CHAPTER-2 RELATIONS & FUNCTIONS 01 MARK TYPE QUESTIONS

4.	What will be the domain for which the functions $f(x) = 2x^2 - 1$ and $g(x) = 1 - 3x$ are equal?	1
	(a) {-2, 1}	
	(b) $\{1/2, -2\}$	
	(c) [2, 12]	
	(d) (-1, 2)	
5.		1
5.	If $[x]^2 - 5 [x] + 6 = 0$, where [.] denotes the greatest integer	T
	function, then	
	(a) x ∈ [3, 4]	
	(b) x ∈ (2, 3]	
	(c) x ∈ [2, 3]	
	(d) $x \in [2, 4)$	
6.	If $f(x) = ax + b$, where a and b are integers, $f(-1) = -5$ and $f(3) =$	1
	3, then a and b are equal to	
	(a) $a = -3$, $b = -1$	
	(b) $a = 2, b = -3$	
	(c) $a = 0$, $b = 2$	
	(d) $a = 2, b = 3$	
7.	The domain of the function $f(x) = x/(x^2 + 3x + 2)$ is	1
	(a) [-2, -1]	
	(b) $R - \{1, 2\}$	
	(c) $R - \{-1, -2\}$	
	(d) R - {2}	

8.	The range of $f(x) = \sqrt{(25 - x^2)}$ is	1
	The range of $\Gamma(x) = V(23 - x^2)$ is	-
	(a) (0, 5)	
	(b) [0, 5]	
	(c) (-5, 5)	
	(d) [1, 5]	
9.		1
5.	The domain and range of the real function f defined by $f(x) = (4 - x)^{1/2}$	1
	x)/(x - 4) is given by	
	(a) Domain = R, Range = $\{-1, 1\}$	
	(b) Domain = $R - \{1\}$, Range = R	
	(c) Domain = $R - \{4\}$, Range = $\{-1\}$	
	(d) Domain = $R - \{-4\}$, Range = $\{-1, 1\}$	
10.	The domain and range of the function f given by $f(x) = 2 - x - 5 $ is	1
	(a) Domain = R+ , Range = (− ∞, 1]	
	(b) Domain = R, Range = $(-\infty, 2]$	
	(c) Domain = R, Range = $(-\infty, 2)$	
	(d) Domain = R+ , Range = (−∞, 2]	
11.	Let $R = \{(x, y) : x, y \in z, x^2 + y^2 \le 4\}$ is a relation in z, then domain of R is:	1
	a) {0, 1, 2}	
	b) {0, -1, -2}	
	c) {-2, -1, 0, 1, 2}	
12.	d) None of these	1
12.	In the set <i>R</i> of real numbers, two relations are: $R1 = \{(x, y): x, y \in R \text{ and } x^2 + y^2 \le 25 \}$	
	$R1 = \{(x, y): x, y \in R \text{ and } y \ge \frac{4}{9}x^2 \}$	
	Then domain and range of $R1 \cap R2$ is:	
	a) [-3,3], [0,5]	
	b) [-3,3], [-5,5]	
	c) [-3,4], [0,5] d) [3,4], [0,5]	
	u, [J,+], [U,J]	

13.	What will be the output of $\sqrt{-1}$ if the function in the machine is $f(x) = x^2$ Image: Function machine	1
14.	 a) 1 b) 0 c) -1 d) 1 Let <i>R</i> be a relation from a set <i>A</i> to a set <i>B</i>, then 	1
	a) $R = A \cup B$ b) $R = A \cap B$ c) $R \subseteq A \times B$	
15.	d) $R \subseteq B \times A$ If $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$, then $f(x) = ?$ a) x^2 b) $x^2 - 1$ c) x^2 d) x^2	1
16.	d) x^2 If $[x]^2 - 5[x] + 6 = 0$ where [] denotes the greatest integer function: a) $x \in [3,4]$ b) $x \in (2,3]$ c) $x \in [3,2]$ d) $x \in [2,4]$	1
17.	Let $f(x) = x$, $g(x) = \frac{1}{x}$ and $h(x) = f(x)$. $g(x)$, then $h(x) = 1$ for: a) $x \in R$ b) $x \in Q$ c) $x \in R - Q$ d) $x \in R, x \neq 0$	1
18.	The range of the function $f(x) = \frac{x+2}{ x+2 }, x \neq -2$ is: a) {-1, 1} b) {-1, 0, 1} c) {1}	1

	d) (0,∞)			
19.	Assertion(A) : If $(x + y, 3) = (5, x - y)$ then $x = 4$ and $y = 1$	1		
	Reason(R) : Two ordered pairs are equal if and only if their corresponding elements are			
	equal			
	a) Both A and R are true and R is the correct explanation of A			
	b) Both A and R is true but R is not the correct explanation of A			
	c) A is true but R is false			
	d) A is false but R is true			
20.	The figure shows a relationship between the set P and Q. Which of the following is true? P $\begin{pmatrix} 0 \\ -5 \\ -6 \\ -7 \\ Fig. \end{pmatrix}$	1		
	 a) Domain of <i>R</i> is {5,6,7} b) Range of <i>R</i> is {3,4,5} c) In roster form <i>R</i> = {(5,3), (6,4), (7,5)} d) All of these 			

ANSWERS:

Q. NO	ANSWER	MARKS
1.	С	1
2.	d	1
3.	а	1
4.	b	1
5.	d	1
6.	b	1
7.	С	1
8.	b	1
9.	С	1
10.	b	1
11.	С	1
12.	A	1
13.	C	1
14.	C	1
15.	C	1
16.	D	1
17.	D	1
18.	A	1
19.	A	1
20.	d	1