CHAPTER 9

DIFFERENTIAL EQUATIONS

TRUE FALSE QUESTIONS

Q. NO.	Questions			
1	The general solution of the differential equation $\frac{dy}{dx} = e^{x^+y}$			
	is $e^{x} + e^{-y} = c$			
	(a) True (b) False			
2.	The integrating factor of the differential equation			
	$x\frac{dy}{dx} - y = 2x^2 \text{ is } \frac{1}{x}.$			
	(a) True			
2	(b) False The differential equation $y dy = y (y + y) dy = 0$ is homogeneous equation			
3.	(a) True (a) True			
	(b) False			
4.	The number of arbitrary constants in particular solution of a differential equation of third			
	order is 3.			
	(a) True			
	(b) False			
5.	A differential equation of the form $(dy/dx)=h(y/x)$ can be solved by making the substitution x=			
	vy. (a) True			
	(b) False			
6.	The degree of the differential equation $(\frac{d^2 y}{dx})^3 - (dy/dx) = y^3$ is 2			
	(a) True			
	(b) False			
7.	The solution of the differential equation $2x(dy/dx) - y = 3$ represents a circle.			
	(a) True			
	(b) False			
ð. 	The differential equation xdy $-$ ydx = is a homogeneous equation.			
	(a) True			
	(b) False			

9.	The solution of the differential equation ydx +(x-y ³)dy is
	$xy = y^4/4 + c.$
	(a) True
10	(b) False
10.	The general solution of the differential equation $\frac{d^2 y}{dx^2} + y = 0$ is
	y=a cos x.
	(a) True
	(b) False
11	The order of differential equation $\frac{d^2 y}{dx^2}$ +y =0 is 2
	(A) T (B) F
12.	The degree of the differential equation $\frac{dy}{dx}$ +Sin($\frac{dy}{dx}$) = 0 is 1
	(A) T (B) F
13.	The order of differential equation $\frac{d^3 y}{dx^3} + x^2 (\frac{d^2 y}{dx^2})^3 = 0$ is 2
	(A) T (B) F
14.	The degree of differential equation is $\frac{d^3 y}{dx^3} + 2(\frac{d^2 y}{dx^2})^2 + \frac{dy}{dx} + y = 0$ is 2 (A) T (B) F
15.	The number of arbitrary constants in the particular solution of a differential equation of third order are/is 1 (A) T (B) F
16.	The number of arbitrary constants in the general solution of a differential equation of third order are/is 3 (A) T (B) F
17.	The differential equation of the family of circles touching the x-axis at origin is $\frac{dy}{dx} = \frac{2}{x^2 + y^2}$
	(A) T (B) F
18.	Integrating factor for linear differential equation of the form
	$\frac{dy}{dx} + Py = Q \text{ is}$
	(A) T (B) F
19.	$(x-y)\frac{dy}{dx} = x + 2y$ is homogeneous differential equation
	(A) T (B) F
20.	

	The general solution of differential equation is $x\frac{dy}{dx} + 2y = x^2 (x \neq 0)$ is $y = x^2 + cx^{-2}$			
	(A) T (B) F			
21	The integrating factor of the differential equation of the form $\frac{dx}{dy} + Px = Q$ is given by (T/F)			
22	The degree of the differential equation $y'' + y' = ln(y'')$ is ²			
	(T/F)			
23	The curve for which the normal at any point passes through the origin is a circle centre at the origin. (T/F)			
24	The solution of the differential equation cotydx=xdy is x=ccosy. (T/F)			
25	If x= Acos4t + Bsin4t, then $\frac{d^2 x}{dt^2} = -16_x$. (T/F)			
26	The integrating factor of the differential equation			
	$x\frac{dy}{dx} - y = 2x^2 \text{is x. (T/F)}$			
27	Every linear differential equation has always degree one (T/F)			
28	Order of a differential equation is defined as the order of the highest order derivative of the			
	dependent variable with respect to the independent variable involved in the givendifferential			
	equation.			
29	Order and degree (if defined) of a differential equation are alwayspositive integers.			
30	Degree of a given differential equations is not defined if the given differential equationis not			
	a polynomial equation in itsderivatives.			
31	The solution which contains arbitrary constants is called the particular solution(primitive) of			
	the differential equation.			
32	The solution free from arbitrary constants i.e., the solution obtained from the generalsolution			
	by giving particular values to the arbitrary constants is called a particularsolution of the			
	differential equation.			
33	The function y = e^{-3_x} is a solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6_y = 0$			
34	The function y = a cosx+ b sin x, where, a, b $\in \mathbf{R}$ is aparticular solution of the differential			
	equation $\frac{d^2y}{dx^2} + y = 0$.			

35	The differential equation $x \frac{dy}{dx} - y = 0$ representing the family of curves y = mx, where mis
	arbitrary constant.
36	A differential equation of the form $\frac{dy}{dx} = F(x, y)$ is said to be homogenous if F(x, y) is a
	homogenous function of degree two.
37	The Integrating Factor of differential equation
	$(\tan^{-1}y - x) dy = (1 + y^2) dx is etan^{-1_x}$
38	Every linear differential equation has always degree one (T/F)
39	The degree of the differential equation x – $\cos \frac{dy}{dx} = 0$ is one. (T/F)
40	The equation of the curve through the origin satisfying the equation $dy = (\sec x + y \tan x) dx$ is y cos x = x. (T/F)
41	The curve for which the normal at any point passes through the origin is a circle centred at the origin. (T/F)
42	The number of arbitrary constants in the general solution of a differential is same as its order. (T/F)
43	The D.E $\frac{d^2y}{dx^2} + 2(\frac{dy}{dx})^2 + 9y = x$ is a non-linear differential equation, because differential co-
	efficient $\frac{dy}{dx}$ has exponent 2. (T/F)
44	The integrating factor of the differential equation of the form $\frac{dx}{dy} + Px = Q$ is given by

ANSWERS

Q. NO.	Answer	Q. NO.	Answer
1	Т	23	Т
2	Т	24	F

3	F	25	Т
4	F	26	F
5	Т	27	Т
6	F	28	Т
7	F	29	Т
8	Т	30	Т
9	Т	31	F
10	F	32	Т
11	Т	33	Т
12	F	34	F
13	F	35	Т
14	F	36	F
15	F	37	Т
16	Т	38	Т
17	Т	39	Т
18	Т	40	Т
19	Т	41	Т
20	Т	42	Т
21	F	43	Т
22	F	44	F

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : RANCHI REGION