CHAPTER-12 INTRODUCTION TO 3D 01 MARK TYPE QUESTIONS

]
(a	a) a=-4, b=-2 (b) a=-4, b = 2 (c) a= 4, b = 2 (d) a=2, b= -4	
,(y the	Today OurMaths teacher told us that centroid of a triangle with vertices is($(x1+x2+x3)/3$ (1+y2+y3)/3).Now If the middle points of the sides of a triangle are (1, 1), (2, -3) and (3, 2), then the centroid of the triangle is a) (-2, 0) (b) (0,2) (c) (3,2) (d) (2, 0)	1
cer	In a pdf file the images as vertices of a triangle are A(-5, 3), B(p, -1) and C(6, q). If the entroid of the Δ ABC is (1, -1), then the values of p andq are a) p=-2, q =5 (b) p=2,q=-5 (c) p=3, q = 5 (d)p=-5, q =2	1
tar is (a)	In an interior design on a wall two intersecting lines are to be drawn joining nails. The ngent of the angle between the lines joining the nails (-1,2), (3, -5) and (-2, 3), (5, 0) a) 37/49 (b)73/49 c) 23/49(d) 47/49	1
ead (a) (b) (c)	uring the first week of May we faced thunderstorm. Four positions at intervals of 1 hour ach, are (-a, - b), (0, 0), (a, b) and (a ² , ab) . What is the path of the thunderstorm?) collinear) vertices of a parallelogram) vertices of a rectangle) none of these	1
19. Ou (a)	ur beds are parallel to x-axis. Slope of beds are :)1 (b) -1 (C)0 (d)not defined	1

20.	An ant is walking on a wall. Considering the position of ant to be (x, y) the distance of the point from x-axis is :	1
	(a) x (b) y (c) x (d) lyl	
21.	The octants in which the points (-6.5, -7.5, -8.5) and (8,6,5) lie are respectively: (a) Second, Sixth (b) Seventh, First (c) First, Seventh Fifth, Sixth.	1
22.	 What is the perpendicular distance of the point P (7,5,6) from xy-plane? a) 8 units b) 7 units c) 6 units 5 units 	1
23.	The distance between (3,2,-1) and (-1,-1,-1) is a) 5 units b) 6 units c) 7 units 8 units	1
24.	A point on ZX – plane which is equidistant from the points (1,-1,0) (2,1,2) (3,2,- 1) is a) $(\frac{1}{5}, 0, \frac{31}{10})$ b) $(\frac{11}{2}, 0, 1)$ c) $(\frac{31}{10}, 0, \frac{1}{5})$ d) $(\frac{31}{5}, 0, \frac{1}{10})$	1
25.	The equation of the line passing through the points A(1,2,3) and B(4,-1,6) is given by a) X – y + z =0	1

	b) X + y- z =0	
	c) $X + y + z = 0$	
	X - y - z = 0	
26.	Which of the following equations represents a plane parallel to yz – plane?	1
	a) X = 0	
	b) $Y = 0$	
	c) Z = 0	
	X + y + z = 0	
27.	•	1
27.	How many axes are used to represent a point in a 3D cartesian coordinate	1
	system?	
	a) 1	
	b) 2	
	c) 3	
	4	
28.	The point A(-4, -3, -2) is present in	1
	a) V – octant	
	b) VI – Octant	
	c) VII – Octant	
	VIII – Octant	
29.	What is the term used to describe the point where the three coordinate axes	1
	intersect in a 3D coordinate system?	
	a) Vertex	
	b) Origin	
	c) Center	
	Intersection	
30.		1
50.		1
	a) 4	
	b) 6	
	c) 8	
	10	
31.	A plane is parallel to yz-plane so it is perpendicular to:	1
	(a) x –axis (b) y-axis	
	(c) z-axis (d) None of these	
32.	Equation of y-axis is considered as	1
	(a) $x = 0, y = 0$ (b) $z = 0, y = 0$ (d) Name of these	
33.	(c) $x = 0, z = 0$ (d) None of theseWhat is the locus of a point for which $x=0,y=0$?	1
55.	(a) x axis (b) y axis	1
	(c) z axis (d) yz-plane	
34.	x-axis is the intersection of the Planes	1
-	(a) xy and xz (b)yz and zx	-
	(c) xy and yz (d) none of these	
35.	The point (4,-2, 3) lies in the	1
	(a) Third Octant (b) Fifth Octant	
	(c) Sixth Octant (d) Seventh Octant	
36.	The Coordinates of the foot of the perpendicular drawn from the point $P(3,4,5)$ on the yz-	1

	plane are	
	(a) $(3,4,0)$ (b) $(0,4,5)$	
	(c) $(3,0,5)$ (d) $(3,0,0)$	
37.	The Coordinates of the foot of the perpendicular from a point P(6,7,8) on y-axis are	1
	(a) $(6,0,0)$ (b) $(0,7,0)$	-
	(c) $(0,0,8)$ (d) $(0,7,8)$	
38.	Let (3,4,-1) and (-1,2,3) be the end points of a diameter of a sphere then, the radius of the	1
	sphere is equal to	
	(a) 2 (b) 7	
	(c) 6 (d) 3	
39.	If the distance between the points (a,0,1) and (0,1,2) Is $\sqrt{27}$, then the value of a is	1
	(a) 5 (b) ± 5	
	(c) -5 (d) none of these	
40.	Assertion (A): The distance between the points P (1,2,3) and R (7, 0, -1) is $\sqrt{56}$.	1
	Reason(R): The distance between $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is given by PQ =	
	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	
	(a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation	
	of Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct	
	explanation of Assertion (A).	
	(c) Assertion (A) is true and Reason (R) is false.	
	(d) Assertion (A) is false and Reason (R) is true	
41.	Which octant do the point (–5,4,3) lie?	1
	A. Octant I	
	B. Octant II	
	C. Octant III	
	D. Octant IV	
42.	What is the distance between the points $(2, -1, 3)$ and $(-2, 1, 3)$?	1
		-
	A. 2v5 units	
	B. 25 units	
	C. 4√5 units	
	D. V5 units	
43.	The locus represented by xy + yz = 0 is:	1
	(a) A pair of perpendicular lines	
	(b) A pair of parallel lines	
	(b) A pair of parallel lines	
	(c) A pair of parallel planes	

 d) A pair of perpendicular planes ind the image of (-2,3,4) in the y z plane. . (-2, 3, 4) . (-2, -3, 4) . (-2, -3, -4) 	1
. (-2, 3, 4) . (2, 3, 4) . (-2, -3, 4)	1
. (2, 3, 4) . (-2, -3, 4)	
. (2, 3, 4) . (-2, -3, 4)	
. (-2, -3, 4)	
. (-2, -3, -4)	
he distance of the point P(a, b, c) from the x-axis is:	1
a) $\sqrt{a^2 + c^2}$	
b) $V(a^2 + b^2)$	
c) $\sqrt{(b^2 + c^2)}$	
D) none of these	
he maximum distance between points (3sin θ , 0, 0) and (4cos θ , 0, 0) is:	1
a) 3 units	
b) 4 units	
c) 5 units	
d) Cannot be determined	
he plane 2x - (1+a)y + 3az = 0 passes through the intersection of the planes	1
A) $2xy = 0$ and $y + 3z = 0$	
3) $2x - y = 0$ and $y - 3z = 0$	
C) $2x + 3z = 0$ and $y = 0$	
(1) 2x - 3z = 0 and $y = 0$	
he locus of a point which moves so that the difference of the squares of its	1
istances from two	
iven points is constant, is a	
a) Straight line	
	$V(b^{2} + c^{2})$ $(b) none of these he maximum distance between points (3sin \theta, 0, 0) and (4cos \theta, 0, 0) is:) 3 units) 4 units) 4 units) 5 units) Cannot be determined he plane 2x - (1+a)y + 3az = 0 passes through the intersection of the planesa) 2xy = 0 and y + 3z = 0) 2x - y = 0 and y - 3z = 0) 2x - y = 0 and y - 3z = 0() 2x - 3z = 0 and y = 0he locus of a point which moves so that the difference of the squares of its stances from two$

	(b) Plane	
	(c) Sphere	
	(d) None of these	
49.	Three planes $x + y = 0$, $y + z = 0$, and $x + z = 0$	1
	(a) none of these	
	(b) most in a line	
	(b) meet in a line	
	(c) meet in a unique point	
	(d) meet taken two at a time in parallel lines	
50.	The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinatesof A	1
	and B are $(3, -5, 7)$ and $(-1, 7, -6)$, respectively, Then the coordinates of	
	thepoint C.	
	(a) (1, 1, 2) (b) (1, 0, 1)	
	(a) (1, 1, 2) (b) (1, 0, 1)	
	(c) (1 ,2 ,3) (d) (0 ,0 , 2)	
51.	YOZ-plane divides the line segment joining the points $(3, -2, -4)$	1
	and $(2,4,-3)$ in the ratio-	
	a) 1:2	
	b) -4:3	
	c) $-2:3$	
52.	d) -3:2 Which octant do the point (-2,6,3) lie?	1
52.	A. Octant I	
	B. Octant II C. Octant III	
	D. Octant IV	
53.	Coordinate planes divide the space into octants. A. 4	1
	B. 6	
	C. 8 D. 10	
54.	The perpendicular distance of the point $P(6, 7, 8)$ from the XY – Plane is:	1
	(a)8 (b)7	
	(c)6	
	(d) None of the above	
55.	The image of the point P (1,3,4) in the plane $2x - y + z = 0$ is:	1

	(a) (-3, 5, 2)	
	(b) (3, 5, 2)	
	(c) (3, -5, 2)	
	(d) (3, 5, -2)	
56.	The locus represented by $xy + yz = 0$ is:	1
	(a) A pair of perpendicular lines	
	(b) A pair of parallel lines (c) A pair of parallel planes	
	(d) A pair of perpendicular planes	
57.	The maximum distance between points	1
	$(3\sin\theta, 0, 0)$ and $(4\cos\theta, 0, 0)$ is:	
	(a) 3 units (b) 4 units	
	(c) 5 units	
	(d) Cannot be determined	
58.	The distance of the point P (a, b, c) from the x-axis is: (a) $\sqrt{a^2 + c^2}$	1
	$(a) \vee (a + c)$ (b) $\vee (a^2 + b^2)$	
	$(c) \vee (b^{2} + c^{2})$	
	(d) None of these	
59.	A point is on the x-axis. Which of the following represent the point?	1
59.	A point is on the x-axis. Which of the following represent the point: A. $(0, x, 0)$	1
	B. (0, 0, x)	
	C. (x, 0, 0)	
	D. None of the above	
60.	Equation of YOZ plane is	1
	A. x=0 B. y=0	
	C. z=0	
	D. none of these	
	(-, -, +)	
	(+, -, +) $(-, +, +)$	
	(+. +. +)	
	× ×	
	(+, =, +) (+, +, -) (-, +, -)	
61.	Find the point on x-axis which is equidistant from the point A (3,2,2) and B (5,5,4).	1
	(16,0,0)	
	(5/4,0,0)	
	y units	
	(9,0,0) (49/4,0,0)	
	1	

62. Which of the following is not a coordinate axis in a 3-dimensional Cartesian c system?	coordinate 1
a) X-axis b) Y-axis c) Z-axis d) W-axis	
63. If a point lies on the positive x-axis, then its y and z coordinates are:	1
a) $y = 0, z = 0$	
b) $y > 0, z = 0$	
c) $y = 0, z > 0$	
d) $y > 0, z > 0$	
64. If the coordinates of a point are $(2, -3, 5)$, then the point lies in which quadran	nt? 1
a) First quadrant	
b) Second quadrant	
c) Third quadrant	
d) Fourth quadrant65. Equation of y-axis is considered as	1
(A) $x = 0$, $y = 0$ (B) $y = 0$, $z = 0$ (C) $z = 0$, $x = 0$ (D) none of the	ese
66. A plane is parallel to y z -plane so it is perpendicular to:	1
(A) x-axis (B) y axis (C) z-axis (D) none of these	
57. The locus of a point for which $x = 0$ is	1
(A) xy-plane (B) yz-plane (C) zx-plane (D) none of these	
(A) xy-plane (B) yz-plane (C) zx-plane (D) none of these	
58. The point (-2, -3, -4) lies in the	1
(A) First octant (B) Seventh octant	
(C) Second octant (D) Eighth octant	
69. The locus of a point for which $y = 0, z = 0$ is	1
(A) equation of x-axis (B) equation of y-axis	
(C) equation at z-axis (D) none of these	
70. The distance of point $P(3, 4, 5)$ from the yz-plane is	1
(A) 3 units (B) 4 units (C) 5 units (D) 550	
71. Find the image of (5,2,-7) in the xy plane.	1
a) (5,2,7) b) (5,-2,7) c) (-5,2,7) d) none of these.	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	C. 8	1
2.	C. (x, 0, 0)	1
3.	B. Octant II	1
4.	A. 2√5 units	1
5.	C. 5	1
6.	d. A pair of perpendicular planes	1
7.	B. (2, 3, 4)	1
8.	A. 1	1
9.	c. $v(b^2 + c^2)$	1
10.	c. 6	1
11.	(b) (0,-2)	1
12.	(c) 2	1
13.	(a) (-14,6)	1
14.	(c) a=4 , b=2	1
15.	(d) (2,0)	1
16.	(b) p=2, q=-5	1
17.	(a) 37/49	1
18.	(a) collinear	1
19.	C)0	1
20.	(b) y	1
21.	B	1
22.	C	1
23.	A	1
24.	B	1
25.	B	1
26.	A	1
27.	С	1
28.	С	1
29.	В	1
30.	С	1
31.	(a) x –axis	1
32.	(c)x = 0, z = 0	1
33.	(c) z axis	1
34.	(a) xy and xz	1
35.	(a) Third Octant	1
36.	(b) (0,4,5)	1
37.	(b) (0,7,0)	1
38.	(d) 3	1
39.	(b) ±5	1
40.	(a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).	1

		,
41.	В	1
42.	A	1
43.	D	1
44.	В	1
45.	C	1
46.	C	1
47.	В	1
48.	C	1
49.	C	1
50.	A	1
51.	d	
52.	B. Octant II	
53.	C. 8	
54.	A. 8	
55.	(a) (-3, 5, 2)	
56.	(d) A pair of perpendicular planes	
57.	(c) 5	
58.	(c) $\sqrt{b^2 + c^2}$	
59.	C. (x, 0, 0)	
60.	A on yz-plane, x=0.	
61.	$D(\frac{49}{4}, 0, 0)$	
	d	1
1 62		1
62. 63.		1
63.	a d	1
	a	

67.	b	1
68.	b	1
69.	a	1
70.	c	1
71.	a) (5,2,7)	1