CHAPTER 8

APPLICATION OF INTEGRALS

TRUE FALSE QUESTIONS

Sl.No.	Question
1	The area of the region bounded by the curve $y^2 = x$, the y-axis and between $y = 2$ and
	56
	$y = 4$ is $\frac{1}{3}$ sq units.
	State true or false.
2	The value of ,
	State true or false
3	The value of is 2. State true or false.
4	The area of the region bounded by the curve $y = \frac{1}{x}$ the x-axis and between $x = 1$ to $x = \frac{1}{x}$
	6 is 6
	State true or false.
5	56 The area enclosed by the curve $y = x^2$ and $y = 8$ is $\frac{-3}{3}$ sq. unit.
	State true or false.
6	The area of the region bounded by the curve $y = \begin{bmatrix} 1 \\ x \end{bmatrix}$, <i>x</i> -axis and between <i>x</i> = 1, <i>x</i> = 4 is
	4.
	State true or false.
7	The area bounded by the lines $x + 2y = 2$, $y - x = 1$ and $2x + y = 7$ is 5 squnits. State
	true or false.
8	
	. State true or false.
9	The area of the region bounded by the parabola $y = x^2$ and $y = x $ is 3 square units.
	State true or false.
10	The area of the region bounded by the curve $y = x^2$ and the line $y = 4$ is 32 square units.

	State true or false.
11	The area lies between the curvey = $\sin_{x, x} = 0$ and $x = \frac{\pi}{2}$ is always above the x-axis.
	(TRUE/FALSE)
12.	The region bounded by the lines $y=2x+1$, $y=3x+1$ and $x=4$ is triangular region.
	(TRUE/FALSE)
13	The region bounded by two parabolas $y^2 = x^2$ and $y^2 = x$ is parabola. (TRUE/FALSE)
14	It is inferred that we can consider either vertical strips or horizontal strips for calculating
	the area of the region. (TRUE/FALSE)
15.	The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab sq units. (TRUE/FALSE)
16.	There is only one fundamental theorem of calculus. (TRUE/FALSE)
17.	Indefinite integrals can be represented as limit of a sum. (TRUE/FALSE)
18.	represent the area between curve f(x), lines x=a, x=b and x=axis. (TRUE/FALSE)
19.	If the area is negative, we take its absolute value. (TRUE/FALSE)
20.	To find the area between curves, we use second fundamental theorem of calculus.
	(TRUE/FALSE)
21	Area under a straight line is area of a polygon
22	Area under a curve is approximated by area of some rectangles
23	Numerical calculation of Area under a curve can be negative
24	Definite integral can be used to find area of a triangle whose sidws' equation are given
25	Area under modulus function in the interval [-2,2] is same as area of triangle ABC where
	A (0,0),B(-2,0),C(-2,3)
26	Area under Greatest integer function in [2,3] is not finite
27	Formula for finding area inside an ellipse can be determines by application of integral
28	Determinants can be used for finding area of a region confined by three intersecting
	lines
29	If f>g, then area under f is smaller than area under g
30	Area under sinx in [0, π] is less than π square unit
31	The area of the region bounded by $x^2=4y$, $y=2$, $y=4$ and the x-axis in the first quadrant is
	32/2.

32	The area of the region bounded by the curve $y^2=9x$, $x=2$, $x=4$ and x -axis in the first
	quadrant is 16-4.
33	14
	The area of the region bounded by the curve $y^2=x$, and the lines x=1, x=4 and x-axis is
	3
24	The area of the region bounded by the circle $x^2 + x^2 - 4$ is $4\pi + 3\pi$ units
34	The area of the region bounded by the circle $x + y = 4$ is $4/t$ sq. units.
35	The area of the region bounded by the ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1$ is 21π sq. units
	The area of the region bounded by the empse $25 ext{ 16}$ $13 ext{ 13}$ $11 ext{ 34}$. $41 ext{ 13}$.
36	1
00	The area of the region bounded by the curve $v^2=x$, and the line $v=x$ is $-sq$, units.
	6
37	The area of the region bounded by the curve $y=$ and x-axis is 2π squarts
0/	
20	π.
30	The area of the region bounded by the curve y=2 +cos x , $0 \le x \le \frac{\pi}{2}$ and the ordinates
	$\frac{\pi}{2}$
	x=0 and x=2 is $(\pi + 1)$ sq. units.
30	ππ
57	The area of the region bounded by the curve $y=sin^2x$, $0 \le x \le \frac{\pi}{2}$, and the x-axis is $\frac{\pi}{3}$ sq.
	units.
40	The area of the region bounded by the curve $y = \log_e x$. $y = 0$ and $x = e$ is 1 sq. units.
	• • • • • •
41	The area of the region bounded by the curves $y = s$ in the between $x = 0$ and $x = 2p$ is 4
	sq. units.
42	$\int_{-\infty}^{3} x - 1 dx = \int_{-\infty}^{1} x - 1 dx + \int_{-\infty}^{1} x - 1 dx$

ZIET, BHUBANESWAR

43	<i>P</i> sq. units is the half the area enclosed by the circle $x^2 + y^2 = 2$
44	The area bounded by the curve $y = f(x)_{and} x = a \text{ and } x = b \text{ where } a < b_{is given by}$
	$ \overset{b}{\underset{a}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset$
45	The curves $y = x - 1 $ and ordinates x = 1, x = 2 represents a trapezium
46	The area bounded by the curves $y^2 = x$ and the straight line $2y = x$ is $\frac{4}{3}$ sq. units
47	The area of the region $\{x, 0\}$: $y = \sqrt{4 - x^2}$ and X-axis is $4p$ sq. units
48	Area bounded by $ x + y = 2$ is two times the area bounded by $ x + y = 1$.
49	If $f(x)^3 g(x)$ for $x\hat{i} [a, b]$, then area bounded by curves $y = f(x)$ and $y = g(x)$
	between ordinates $x = a$ and $y = b_{is}^{b} (f(x) - g(x)) dx$.
50	The correct integral to find the area in the first quadrant enclosed by the x-axis, the line
	y = x, and the circle $x^{2} + y^{2} = 32 \operatorname{is}_{0}^{4} \underbrace{\partial^{2} dx}_{4} + \underbrace{\partial^{2} dx}_{4} \underbrace{\partial^{2} dx}_{4}$.

ANSWER KEYS (TRUE FALSE QUESTIONS)

QUESTION NUMBER	ANSWER
1	Т
2	F
3	Т
4	Т
5	F
6	Т
7	F
8	Т

9	F
10	F
11	Т
12	Т
13	F
14	Т
15	Т
16	F
17	F
18	Т
19	Т
20	Т
21	Т
22	Т
23	Т
24	Т
25	F
26	F
27	Т
28	T
29	F
30	Т
31	F
32	Т
33	Т
34	Т
35	F
36	Т
37	Т
38	Т
39	F
40	Т
41	Т
42	F
43	Т
44	Т
45	F
46	Т
47	Т
48	F
49	Т

50	Т

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : RANCHI REGION