximum or minimum value at endpoints of a given interval. True/False										
32	A function $f(x)$ is said to have a maximum value in I, if there exists a point c in I such that $f(c) < f(x)$ for all $x \in I$. True/False										
33	Both minimum and maximum value of $f(x) = x$ where $x \in (0, 1)$ exist. True/False										
34	Let c is local minima if there is an h> 0 such that $f(c) \ge f(x)$ for all x in $(c - h, c + h), x \ne c$ True/ False										
35	In function $f(x) = x^3$, x=0 is the point of inflection. True/False										
36	The local minimum value of the function $f = 3 + x - 3 $ is 3 True/False										
37	Critical points of function in the given interval are where $f' = 0$ or f is not differentiable. True/False										
38	sin(x) has infinite points of local maxima and local minima.										
39	The maximum value of Signum Function is 1										
40	The minimum value of Greatest Integer function f=[x] in $[\sqrt{2}, \sqrt{5}]$ is 0 True/False										
41	The tangent to the curve $y = e^{2x}$ at point (0,1) meets X Axis at $(-\frac{1}{2}, 0)$.										
42	The equation to the normal to the curve $y = \sin x$ at (0,0) is $x - y = 0$.										
43	Slope of the tangent of the locus y= cos ⁻¹ (cos x) at x= $\frac{-\pi}{4}$ is 1.										
44	The Equation of the normal to the curve x= a $\cos^3 t$, y =a $\sin^3 t$ at point t= $\frac{\pi}{4}$ is x= -y.										
45	The point at which tangents to the curve $y = x^3 - 12x + 18$ are parallel to the X axis are (4,0) (-2,0).										

46	The interval on which the function $f(x) = 2 x^3 + 9 x^2 + 12 x - 1$ is decreasing is $[-2,-1]$.									
47	The point at which normal to the curve $y = 2x^2 - 2x + 7$ has slope 1/6 is (-1,11).									
48	Function cos x is decreasing in (0, $\frac{\pi}{2}$).									
49	The function $f(x) = \tan x - x$ is always increases .									
50	The Function $f(x) = \sin x$ is decreasing on $(0, \frac{\pi}{2})$.									
51	Least value of the function $f(x) = ax + \frac{b}{x}$, $a > 0, b > 0, x > 0$ is $2\sqrt{ab}$. At $x = 0$ the function $f(x) = (4 - x^2)^{2/3}$ has a local minimum value.									
52	At $x=0$ the function $f(x)=(4-x^2)^{2/3}$ has a local minimum value.									
53	The function $f(x) = x^{1/x}$ has no maximum value.									
54	Maximum value of the function $f(x) = 3\sin x + 4\cos x$, $x \in R$ is 5.									
55	Maximum value of the function $f(x) = \sin^4 x + \cos^4 x$, $x \in R$ is 2.									
56	Of all rectangles of a given perimeter, square has the largest area.									
57	Of all rectangles of a given area, square has the largest perimeter									
58	$e^{\pi} < \pi^{e}$									
59	For $x \in \left(0, \frac{\pi}{2}\right)$, $\sin x < x < \tan x$									
60	There is a unique real number $x > 0$ such that $\left(\frac{1}{4}\right)^x = x = \log_{1/4} x$.									
61	The function $f(x) = x^{\frac{1}{x}}$ is decreasing on (1,e) and increasing on (e, ∞).									
62	Let $f(x)$ and $g(x)$ be defined and differentiable for $x \ge x_0$ and $f(x_0) = g(x_0)$, $f'(x) > g'(x)$ for $x > x_0$. Then $f(x) > g(x)$ for $x > x_0$.									
63	The interval on which $y = x^2 e^{-x}$ increases in (-2, 0).									
64	Let $h(x) = f(x) - (f(x))^2 + (f(x))^3$, $x \in R$. Then h is increasing whenever f is increasing.									
65	F(x) = x - [x] is strictly increasing on (0, 1).									
66	At (0,0), the curve $y^2 = x^3 + x^2$ makes and angle of 60^0 with the x-axis.									
67	The curve $y - e^{xy} + x = 0$ has a vertical tangent at the point (1, 0).									
68	The equation of the tangent to the parabola $y^2 = 4ax$ at (x_1, y_1) is $yy_1 = 2a(x + x_1)$.									
69	The angle of intersection of the curves $y = x^2$ and $6y = 7 - x^3$ at (1,1) is $\Pi/4$.									
70	A student wants to draw a straight line which touches the parabolic curve $y = (x - 3)^2$ at a specific point say (2, 1). The equation of the line is $2x + y = 5$.									
71	The slope of tangent to the curve $y = x^2 + 3$ at x=1 is $\frac{-1}{2}$ (True/False)									
72	The slope of the normal to the curve $y = 3x^2 + 2$ at x = 2 is 12 (True/False)									
73	The points on the curves $\frac{x^2}{25} + \frac{y^2}{4} = 1$ at which the tangent is parallel to x – axis is $(0, \pm 2)$ (True/False)									

74	The slope of normal to the curve $x = a(t - sint)$, $y = a(1 - cost)$ at $t = \frac{\pi}{2}$ is -1
	(True/False)
75	Function $f(x) = logx$ is increasing on R , if x<1 (True/False) $0 < x < 1$ (b) x>1(c)x<1
76	The point on the curve $y = x^2 - 3x + 2$ where tangent is perpendicular to $y = x$ is (1,0) (True/False)
77	On the ellipse $4x^2 + 9y^2 = 36$, the points at which the tangent is parallel to the line $8x = 9y$ are $\left(\frac{2}{5}, \frac{1}{5}\right) or \left(\frac{1}{5}, \frac{2}{5}\right)$ (True/False)
78	The equation of the normal to the curve $y = x(2 - x)$ at point (2,0) is $x - 2y = 2$ (True/False)
79	If the line $y = mx + 1$ is a tangent to curve $y^2 = 4x$, then value of m is 1 (True/False)
80	The equation of normal to the curve $y = tanx at (0,0)$ is x+y=0(True/False)
81	The value of <i>a</i> for which the function $f(x) = sinx - ax + b$ increases in <i>R</i> are $(-\infty, -1)$ (True/False)
82	The tangent to the curve $y = e^{2x}$ at point (0,1) meets x – axis at $\left(\frac{-1}{2}, 0\right)$ (True/False)
83	The abscissa of the point on the curve $3y = 6x - 5x^3$, the normal at which passes through the origin is 2 (True/False)
84	The slope of the tangent to the curve $y^2 e^{xy} = 9e^{-3}x^2$ at (-1,3) is 10 (True/False)
85	The function $x^5 - 5x^4 + 5x^3 - 1$ is Neither maxima nor minima at x = 0 (True/False)
86	The adjacent sides of a rectangle with given perimeter as 100cm and enclosing maximum area are 10cm and 40cm (True/False)
87	The necessary condition to be maximum or minimum for the function is $f'(x) = 0$ and it not sufficient (True/False)
88	The area of a rectangle will be maximum for the given perimeter, when the rectangle is a Parallelogram (True/False)
89	Of the given perimeter, the triangle having maximum area is Equilateral triangle (True/False)
90	The sufficient conditions for the function $f: R \to R$ is to be maximum at x = a, will be $f'(a) = 0$ and $f''(a) < 0$ (True/False)
91	36 factorize into two factors in such a way that sum of factors is minimum, then the factors are(2, 18) (True/False)
92	If $f(x) = 2x^3 - 3x^2 - 12x + 5$ and $x \in [-2, 4]$, then the maximum value of function is at the following value of x is 2 (True/False)
93	If $f(x) = 2x^3 - 21x^2 + 36x - 30$, then which one of the following is correct $f(x)$ has maximum at $x = 1$ (True/False)
94	The maximum value of $2x^3 - 24x + 107$ in the interval $[-3, 3]$ is 75 (True/False)
95	If from a wire of length 36 metre a rectangle of greatest area is made, then its two adjacent sides in metre are (9, 9)

ANSWERS

1	Т	11	F	21	F	31	Т	41	Т	51	Т	61	F	71	F	81	Т	91	F
2	F	12	F	22	Т	32	F	42	F	52	F	62	Т	72	F	82	Т	92	F
3	F	13	F	23	Т	33	F	43	Т	53	F	63	F	73	Т	83	F	93	Т
4	F	14	Т	24	F	34	F	44	Т	54	Т	64	Т	74	Т	84	F	94	F
5	Т	15	F	25	F	35	Т	45	F	55	F	65	Т	75	F	85	Т	95	Т
6	F	16	Т	26	Т	36	Т	46	Т	56	Т	66	F	76	Т	86	F		
7	Т	17	Т	27	Т	37	Т	47	Т	57	F	67	Т	77	F	87	Т		
8	Т	18	Т	28	F	38	Т	48	Т	58	F	68	Т	78	Т	88	F		
9	F	19	Т	29	F	39	Т	49	Т	59	Т	69	F	79	Т	89	Т		
10	Т	20	Т	30	Т	40	F	50	F	60	Т	70	Т	80	Т	90	Т		

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : KOLKATA REGION