KENDRIYA VIDYALAYA SANGATHAN

SUBJECT: MATHEMATICS

CLASS: XI

STUDENT SUPPORT MATERIAL

		KENDF	RIYA VIDYALAYA SANGA MATHS CONTENT CLASS-XI <u>CHAPTER: SETS</u>	ATHAN				
			MCQS – SETS					
Q.1	The set of in (a) A null se (c) A finite s		lass is : (b) A singleton set (d) Not a well defined	collection				
Q.2		If the sets A and B are given by A = {1, 2, 3, 4}, B = {2, 4, 6, 8, 10} and the universal set U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then:						
	(a) (A U B)' (c) (A ∩ B)'	= {5, 7, 9} = {1, 3, 5, 6, 7, 8}	(b) (A ∩ B)'= {1, 3, 5, 6 (d) None of these	5, 7}				
Q.3	If A = {1, 2, 3	3, 4}, B = {2, 3, 5, 6} and	C = {3, 4, 6, 7}, then					
	(a) A – (B ∩ (c) A – (B U	C) = {1, 3, 4} C) = {2, 3}	(b) A – (B \cap C) = {1, 2, (d) A – (B U C) = {Ø}	4}				
Q.4	The set {x : x	x is an even prime numb	per} can be written as:					
	(a) {2}	(b) {2, 4}	(c) {2,14}	(d) {2, 4, 14}				
Q.5	The number	r of the proper subset of	f {a, b, c} is:					
C	(a) 3	(b) 8	(c) 6	(d) 7				
Q.6	Which one i (i) empty se (a) (i)	s different from the oth t (ii) void set (iii (b) (ii)	ers?) zero set (iv) null set : (c) (iii)	(d) (iv)				
Q.7	Given the se following m	ets A = $\{1, 3, 5\}$, B = $\{2, 4$ ay be considered as uni	r, 6} and C = {0, 2, 4, 6, 8}. W versal set for all the three s	hich of the				
	(a) {0, 1, 2, 3 (c) {0, 1, 2, 3	3, 4, 5, 6} 3, 4, 5, 6, 7, 8, 9, 10}	(b) Ø (d) {1, 2, 3, 4, 5, 6, 7	7, 8}				
Q.8	 Which of the following collections is a set ? (a) The collection of all the days of a week (b) A collection of 11 best hockey player of India. (c) The collection of all rich person of Delhi (d) A collection of most dangerous animals of India. 							
Q.9	(a) n(A) + n	then n(A U B) is equal to (B) - n(A∩B) (B) + n(A∩B)	o: (b) n(A) - n(B) + n (d) n(A) - n(B) - n					

Q.10	Let V = {a, e, i, o, u} and B = {a, i, k, u} the (a) {e, o} and {k} (c) {o} and {k}	then value of (V – B) and (B – V) are respectively: (b) {e} and {k} (d) {e, o} and {k, i}	
Q.11	Let A = $\{a, b\}$, B = $\{a, b, c\}$ then AUB is: (a) $\{a, b\}$ (b) $\{a, c\}$	(c) {a, b, c}	(d) {b, c}
Q.12	The number of subsets of a set containing (a) n (b) 2^{n} - 1	ng n elements is: (c) n ²	(d) 2 ⁿ
Q.13	If A = $\{1,2,3\}$, B = $\{1,4,6,9\}$, and R is a r range of R is: (a) $\{1,4,6,9\}$ (b) $\{4,6,9\}$		B defined by 'x is greater than y ' the (d) none of these
Q.14	Let R be a relation from a set A to set B (a) $R = A U B$ (b) $R = A \cap B$	then: (c) R≤ A×B	(d) $R \le B \times A$
Q.15	The number of subsets of a set containing(a) n(b) 2^{n} - 1	ng n elements is: (c) n ²	(d) 2 ⁿ
Q.16	If A = {1, 2, 3}, B = {1, 4, 6, 9}, and R is a 'x is greater than y ' the range of R is: (a) {1, 4, 6, 9} (b) {4,6,9}	a relation from A (c) {1}	to B defined by (d) None of these
Q17	Set A = $\{0, 7, 26, 63\}$ in set-builder form (a) $\{x: x \in N, x = n^3 - 1 \text{ and } n \le 7\}$ (c) $\{x: x \in N, x = n^2 - 1 \text{ and } n < 4\}$	(b) {x: x	$x \in N$, $x = n^2 - 1$ and $n \le 5$ } $x \in N$, $x = n^3 - 1$ and $n \le 4$ }
Q18	Let A, B, C be three sets. If $A \in B$ and B(a) $A \subset C$ (b) $A \not\subset C$		(d) A Ø C
Q19		b) B is a finite set d) B is not a set	
Q20	If A = {3, 5, 7, 9, 11}, B = {7, 9, 11, 13}, C (a) {11, 13, 15} (b) {9, 11, 13, 15		
Q21	If $n(A) = 2$ then $n[P(P(A))]$ is: (a) 8 (b) 4 (c) 12	(d) 16	

Q22	Let P be a set of squares, Q be set of parallelograms, R be a set of quadrilaterals and S be a set of rectangles. Consider the following : (I) $P \subset Q$ (II) $R \subset P$ (III) $P \subset S$ (IV) $S \subset R$		
	Which of the above are correct?(a) I, II and III(b) I, III and IV(c) I, II and IV(d) III and IV		
Q23	A = {1, 2, 3, 4}, B = {-1, 1, 0, -2, 2}, C = {1, 3, 4} are subset of which set?		
	(a) [1, 4] (b) [-1, 4] (c) [-2, 2] (d) [-2, 4]		
Q24	Let A = {(1, 2), (3, 4), 5}, then which of the following is incorrect? (a) {3, 4} Ø A as (3, 4) is an element of A (b) {5}, {(3, 4)} are subsets of A but not elements of A (c) {1, 2}, {5} are subsets of A (d) {(1, 2), (3, 4), 5} is a subset of A		
Q25	Match the following sets in column I with the intervals in column II:		
	Codes: Column - I Column - II A B C D A. $\{x : x \in \mathbb{R}, a < x < b\}$ 1. $(a, b]$ (a) 4 1 2 3 B. $\{x \in \mathbb{R} : a \le x \le b\}$ 2. $[a, b)$ (b) 2 3 4 1 C. The set of real numbers x such that $a \le x < b$ 3. (a, b) (c) 1 2 3 4 D. $\{x : x \in \mathbb{R} \text{ and } a < x \le b\}$ 4. $[a, b]$		
Q26	Two finite sets have m and n elements. The number of elements in the power set of first set is 48 more than the total number of elements in power set of the second set. Then the value of m and n are: (A) 7, 6 (B) 6, 3 (C) 6, 4 (D) 7, 4		
Q27	Which of the following is correct?I. Number of non-empty subsets of a set having n elements are $2^n - 1$.II. The number of non-empty subsets of the set {a, b, d} are 15:(a) Only I is false(b) Only II is false(c) Both I and II are false(d) Both I and II are true		
Q28	 Which of the following is not a null set? (a) Set of odd natural numbers divisible by 2 (b) Set of even prime numbers (c) {x: x is a natural number, x > 5 and x < 6} (d) {y: y is a point common to any two parallel lines} 		
Q29	If n (A) = 4, how many proper subsets does the set A has: (a) 15 (b) 16 (c) 3 (d) 14		

Q30	A and B are not singleton sets and $n(A \times B) = 21$. If $A \subset B$ then $n(B)$ is equal to:(a) 3(b) 7(c) 21(d) 1
Q31	Which of the following are disjoint sets: (a) {a, b, c} & {b, c, a} (b) {a, e, b, d} & {d, a, b, e} (c) {2, 5, m, n} & {n, m, 5, 2} (d) {(2, 4, 6, 8) & {x: x is an even number}}
Q32	A and B are non-empty sets, then $P(A) \cup P(B)$ is equal to:(a) $P(A \cup B)$ (b) $P(A \cap B)$ (c) $P(A) = P(B)$ (d) None of these
Q33	Consider the sets A = $\{0\}$, B = $\{x : x > 15 \text{ and } x < 5\}$, C = $\{x : x - 5 = 0\}$, D = $\{x : x^2 = 25\}$ andE = $\{x : x \text{ is an integral positive root of the equation } \{x^2 - 2x - 15 = 0\}$ Choose the pair of equal sets:(a) A and B(b) C and D(c) C and E(d) B and C
Q34	If U = {1, 2, 3, 4,, 10} is the universal set of the sets A ={2, 4, 6, 8, 10} and B ={4, 6}, then given sets can be represented by Venn diagram as: (a) $\begin{array}{c} 1 & 2 & 4 & 0 \\ \hline & 3 & 2 & 0 \\ \hline & 5 & 8 & 10 \\ \hline & 7 & 6 & 2 & 5 \\ \hline & 9 & 8 & 10 \\ \hline & 7 & 9 & 8 & 10 \\ \hline & 1 & 2 & 8 & 3 \\ \hline & 1 & 2 & 1 & 2 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 2 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 2 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 1 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 2 & 1 & 1 \\ \hline & 1 & 2 & 1 & 3 \\ \hline & 1 & 1 & 2 & 1 \\ \hline & 1 & 1 & 2 & 1 \\ \hline & 1 & 1 $
Q35	The shaded region in the given figure is (a) $B \cap (A \cup C)$ (b) $B \cup (A \cap C)$ (c) $B \cap (A - C)$ (d) $B - (A \cup C)$ (d) $B - (A \cup C)$
Q36	Which of the following sets is a finite set? (a) $A = \{x : x \in Z \text{ and } x^2 - 5x + 6 = 0\}$ (b) $B = \{x : x \in Z \text{ and } x^2 \text{ is even}\}$ (c) $D = \{x : x \in Z \text{ and } x > -10\}$ (d) All of these

Q37	Which of the	following has only	one subset:			
	(a) { }	(b) {4}	(c) {4, 5}	(d) {0}		
Q38	If A and B be any two sets, then $A \cap (A \cup B)'$ is equal to:					
	(a) A	(b) B	(c) Ø	(d) None of these		
Q39	A survey shows that 63% of the people watch channel. If $x\%$ of the people watch both channel					
	(a) x = 35	(b) x = 63	(c) $39 \le x \le 63$	(d) x = 39		
Q.40	$A = \{x : x \neq x\}$	represents:				
	(a) {x}	(b) {1}	(c) { }	(d) {0}		
Q41	In a group of coffee but not	-	nk tea but not coffee,	while 33 drink tea. How many persons drin	nk	
	(a) 17	(b) 36	(c) 23	(d) 19		
Q42			ol. If 400 of them can eak both Telugu and		1e	
	(a) 100	(b) 200	(c) 300	(d) 400		
Q43	 Which one of the following is an infinite set : (a) The set of human beings on the earth (b) The set of water drops in a glass of water (c) The set of trees in a forest (d) The set of all primes 					
Q44	If Ø denotes t	he empty set, then	which one of the foll	owing is correct:		
	(a) Ø∈ Ø	(b) Ø∈ {Ø}	(c) $\{\emptyset\} \in \{\emptyset\}$	(d) $0 \in \emptyset$		
Q45	If $B = {x: x is a in set B are:$	student presently	studying in both clas	ses X and XI}. Then, the number of elemen	ts	
	(a) finite	(b) infinite	(c) zero	(d) None of these		
Q46	The set {x : x (a) {1, 2, 3, 4,		er less than 6 and 3 ^x – 1, 2, 3, 4, 5, 6}	1 is an even number} in roster form is: (c) {2, 4, 6} (d) {1, 3, 5}		
Q47	If $A \subset B$ and $A \neq B$, then:					
	(a) A is called (c) A is not a s	a proper subset of subset of B	• •	A is called a super set of B) B is a subset of A		

Q48	Which of the following is true:					
	(a) $a \in \{\{a\}, b\}$ (b) $\{b, c\} \subset \{a, \{b, c\}\}$ (c) $\{a, b\} \subset \{a, \{b, c\}\}$ (d) None of these					
Q49	The set of real numbers {x : a < x < b} is called:					
	(a) open interval(b) closed interval(c) semi-open interval(d) semi-closed interval					
Q50	The set of all letters of the word 'SCHOOL' is represented by:I. {S, C, H, O, O, L}II. {S, C, H, O, L}III. {C, H, L, O, S}IV. {S, C, H, L}					
	The correct code is:(a) I and II(b) I, II and III(c) II and III(d) I, II, III and IV					
Q.51	The empty set is represented by:I. \emptyset II. { \emptyset }III. {}IV. {{}}					
	(a) I and II (b) I and III (c) II and III (d) I and IV					
Q.52	Which of the following is correct?					
	 I. Number of non-empty subsets of a set having n elements are 2ⁿ – 1. II. The number of non-empty subsets of the set {a, b, c, d} are 15. 					
	(a) Only I is false(b) Only II is false(c) Both I and II are false(d) Both I and II are true					
Q53	Let A = {(1, 2), (3, 4), 5}, then which of the following is incorrect:					
	 (a) {3, 4} Ø A as (3, 4) is an element of A (b) {5}, {(3, 4)} are subsets of A but not elements of A (c) {1, 2}, {5} are subsets of A (d) {(1, 2), (3, 4), 5} are subset of A 					
Q54	From 50 students taking examination in Mathematics,Physics and Chemistry, each of the students has passed in at least one of the subject, 37 passed Mathematics, 24 Physics and 43 Chemistry. Atmost 19 passed Mathematics and Physics, atmost 29 Mathematics and Chemistry and atmost 20 Physics and Chemistry. Then, the largest numbers that could have passed all three examinations, are:					
	(a) 12 (b) 14 (c) 15 (d) 16					

Q55	Let U be the set of all boys and girls in school. G be the set of all girls in the school. B be the set of all boys in the school and S be the set of all students in the school whotake swimming. Some but not all students in the school take swimming: $ \begin{array}{c c} \hline $
	ASSERTION & REASON TYPE QUESTIONS Directions : Each of these questions contains two statements, Assertion and Reason. Each of these
	questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.
	 (a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. (b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion (c) Assertion is correct, reason is incorrect (d) Assertion is incorrect, reason is correct.
Q56	Assertion : The number of non-empty subsets of the set {a, b, c, d} are 15.
	Reason : Number of non-empty subsets of a set having n elements are $2^n - 1$.
Q57	Suppose A, B and C are three arbitrary sets and U is a universal set.
	Assertion : If $B = U - A$, then $n(B) = n(U) - n(A)$.
	Reason : If $C = A - B$, then $n(C) = n(A) - n(B)$.
Q58	Assertion : Let A = {1, {2, 3}}, then P(A) = {{1}, {2, 3}, \emptyset , {1, {2, 3}}}.
	Reason : Power set is set of all subsets of A.
Q59	Assertion : The subsets of the set {1, {2}} are { }, {1}, {{2}} and {1, {2}}.
	Reason : The total number of proper subsets of a set containing n elements is $2^n - 1$.
Q60	Assertion : For any two sets A and B, $A - B \subset B'$
	Reason : If A be any set, then $A \cap A' = \emptyset$
	INTEGER TYPE QUESTIONS

Q61	If X = {1, 2, 3,, 10} and 'a' represents any element of X, then the set containing all the elements					
	•	2 = 6, a ∈ X is:				
	(a) {4}	(b) {3}	(c) {2}	(d) {5}		
Q62	If a set is d	enoted as $B = \emptyset$, then the numbe	r of element in B	is:	
	(a) 3	(b) 2	(c) 1	(d) 0		
263	(a) 3(b) 2(c) 1(d) 0The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is $3 \in a$. The value of 'a' is:					
	(a) 3	(b) 4	(c) 5	(d) 6		
264	If X = {1, 2,	3}, then the nu	mber of proper s	ubsets is:		
	(a) 5	(b) 6	(c) 7	(d) 8		
Q65	If A = {(x, y contains is		and B = {(x, y) : x	$x^2 + 9y^2 = 144$ } the	en the number of points, $A \cap B$	
	(a) 1	(b) 2	(c) 3	(d) 4		
	Venn diagr	ams were inve	nted by a logiciar	ı John Venn as a v	way of nicturing relationships	
	between di	ifferent groups	of things. These	diagrams, also cal	vay of picturing relationships led Set diagrams or Logic diagrams, nguistics, computer science and	
	between di are widely business In the follo	ifferent groups used in mathe wing diagram,	of things. These of things, statistics,	diagrams, also cal logic, teaching, lin hildren, circle show	led Set diagrams or Logic diagrams,	
	between di are widely business In the follo	ifferent groups used in mathe wing diagram, ng population &	of things. These of matics, statistics, triangle shows ch & square shows be	diagrams, also cal logic, teaching, lin hildren, circle shor bys.	led Set diagrams or Logic diagrams, nguistics, computer science and ws rural population, rectangle show	

Q67	(ii) The children from (a)1 (b) 2		going to school ar (d) 2,6	e denoted by which number?
Q68	(iii) What is represent (a) Children who (c) School going b	are not from rural po		(b) Children who are boys to are not from rural population
Q69	(iv) School going boys (a) 3 (b) 3,5		oted by which nun 3, 4, 5,7	iber?
Q70	(v) Number of children (a) 8 (b) 2	who are not from r (c) 7 (d		
	-			ents it was found that 100 like to h apple as well as orange juice.
	Based on above following questions:	APPLE JUICE	ORANGE JUICE	information, answer the
Q71	(i) Number of students (a) 400 (b) 175		he drink : (d) 325	
Q72	(ii) Number of student	s who likes neither a	pple juice nor orai	nge juice :
	(a) 225 (b) 325		(d) 25	
Q73	(iii) Number of studen	ts who likes only ap	ple juice:	
	(a) 125 (b) 75	(c) 100	(d) 25	
Q74	(iv) Number of studen	ts who likes only ora	nge juice :	
	(a) 75 (b) 25	(c) 100	(d) 125	
Q75	(v) Which information (a) n (A U B) =n(A) + n (c) n(A U B) < n (U)	0 0	(b) n(A U B) < n (A ∩ B) B) = n(A) + n (B)

	<u>1 MARK QUESTIONS</u>
Q76	Write down the set {5, 25, 125, 625} in the set builder form
Q77	If $n(A) = 2$ then find $n[P(P(A))]$
Q78	Define equal sets with example.
Q79	Write down {x: $x \in R$, - 4 < x \leq 6} as interval.
Q80	If A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8}, find A - B.
Q81	Write the set A ={ $x: x \in R, 2x + 11 = 15$ } in the roaster form.
Q82	Define disjoint sets with example.
Q83	What universal set would you propose for the set of rectangles.
Q84	If A and B are two sets such that $A \subset B$, then what is A U B?
Q85	Write down the power set for the set {a, b}
Q86	If S = {x: x is a positive multiple of 3 less than 100} and P = {x: x is a prime number less than 20}. Then find $n(S) + n(P)$
Q87	Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. Find the values of m and n.
Q88	Let S = the set of all triangles, P = the set of all isosceles triangles, Q = the set of all equilateral triangles, R = the set of all right-angled triangles. What do the sets $P \cap Q$ and R – P represents respectively?
Q89	Let $V = \{a, e, i, o, u\}, V - B = \{e, o\} and B - V = \{k\}$. Find the set B.
Q90	If A = {a, {b}}, then find P(A)

	2 MARKS QUESTIONS		
Q91	Write down all the subsets of the set {1, 2, 3}		
Q92	Draw appropriate venn diagram for each of the following:		
Q93	(a) (A U B)' (b) A – B Write the set A= {5, 25, 125, 625} in set-builder form		
Q94	Prove that A= B if P(A) = P(B)		
Q95	A survey shows that 63% of Indians like cheese where as 76% like apples. If x % of Indians like cheese and apples. Find the value of x.		
Q96	If n (A) = 4, how many proper subsets does the set A has?		
Q97	Using properties of sets prove that $(A \cup B)' = A' \cap B'$.		
Q98	Using Venn Diagram prove that: $A \cap (B - C) = (A \cap B) - (A \cap C)$.		
Q99	For all sets A, B and C, if A \subset B, then A U C \subset B U C		
Q100	For all sets A and B, $(A - B) \cup (A \cap B) = A$		
	4 MARK QUESTIONS		
Q101	If A = {3, 5, 7, 9, 11}, B = {7, 9, 11, 13}, C= {11, 13, 15}, D = {15, 17}, Find		
	(a) $(A \cup B) \cap C$ (b) C - D (c) $(A \cap B) \cap (B \cup C)$ (d) $B \cap D$		
Q102	If S and T are two sets such that S has 21 elements, T has 32 elements, and S \cap T has 11 elements, how many elements does S U T have?		
Q103	In a survey of 100 students the number of students studying the various languages were found to be: English only18, English but not Hindi 23, English and Sanskrit 8, English 26, Sanskrit 48, Sanskrit and Hindi 8, no language 24.Find (<i>i</i>) How many students were studying Hindi? (<i>ii</i>) How many students were studying English and Hindi? (<i>iii</i>) How many students were studying Sanskrit only?		
Q104	Define the following with the help of an example: (a) Null set (b) Singleton Set (c) Sub-Set (d) Power Set.		

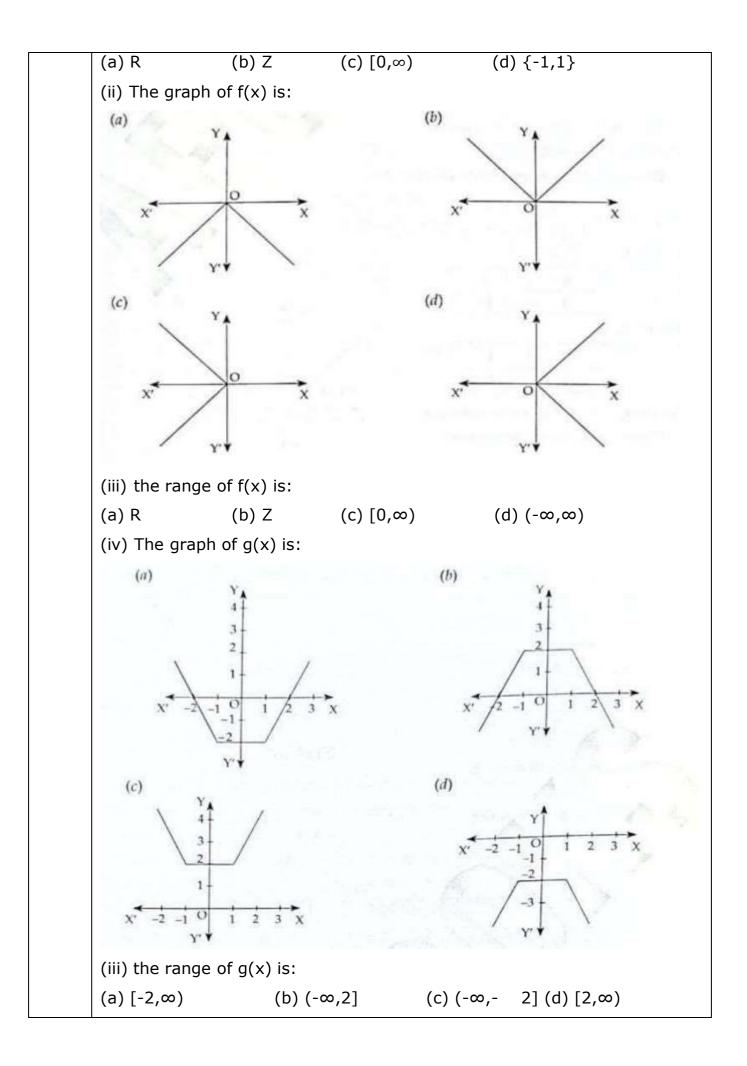
Q105	 In each of the following, determine whether the given statement is true or false. If true prove it, and if false, give an example. (a) If x ∈ A and A ∈ B, then x ∈ B (b) If x ∈ A and A B, then x ∈ B
Q106	In a survey of 25 students of a school it was found that 15 study Mathematics, 12 study Physics, 11 study Chemistry, 9 study both Mathematics & Physics, 4 study both Physics & Chemistry, 5 study both Chemistry and Mathematics and 3 students all of the above three subjects. Find the number of students who study: (a) Only Mathematics (b) At least one of the three subjects.
	(b) At least one of the till ee subjects.
Q107	In a group of students ,100 students know Hindi, 50 know English and 25 know both . Each of the students know either Hindi or English. How many students are there in the group .
Q108	If $n(A - B) = 18$, $n(A \cup B) = 70$ and $n(A \cap B) = 25$, then find $n(B)$.
Q109	If L = {1, 2, 3, 4}, M = {3, 4, 5, 6} and N = {1, 3, 5}, then verify that L - (M UN) = (L - M) \cap (L - N).
Q110	If A, B and C be sets. Then, show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

MATHS CONTENT

CLASS: XI

CHAPTER: RELATIONS AND FUNCTIONS


	MCQs
Q1	If $A \times B = \{(a, 1), (b, 3), (a, 3), (b, 1), (a, 2), (b, 2)\}$, then set B is
	(a) {a} (b) {a, b}
	(c) {1, 2} (d) {1, 2, 3}
Q2	If $\begin{pmatrix} x \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, find the values of x and y respectively are:
	(a) 3,3 (b) 1,2
	(c) 2,1 (d) 3/2,2
Q3	U = {1, 2, 3, 4} and relation R = {(x, y): $y > x$; x, y \in U} then range of R
	is
	(a) {1, 2, 3, 4} (b) {2, 3, 4} (c) {4} (d)
Q4	If A = $\{1, 2, 3\}$ and B = $\{4, 5\}$ then number of relations from A to B is:
	(a) 6 (b) 8 (c) 9 (d) 64
Q 5	If set A has 2 elements and set B has 4 elements then how many
	relations are possible?
	(a) 32 (b) 128 (c) 256 (d) 64
Q 6	If $A \times B = \{(5, 5), (5, 6), (5, 7), (8, 6), (8, 7), (8, 5)\}$, then the set A:
	(a) {5} (b) {8} (c) {5,8} (d) {5,6,7,8}
Q 7	Let A = $\{1, 2, 3, 4, 5\}$ and B = $\{1, 3, 5, 7, 9\}$. Which of the following relation is a function from A to B?
	(a) $R_1 = \{(x, y) \mid y = 2 + x, x \in A, y \in B\}$
	(b) $R_2 = \{(1, 1), (2, 1), (3, 3), (4, 3), (5, 5)\}$
	(c) $R_3 = \{(x, y) \mid y = 5 - x, x \in A, y \in B\}$
	(d) $R_4 = \{(1, 3), (2, 5), (2, 4), (7, 9)\}$

Q 8	A = $\{5, 10, 15, 20\}$, B = $\{2, 4, 6, 8, 10\}$. Out of the following, which is a function?		
	(a) {(5, 2), (10, 4), (15, 6), (20,9)}		
	(b) {(5, 2), (10, 4)}		
	(c) {(5, 2), (10, 4), (15, 6), (20, 10)}		
	(d) {(5, 1), (5, 10), (15, 6), (20, 9)}		
Q 9	If A is the set of even natural number less than 8 and B is the set of		
	prime number less than 7, then the number of relations from A to B is		
	(a) 2^9 (b) 9^2 (c) 3^2 (d) 2^{9-1}		
Q10	Let O be the set of odd natural numbers and E be the set of even natural		
	numbers. Relation S from O to E defined as $S = \{(a, b):a, b even\}$		
	number}. What is the Range of S?		
011	(a) E (b) O (c) N (d) None of these		
Q11	Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2+1}$ Range of f is		
	(a) (-1, 0) (b) (-1, 1) (c) [0, 1) (d) {1}		
Q 12	Let A = {9, 10, 11, 12, 13} and f: A \rightarrow N defined by f (n) = the		
	highest prime factor of <i>n</i> . Range of <i>f</i> is		
	(a) {2, 3, 5, 7} (b) {3, 5, 11, 13} (c) {11, 13} (d) {13}		
Q13	The relation f is defined by $f(x) = \{x^3, 0 \le x \le 3 \ 9x, 3 \le x \le 10 \text{ and the} \}$		
	relation g is defined by $g(x) = \{x^2, 0 \le x \le 5 \ 3x, 5 \le x \le 10, \text{ then which one} \}$		
	of the following is true?		
	(a) f, g are functions		
	(b) f is not a function and g is a function.		
	(c) f is a function and g is not a function.		
	(d) f and g both are not functions.		
Q14	If $f(x) = 7 - 4x$ then $f(x-2) = \dots$		
	(a) 5 - 4x (b) -1 -4x (c) 15 - 4x (d) 9 - 4x		
Q15	If f: $N \rightarrow N$, $f(x) = 3x$ then image of $4 = \dots$, pre-image of $51 = \dots$		
	(a) 12, 51 (b) 12, 17 (c) 17, 12 (d) 4, 51		
Q16	The range of f: $R \rightarrow R$, f(x) = x^2 is		
	(a) R (b) Z (c) $R^+ \cup \{0\}$ (d) R - $\{0\}$		

0.17	<i>If</i> $t(c) = \frac{9C}{5} + 32$, then t(-10):
Q 17	(a) 14 (b) 41 (c) 50 (d) None of these
Q 18	If the domain of function $f(x) = x^2 - 6x + 7$ is R, then the range is
	(a) (-∞,∞) (b) [-2,∞) (c) (-2,3) (d) (-∞,-2)
Q 19	$f = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is defined is $f(x) = ax + b$, then values
	of a and b are respectivelyand
	(a) 2, -1 (b) -2, 1 (c) -1, 2 (d) 1, 2
Q 20	If $f(x) = \frac{1}{1-x}$ then $f[f\{f(x)\}] = \dots$
	(a) 1 $(b) r (c) 1 (d) 1$
	(a) $\frac{1}{x}$ (b) x (c) $\frac{1}{1+x}$ (d) $\frac{1}{1-x}$
	CASE BASED/SOURCE BASED / PASSAGE BASED
Q 21	Given two non-empty sets A = {x: x<5, x \in N} and B= {x: x<2 x \in W},
	based on this information answer the following questions:
	(i) A×B as set of ordered pairs is:
	(a) {(1, 0), (1,1), (J, 2), (2,0), (2,1), (Z 2), (3,0), (3,1), (3, 2), (4,0),
	(4,1), (4,2)}
	(b) $\{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2), (5,1), (5,2)\}$
	(c) $\{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2)\}$
	(d) $\{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (5,0), (5,1), (5,2)\}$
	(4,1), (4,2), (5,0), (5,1), (5, 2)} (ii) (A U B) x (A \cap B) as a set of ordered pairs is
	(a) $\{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (4,0), (3,1), (3,2), (3,0), (3,1), (3,2), (4,0), (3,1), (3,2), (3,0), (3,1), (3,2), (4,0), (3,1), (3,2), (3,2), (3,0), (3,1), (3,2), (4,0), (3,1), (3,2), (3$
	(4,1), (4,2)}
	(b) $\{(0,1), (0,2), (1, 1), (1, 2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2)\}$
	(c) {(1, 0),
	(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(5,0),(5,1)
	,(5,2)}
	(d) {(1,1), (1,2), (2,1), (2, 2), (3,1), (3, 2), (4, 7), (4, 2), (5,1), (5,2)}
	(iii) A relation R from A to B defined by
	$R = \{(x, y): x + y = 4, x \in A, y \in B \} as a set of ordered pairs is$
	(a) $R = \{(1, 3), (3, 1), (0,4), (4,0)\}$
	(b) $R = \{(2,2), (3,1), (1,3)\}$

	(c) $R = \{(2,2), (3,1), (4,0)\}$
	(d) $R = \{(2,2), (1,3), (0,4)\}$
	(iv) Domain of R is
	(a) {0,1,3,4} (b) {1, 2, 3} (c) {2,3,4} (d) {0,1,2}
	(v) Range of R is
	(a) {0,1,2} (b) { 2, 3, 4} (c) {1, 2,3} (d) {0,1,3, 4}
Q 22	Let A, B be any two (non-empty) sets and R be a relation from A to B,
	then inverse of relation R denoted by R^{-1} is a relation from B to A i.e.
	$R^{-1} \leq B \times A.$
	Also, $R^{-1} = \{(b, a): (a, b) \in R\}.$
	Clearly, $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$,
	If A = $\{2,3,4,5\}$, B = $\{3,6,7,10\}$ and a relation R from A to B is defined
	as
	$R = \{(x, y): x \text{ divides } y, x \in A, y \in B\}.$
	Based on the above information, answer the following questions:
	(i) R as a set of ordered pairs is:
	(a) {(2,2), (2, 6), (2,10), (3,3), (3,6), (4,4), (5,5), (5,10)}
	(b) {(2,6), (2,10), (3,3), (3,6), (5,10)}
	(c) {(2,2), (2,6), (2,10), (3,3), (3, 6), (5,5), (5,10)}
	(d) {(2,2), (2,6), (2,10), (3,3), (3,6), (5,10)}
	(ii) R^{-1} as a set of ordered pairs is:
	(a) {(6,2), (10,2), (3,3), (6,3), (10,5)}
	(b) {(2,2), (6,2), (10,2), (3,3), (6,3), (4,4), (5,5), (10,5)}
	(c) (2,2), (6,2), (10,2), (3,3), (6,3), (10,5)1
	(d) {(2,2), (6,2), (10,2), (3,3), (6,3), (5,5), (10,5)}
	(iii) Domain of R^{-1} is:
	(a) {2,3,4,5,6,10} (b) {3,6,10}
	(c) $\{2,3,6,10\}$ (d) $\{2,3,5,6,10\}$
	(iv) Co-Domain of R^{-1} is:
	(a) $\{3,6,7,10\}$ (b) $\{2,3,6,7,10\}$
	(c) $\{2,3,4,5\}$ (d) $\{2,3,4,5,6,7,10\}$
	(iv) Range of R^{-1} is:
	(a) $\{2,3,6,10\}$ (b) $\{3,6,7,10\}$
	(c) {2,3,4,5} (d) {2,3,5}

Q 23	Let f and g are two functions defined as $f(x) = \sqrt{x-1}$ and $g(x) = 2 - 3x$.			
	Based on the above information answer the following questions:			lowing questions:
	(i) Domain of f is:			
	(a) (1, ∞)	(b) [1, ∞)	(c) (-∞,1)	(d) (-∞,1]
	(ii) Domain of <u>1</u> i	s:		
	(a) R- $\{\frac{3}{2}\}$	(b) R	(c) $R-\{\frac{2}{3}\}$	(d) $R - \{-\frac{3}{2}\}$
	(iii) Domain of f	+ <i>g</i> is:		
	(a) (1, ∞)	(b) R - (1, ∞)) (c) [1, ∞)	(d) $R - \{\frac{2}{3}\}$
	iv) Domain of (iv) (iv) (iv)	is:		U U
	(a) (1, ∞)	(b) [1,∞)	(c) R- $\{\frac{3}{2}\}$	(d) R
	(v) Domain of-	fis: g		
	(a) R- $\{\frac{3}{2}\}$	(b) R	(c) R-{ ² / ₃ }	(d) $[1, \infty) - \{\frac{3}{2}\}$
Q 24	Read the following	ng text and answ	wer the followir	ng questions based on the
	same.			
	Consider the foll	owing real value	ed functions f(x	x), g(x) and h(x) defined
	as:			
	f(x) = x			
			$g(x) = e^x$ $h(x) = x^2$	
	(i) The domain o			
) (0,1)	(d) {-1,1}
	(ii) the range of			
		(b) Z (c)) (0,∞)	(d) (-∞,∞)
	(iii) the range of) [0)	
		(b) Z (c) $f_{b}(x)$ is:)[0,∞)	(d) (-∞,∞)
	(iv) The range o		$(0,\infty)$	(d) $(a a)$
	(a) R (v) The value of	(b) Z (c) $h(-5)$ is:) (0,∞)	(u) (-w,w)
	(v) The value of (a) 16	(b) e^{-5} (c)) 25	(d) -5
Q 25				ng questions based on the
	same. The funct	-		
	and $g(x) = f(x + $			$\lambda_j = \lambda $
	(i) The domain of			

	ASSERTION REASONING QUESTIONS:
	In the following questions, a statement of assertion (A) is followed by a
	statement of reason(R). Choose the correct answer out of the following choices:
	(A) Both A and R are true and R is the correct explanation of A.
	(B) Both A and R are true but R is not the correct explanation of A.
	(C) A is true but R is false.
	(D) A is false but R is true.
Q 26	Assertion (A): if A= {1,2} then A×A={(1,1), (2,2)}
	Reason (R): A and B to be two non-empty sets and the Cartesian
	Product is given by A x B is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
Q 27	Assertion (A): The relation $\{(1, 3), (1, 5), (2, 5)\}$ defined from $\{1, 2\} \rightarrow$
	{3,5} is a function.
	Reason (R): A relation is said to be a function if each element of domain
	has one and only one image.
Q 28	Assertion (A): if n(A)=p and n(B)=q, then total number of relations that
	can be defined from A to B are 2^{pq}
	Reason (R): since $n(A \times B) = n(A) \times n(B)$ and total number of subsets of a
	set having n elements is given by 2^n
Q 29	Assertion (A): The range of the greatest integer function defined by
	f(x) = [x] is the set of integers.
	Reason (R): The inputs of the greatest integer function can take any real
	number but the output will always be an integer
Q 30	Assertion (A): The range of the modulus function defined by $f(x) = x $ is
	the set of integers.
	Reason (R): The inputs of the modulus function can take any real
	number but the output will always be a non-negative real number.
	VERY SHORT ANSWER TYPE QUESTIONS
Q 31	Let A ={ x, y, z } and B ={1, 2}, find the number of relations from A to B.
Q 32	Find x and y, if $(x + 3, 5) = (6, 2x + y)$.
Q 33	Is the following relation a function? Give reason. If it is a function,

	determine its demain and range
	determine its domain and range.
	{(1, 3), (1, 5), (2, 5)}
Q 34	Find the domain and range of the real functions $f(x) = - x $.
Q 35	Determine the domain and range of the relation R defined by, $R = \{(x, x) x \in \mathbb{R}\}$
	+ 5): $x \in \{0, 1, 2, 3, 4, 5\}\}.$
Q 36	The Cartesian product A \times A has 9 elements among which are found (- 1,
	0) and (0, 1). Find the set A and the remaining element A $ imes$ A
Q 37	If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.
Q 38	What is the domain of the real valued function $f(x) = \frac{1}{3x-2}$
Q 39	Is the given relation a function? Give reasons for your answer.
	$h = \{(4, 6), (3, 9), (-11, 6), (3, 11)\}$
Q 40	Is the given relation a function? Give reasons for your answer.
	$s = \{(n, n^2) \mid n \text{ is a positive integer}\}$
Q 41	What will be total number of relations from A to B where n(a) =p and n(b)
	=q.
Q 42	Write the range of the function $f(x) = -x^2$.
Q 43	Let A= $\{1,2\}$ and B= $\{2,3\}$ then find $A \times (A \cap B)$
Q 44	A function f is defined as $f(x)=3-2x$. find the value of f (7).
Q 45	The following figure shows a relationship between the sets P and Q. Write
	P 0 0 0 0 0 0 0 0
Q 46	Let A = $\{1,2,3,4\}$, B = $\{1,4,9,16,25\}$ and R be a relation defined from
	A to B as, $R = \{(x, y): x \in A, y \in B \text{ and } y = x^2\}$

	i) Depict this relation in restar form
	i) Depict this relation in roster form.
	ii) Find domain of R.
	iii) Find range of R.
	iv) Write co-domain of R.
Q 47	If R = {(x + y) x and y are integers and $x^2 + y^2 = 64$ } is a relation, then
	find R.
Q 48	Let A = $\{1, 2, 3, 4\}$ and B = $\{10, 12, 13, 14, 20\}$. Whether f: A \rightarrow B
	defined by $f(1) = 10$, $f(2) = 12$, $f(3) = 13$ and $f(4) = 20$ is a function?
Q 49	If $n(A) = 3$ and $B = \{1,2,3\}$ then find $n(A \times B)$
Q 50	Draw the graph of the modulus function.
	SHORT ANSWER TYPE QUESTIONS
Q 51	If f and g are two real valued functions defined as $f(x) = 2x + 1$, $g(x) = x^2$
	+ 1 then find $f + g$, f-g, f.g and f/g
Q 52	Given R = {(x, y): x, y \in W, x ² + y ² = 25}, find the domain and range of
	R.
Q 53	If $A = \{-1, 1\}$, find $A \times A \times A$.
Q 54	Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x\}$
	+ 5, x is a natural number less than 4; x, $y \in \mathbb{N}$. Depict this relationship
	using roster form. Write down the domain and range.
Q 55	Determine the domain and range of the relation R defined by, $R = \{(x, x) x \in \mathbb{R}\}$
	+ 5): $x \in (0, 1, 2, 3, 4, 5)$.
Q 56	Let A = $\{1, 2, 3,, 14\}$. Define a relation R from set A to A by R =
	$\{(x, y): 3x - y = 0, where x, y \in A\}$. Write down its domain, co-domain,
	and range.
Q 57	A = $\{1, 2, 3, 5\}$ and B = $\{4, 6, 9\}$. Define a relation R from A to B by R =
	$\{(x, y):$ the difference between x and y is odd, $x \in A$ and $Y \in B\}$. Write R
	in roster form.
Q 58	Let A = $\{9,10,11,12,13\}$ and let f: A \rightarrow N be defined by f (n) = the highest
	prime factor of n. Find the range of f.
Q 59	Let A = $\{1, 2, 6, 8\}$ and let R be a relation on A defined by $\{(a, b): a, b \in$

	A, b is exactly divisible by a}	
	(i) Write R in roster form.	
	(ii) Find the domain of R.	
	(iii) Find the range of R.	
Q 60	If $R = \{(x, y) y = 2x + 7, where x \in R and - 5 < x < 5\}$ is a relation.	
	Then find the domain and Range of R.	
Q 61	Draw the graph of f(x) defined by	
	$f(x) = \{1 - x, \text{if } x < 0\}$	
	1, $if x = 0$	
	x + 1, if $x > 0$	
Q 62	Let $f(x) = x^2$ and $g(x) = 2x + 1$ be two real functions. Find	
	(f + g) (x), (f -g) (x), (fg) (x), (f/g) (x)	
Q 63	Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 3$ Find (i) x if $f(x) = 28$ (ii) The pre-	
	images of 39 and 2 under 'f'.	
Q 64	Find the range of the following function given by: $f(x) = \frac{ x-4 }{x}$	
	x-4	
Q 65	Find the range of the following functions given by: $f(x) = 1 - x - 2 $	
Q 66	Find the range of the following functions given by: $f(x) = x - 3 $	
Q 67	Find the domain and the range of the real function f defined by $f(x) =$	
	$\sqrt{x-1}$	
Q 68	Express the function f: A \rightarrow R, f(x) = x ² – 1. where A = { -4, 0, 1, 4) in	
	roster form.	
Q 69	Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z	
	defined by $f(x) = ax + b$, for some integers a and b . Determine a , b .	
Q 70	Find the range of the following functions $f(x) = \sqrt{9 - x^2}$	

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

SOLUTIONS TO MATHS CONTENT

CLASS: XI

CHAPTER: RELATIONS AND FUNCTIONS

	MCQs
Q1	(d)
Q2	(C)
Q3	(b)
Q4	(d)
Q 5	(C)
Q 6	(C)
Q 7	(b)
Q 8	(c)
Q 9	(a)
Q10	(a)
Q11	(C)
Q 12	(b)
Q13	(c)
Q14	(c)
Q15	(b)
Q16	(c)
Q 17	(a)
Q 18	(b)
Q 19	(a)
Q 20	(b)
	CASE BASED/SOURCE BASED / PASSAGE BASED

Q 21	(i) (b) (ii) (a) (iii) (b) (iv) (c) (v) (d)
Q 22	(i) (b) (ii) (a) (iii) (c) (iv) (a) (v) (d)
Q 23	(i) (b) (ii) (b) (iii) (c) (iv) (a) (v) (d)
Q 24	(i) (a) (ii) (a) (iii) (c) (iv) (c) (v) (c)
Q 25	(i) (a) (ii) (b) (iii) (c) (iv) (c) (v) (d)
	ASSERTION REASONING
Q 26	(d)
Q 27	(d)
Q 28	(a)
Q 29	(a)
Q 30	(d)
	ANSWERS TO VERY SHORT ANSWER TYPE QUESTIONS
Q 31	$n (A \times B) = 3 \times 2 = 6.$ Total subsets, Relations are $2^6 = 64$
Q 32	$x + 3 = 6, 2x + y = 5 \Rightarrow x = 3, y = 1$
Q 33	Not a function, first entry repeated $R = \{(x,x+5): x \in (0, 1, 2, 3, 4, 5)\}$ $\Rightarrow R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$ Domain = $\{0, 1, 2, 3, 4, 5\}$, Range = $\{5, 6, 7, 8, 9, 10\}$
Q 34	f(x) = - x Domain is R and Range is $(-\infty, 0]$
Q 35	Domain={0,1,2,3,4,5}
	Range={5,6,7,8,9,10}
Q 36	A = $\{-1, 0, 1\}$ The other elements of A x A are $(-1, -1)$, $(-1, 1)$, $(0, -1)$, $(0, 0)$, $(1, -1)$, $(1, 0)$, $(1, 1)$ }
Q 37	Given, $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ Then $A = \{a, b\}, B = \{x, y\}$
Q 38	Zero of $3x - 2$ is $2/3$ \therefore Domain = R - $\{2/3\}$
Q 39	Not a function as an element of domain has more than one image (i.e. The first entry 3 is repeated in (3, 9) and (3, 11).

Q 40	It is a function, as each positive integer has a unique (one and only one) image.	
Q 41	2 ^{pq}	
Q 42	(−∞,0]	
Q 43	$A \times (A \cap B) = \{1, 2\} \times \{2\} = \{(1, 2), (2, 2)\}$	
Q 44	f(7)=3-2(7)=3-14=-11	
Q 45	It is given in the figure that $P = \{5,6,7\}, Q = \{3,4,5\}$ Therefore, the relation in set builder form is , $R=\{(x,y): y = x - 2; x \in P\}$	
Q 46	(i) R in roster form is given by R= {(1,1), (2,4), (3,9), (4,16)} (ii) Domain of R= {1,2,3,4} (iii) Range of R= {1,4,9,16} (iv) Co-domain of R= {1,4,9,16,25}	
Q 47	Given that: $x^2 + y^2 = 64$, x, y $\in Z$ The sum of the squares of two integers is 64 For x = 0, y = + 8 For, x= ± 8 , y = 0 Hence, R= {(0, 8), (0, -8), (8, 0), (-8, 0)}	
Q 48	No, it is not a function as the $4 \in$ domain, but it has no image in co- domain, hence f is not a function.	
Q 49	n(AxB)=n(A)xn(B)=2x3=6	
Q 50		
	ANSWERS TO SHORT ANSWER TYPE QUESTIONS	
Q 51	Given that: $f(x) = 2x + 1$ and $g(x) = x^2 + 1$	
	f + g: f(x) + g(x) = 2x + 1 + x ² + 1 = x ² + 2x + 2	
	f-g: f(x) - g(x) = $(2x + 1) - (x^2 + 1) = 2x + 1 - x^2 - 1 = 2x - x^2$	
	f.g: $f(x).g(x) = (2x + 1) (x^2 + 1) => 2x^3 + x^2 + 2x + 1$	
	f/g: f(x)/g(x)=(2x+1)/x ² +1, x ² G -1	

Q 52	Given that: $R = \{(x, y): x, y \in W, x^2 + y^2 = 25\}$
	So, the ordered pairs satisfying the given condition $x^2 + y^2 = 25$ are (0, 5), (3,4), (5, 0), (4, 3). Hence, the domain = {0, 3, 4, 5} and the range = {0, 3, 4, 5}.
Q 53	$A \times A \times A = \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\} = \{(-1, -1), (-1, 1) (1, -1)$
	$1) (1, 1) \} \times \{-1, 1\}$
	$= \{(-1, -1, -1), (-1, 1, -1), (1, -1, -1), (1, 1, -1), (-1, -1, 1), (-1, -1, 1), (-1, -1, 1), (-1, -1, 1), (1, -1, 1), (1, 1, 1)\}$
Q 54	Given: R = {(x, y): $y = x + 5$, x is a natural number less than 4, x, y
	∈ N}
	x can take values 1, 2, 3. \therefore R = {(1, 6), (2, 7), (3, 8)}
	Domain = $\{1, 2, 3\}$, Range = $\{6, 7, 8\}$
Q 55	$R = \{(x, x + 5): x \in (0, 1, 2, 3, 4, 5)\}$ $\Rightarrow R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$
	Domain = $\{0, 1, 2, 3, 4, 5\}$, Range = $\{5, 6, 7, 8, 9, 10\}$
Q 56	Given, set A = $\{1, 2, 3, \dots, 14\}$ Relation R = (x, y) : $3x - y = 0, x, y \in A$
	$3x - y = 0 \Rightarrow 3x = y,$
	When $x = 1$, $y = 3$; $x = 2$, $y = 6$
	$\therefore R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$
	Domain of R= {1, 2, 3, 4}
	Co-domain of $R = A$
	Range of $R = \{3, 6, 9, 12\}.$
Q 57	Given, A = $\{1, 2, 3, 5\}$ and B = $\{4, 6, 9\}$. and A × B = $\{(x, y) : The difference between x and y is odd\}$
	We notice difference of 1 and 4 is odd, difference of 1 and 6 is odd,
	difference between 2 and 9 is odd. \therefore R in roster form = {(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)}
0.50	
Q 58	It is given that $A = \{0, 10, 11, 12, 13\}$ and f : A \rightarrow N be defined by $f(n) =$ the highest
	A = $\{9,10,11,12,13\}$ and f : A \rightarrow N be defined by f(n) = the highest prime factor of n. Now,
	Prime factor of $9 = 3$
	Prime factor of $10 = 2,5$
	Prime factor of $11 = 11$
	Prime factor of $12 = 2,3$
	Prime factor of $13 = 13$
	f(n) = the highest prime factor of n. Hence, f(0) = the highest prime factor of $0 = 2 f(10) =$ the highest prime
	f(9) = the highest prime factor of $9 = 3 f(10) =$ the highest prime factor of $10 = 5 f(11) =$ the highest prime factor of $11 = 11 f(12) =$
	the highest prime factor of $12 = 3$

Q 59	(i) R in roster form can be written as:				
	$R = \{(1,1), (1,2), (1,6), (1,8), (2,2), (2,6), (2,8), (6,6), (8,8)\}$				
	(ii) Domain of $R = \{1, 2, 6, 8\}$				
	(iii) Range of $R = \{1, 2, 6, 8\}$				
Q 60	Given that: $R = \{(x, y) \mid y = 2x + 7 \text{ where } x \in R \text{ and } -5 < x < 5\}$ Since R is defined for all real numbers that are greater than or equal to-5 and less than or equal to 5, therefore domain of $R = \{x: x \in R, 5 < x < 5\} = [-5, 5]$ Range: here 5 < x < 5 and y = 2x + 7. Since x \in R and 5 < x < 5 $\Rightarrow -10 < 2x < 10$				
	$\Rightarrow -10 + 7 < 2x + 7 < 10 + 7$				
	$\Rightarrow -3 < y < 17$				
	range of R = [-3,17]				
	Hence, the domain of $R=[-5, 5]$ and range of $R=[-3, 17]$				
Q 61					
Q 62	Given,				
	$f(x) = x^2$ and $g(x) = 2x + 1$				
	$(f + g)(x) = x^2 + 2x + 1$				
	$(f - g)(x) = x^2 - (2x + 1) = x^2 - 2x - 1$				
	(fg) (x) = $x^{2}(2x + 1) = 2x^{3} + x^{2}$				
0.62	$(f/g)(x) = x^2/(2x + 1), x \neq -1/2$				
Q 63	: (i) $28 = x^2 + 3 \Rightarrow x^2 = 25 \Rightarrow x = \pm 5$ (ii) $39 = x^2 + 3 \Rightarrow x^2 = 36 \Rightarrow x = \pm 6$;				
	Hence the pre images of 39 are -6 & 6. 2 = x^2 + 3 \Rightarrow x^2 = -1, not possible.				

	There is no pre image of 2 under the given function.
Q 64	$y = \frac{(x-4)}{x-4} or = \frac{-(x-4)}{x-4}$ i.e. 1 or -1
	∴ range {-1, 1}
Q 65	y = 1 - x - 2
	For every x , $ x - 2 \ge 0$
	$\Rightarrow - x - 2 \le 0 \Rightarrow 1 - x - 2 \le 1 \Rightarrow y \le 1$
	\therefore range] $-\infty$, 1]
Q 66	$f(x) = x - 3 \ge 0 \Rightarrow \text{Range} = [0, \infty)$
Q 67	Given $f(x) = \sqrt{x-1}$
	Function is defined if $x - 1 \ge 0 \Rightarrow x \ge 1$
	$\therefore \text{ Domain} = \{x \in \mathbb{R} x \ge 1\}$ Range = $\mathbb{R}^+ \cup \{0\}$. [: Positive square root function]
Q 68	Given,
	$A = \{-4, 0, 1, 4\}$
	$f(x) = x^2 - 1$
	$f(-4) = (-4)^2 - 1 = 16 - 1 = 15$
	$f(0) = (0)^2 - 1 = -1$
	$f(1) = (1)^2 - 1 = 0$
	$f(4) = (4)^2 - 1 = 16 - 1 = 15$
	Therefore, f in roster form is = $\{(-4, 15), (0, -1), (1, 0), (4, 15)\}$
Q 69	Given, $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ and $f(x) = ax + $
	b(i)
	$(1, 1) \Rightarrow$ when $x = 1$, $f(x) = 1$
	$(2, 3) \Rightarrow$ when x = 2, f (x) = 3
	From (i) we get 1 = a + b(ii)
	and $3 = 2a + b$ (<i>iii</i>)
	Solving (ii) and (iii) we get $a = 2, b = -1$.

0.70	
Q 70	$f(x) = \sqrt{9 - x^2}$
	Let y=f(x)
	$y = \sqrt{9 - x^2}$
	Squaring both sides we get
	$y^2 = 9 - x^2 x^2 = 9 - y^2 x = \sqrt{9 - y^2}$
	Since x is real , for that
	$9 - y^2 \ge 0$
	$\Rightarrow y^2 \le 9$
	$\Rightarrow y \leq 3$
	$\Rightarrow -3 \le y \le 3$ (i)
	But $y = \sqrt{9 - x^2}$ i.e. y is positive square root of $(9 - x^2)$
	$\therefore y \ge 0$ (ii)
	from (İ) and (ii)
	$ \begin{array}{c} -3 \le y \le 3 \\ \Rightarrow 0 \le y \le 3 \end{array} \& \ y \ge 0 \\ \end{array} $
	$\Rightarrow y \le [0,3]$
	Range of function f(x) is [0,3]

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : TRIGONOMETRIC FUNCTIONS

 TRIGONOMETRIC FORMULA An angle can be measured in degrees or in radians. 1 radian is an angle subtended at the centre of a circle by an arcwhose length is equal to the radius of the circle. π radian = 180 degrees Radian measure = -^π/₁₈₀ × Degree measure Degree measure = 180/π × Radian measure 1° = 60' 1' = 60'' 1 radian = 57° 16' approximately 1° = 0.01746 radian approximately If an arc of length <i>l</i> makes an angle θ radian at the centre of a circle of radius <i>r</i>, we have <i>l</i> = <i>r</i>θ Signs of trigonometric functions 						
e Signo oi	trigonomet	T	II	III	IV	
	sin x		+	111	10	
		+	т	-	-	
	COS X	+	-		+	
	tan x	+	-	+	-	
	COSEC X	+	+	-	-	
	sec x	+	-	-	+	
	cot x	+	-	+	_	
• $sin^2x + c$ $sec^2x - t$		Domain R R R - {(2n R - {(nπ	$(+1)^{\frac{\pi}{2}}: n \in N$ $(: n \in N)$ $(+1)^{\frac{\pi}{2}}: n \in N$	Rar [-1, [-1, R R R –	1]	
• $1.\sin(\frac{\pi}{2} - x) = \cos x \ 2.\cos(\frac{\pi}{2} - x) = \sin x$ $3.\tan(\frac{\pi}{2} - x) = \cot x \ 4.\cot(\frac{\pi}{2} - x) = \tan x$ $5.\sec(\frac{\pi}{2} - x) = \csc x \ 6.\csc(\frac{\pi}{2} - x) = \sec x$						

 $1.\sin(\frac{\pi}{2} + x) = \cos x \, 2.\cos(\frac{\pi}{2} + x) = -\sin x$ 3. $\tan(\frac{\pi}{2} + x) = -\cot x$ 4. $\cot(\frac{\pi}{2} + x) = -\tan x$ 5. $\sec(\frac{\pi}{2} + x) = -\csc x \, 6. \, \csc(\frac{\pi}{2} + x) = \sec x$ 1. $\sin(\pi - x) = \sin x$ 2. $\cos(\pi - x) = -\cos x$ 3. $\tan(\pi - x) = -\tan x$ 4. $\cot(\pi - x) = -\cot x$ 5. $\sec(\pi - x) = -\sec x 6$. $\csc(\pi - x) = \csc x$ 1. $\sin(\pi + x) = -\sin x 2 \cdot \cos(\pi + x) = -\cos x$ 3. $\tan(\pi + x) = \tan x$ 4. $\cot(\pi + x) = \cot x$ 5. $\sec(\pi + x) = -\sec x$ 6. $\csc(\pi + x) = -\csc x$ 1. $\sin(2\pi - x) = -\sin x$ 2. $\cos(2\pi - x) = \cos x$ 3. $\tan(2\pi - x) = -\tan x$ 4. $\cot(2\pi - x) = -\cot x$ 5. $\sec(2\pi - x) = \sec x$ 6. $\csc(2\pi - x) = -\csc x$ $1.\sin(2\pi + x) = \sin x$ 2. $\cos(2\pi + x) = \cos x$ 3. $\tan(2\pi + x) = \tan x$ 4. $\cot(2\pi + x) = \cot x$ 5. $\sec(2\pi + x) = \sec x$ 6. $\csc(2\pi + x) = \csc x$ The values of sin x, cos x, cosec x and sec x repeat after an interval of 2π . The values of tan x and cot x repeat after an interval of π . • sin(x + y) = sin x cos y + cos x sin y $\sin(x - y) = \sin x \cos y - \cos x \sin y$ $\cos(x + y) = \cos x \cos y - \sin x \sin y$ $\cos(x - y) = \cos x \cos y + \sin x \sin y$ $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ $\cot(x+y) = \frac{\cot x \cot y - 1}{\cot y + \cot x} \cot(x-y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$ $\sin 2x = 2\sin x \cos x = \frac{2\tan x}{2}$ $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$ $\tan 2x = \frac{1}{1 - \tan^2 x}$ $\sin 3x = 3 \sin x - 4 \sin^3 x$ $\cos 3x = 4\cos^3 x - 3\cos x$ $3 \tan x - \tan^3 x$ $\tan 3x = \frac{1 - 3\tan^2 x}{1 - 3\tan^2 x}$

	• $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2x+y} \cos \frac{x-y}{2x-y}$ $\cos x - \cos y = -2 \sin \frac{2}{x-2} \sin \frac{2}{x-2}$ $\sin x + \sin y = 2 \sin \frac{2}{x-2} \cos \frac{2}{x-2}$ $\sin x - \sin y = 2 \cos \frac{2}{x-2} \sin \frac{2}{2}$ • $2 \cos x \cos y = \cos(x+y) + \cos(x-y)$ $-2 \sin x \sin y = \cos(x+y) - \cos(x-y)$ $2 \sin x \cos y = \sin(x+y) + \sin(x-y)$ $2 \cos x \sin y = \sin(x+y) - \sin(x-y)$			
			MCQ	
Q1	Value of sin 10	° + sin 20° + sin	30° ++sin3	60° is
	(a) 1	(b) 0	(c) 2	(d) 1/ 2
Q2	If sin A = $3/5$	$, 0 < A < \frac{\pi}{2}$ and contained	$s B = -12/13$, π	$x < B < \frac{3\pi}{2}$, then value
	of sin (A – B) is	5		2
	(a) -13/ 82	(b) -15 /65	(c) -13/ 75	(d)- 16 /65
Q3	extremity move	of a clock is 42 c in 20 minutes? (b) 80 cm	-	ch distance does its (d) 77 cm
Q4	The value of ta	n 20° + 2 tan 50	° – tan 70° is eq	ual to
	(a) 1	(b) 0	(c) tan 50°	(d) None of these
Q 5	If sin x + cos x	= 1/5 then tan 2	2x is	
	(a) 25 /17	(b) 7 /25	(c) 25 /7	(d) 24/ 7
Q 6	(a) $25/17$ (b) $7/25$ (c) $25/7$ (d) $24/7$ Consider the following statements.I. cot x decreases from 0 to $-\infty$ in first quadrant and increases from 0 to ∞ in third quadrant.II. sec x increases from $-\infty$ to -1 in second quadrant and decreases from ∞ to 1 in fourth quadrant.III. cosec x increases from $1 to \infty$ in second quadrant and decreases from -1 to $-\infty$ in fourth quadrant.Choose the correct option.(a) I is incorrect(b) II is incorrect(c) III is incorrect(d) IV is incorrect			

Q 7	$1 + \cos 2x + \cos 4x + \cos 6x =$				
			• •	(b) 4 sin x cos 2x cos 3x (d) None of these	
Q 8	The value of sin $\left(-\frac{11\pi}{3}\right)$ is $\frac{\sqrt{3}}{m}$ Value of 'm' is				
	(a) 1		(c) 3	(d) 5	
Q 9	The number of	of solutions sinx=co	s x for all x $[-\pi]$, π] from graph will be	
	(a) 1	(b) 2	(c) 3	(d) 5	
Q10	The value of	expression sin A + α	cosA lies betwe	een	
		both inclusive both inclusive			
Q11	If $\sin\theta + \cos\theta$	θ T= 1, then sin θ .co	$s\theta =$		
	(a) 0	(b) 1	(c) 2	(d) 1/ 2	
Q 12	The degree m	neasure of $\frac{11}{16}$ radian i	S		
	(a) 39° 22′ 3	0" (b)39° 22.3'	(c) 39° 30′	22" (d)39°	
Q13	If in two circles, arcs of the same length subtend angles 45° and 60° at Centre, find the ratio of their radii.				
	(a) 2:3	(b) 2:5	(c) 3:4	(d) 4:3	
Q14	 Consider the statements given below: I. sin x is positive in first and second quadrants. II. cosec x is negative in third and fourth quadrants. III. tan x and cot x are negative in second and fourth quadrants. IV. cos x and sec x are positive in first and fourth quadrants. Choose the correct option. 				
	(a) All are correct(b) Only I and IV are correct(c) Only III and IV are correct(d) None is correct				
Q15	The value of $sin(\pi - \theta)sin(\pi + \theta)cosec^2\theta =$				
	(a) 0	(b) 1	(c) -1	(d) 1/ 2	
Q16	If tanA=1/2 and tanB=1/3, then the value of A+B=				
	(a))45°	(b))60°	(c))30°	(d)0°	
Q 17	The value of	tan 3A – tan 2A – ta	an A is equal to	1	
	(a) tan 3A tan 2A tan A (b) -tan 3A tan 2A tan A (c) tan A tan 2A - tan 2A tan 3A - tan 3A tan A (d) None of these				

Q 18	The value of t 75° – cot 75° is equal to					
	(a) 2 √3	(b) 2+√3	3 (c) 2- √3	(d) 1		
Q 19	The value of	$\frac{1}{10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} =$				
	_	(b) 1	(c) -1	(d) 4		
Q 20	If tan A=b/a,then value of acos2A+bsin2A=					
	(a) -b	(b) a	(c) -a	(d) b		
	CASE	BASED/SOU	JRCE BASED / PAS	SSAGE BASED		
Q 21	`Trigonon' mean of geometry the triangle. Degralso called Incomparison $\pi radian = 180^{\circ}$ =90°.The lengt	ans Triangle a nat studies rel ee and radian lian system of ;1°=60minute ch of arc <i>l</i> is gi	ationship between l units of measurem	measure. It is a branch engths and angles of a ent of angles are used, iangles. In this system conds;1 rt angle		
	(i) 11/36 radia	ns into degree	e minutes and secor	nds		
	(a) 17°14′30″	(b) 17°14	(c)17°30″	(d) None of these		
	(ii) $\frac{7\pi}{18}$ into degree	ees will be				
	(a)60°	(b)70°	(c) 100°	(d)80°		
	(iii) Find the length of arc made by minute's hand of a clock in 5 minutes having radius 7cm.					
	(a) <u>7</u> π	$(b)^{7\pi}_{6}$	$(C)\frac{7\pi}{3}$	(d) <u>7</u> / ₄		
	(iv) If the arcs of the same length in two circles subtend angles 65 and 80 at the centre, then the ratio of their radii.					
	(a)13:16	(b) 3:16	(c)16:13	(d) 5:16		
Q 22	 CASE STUDY-2-Domain and range of the following trigonometric functions are given below:- Based on the following information, answer the following questions:- Domain and Range of trigonometric functions 					
		Function	Domain	Range		
		sin x	R	[-1, 1]		
		COS X	$R = ((2n+1)^{\pi} \cdot n \cdot n)$	[-1, 1]		
		tan x	$R = \{(2n+1)^{\pi} : n \in I\}$			
		cosec x	$R - \{(n\pi : n \in N\}$	R - (-1, 1)		

		sec x	R - {(2 <i>n</i>	$(+1)^{\frac{\pi}{2}}: n \in N\}$	R - (-1, 1)
		cot x	R - {(<i>n</i> π	: n c N}	R
	(i) Domain of	$f(x) = \frac{1}{\sqrt{1 + \cos x}}$ is			
	(a) R	(b) R-(2n+1	.)π	(c)R-2n π	(d) R-nπ
	(ii) Domain of (a) R-(4n-1) /₄	$f(x) = \frac{1}{\frac{1}{sinx + cosx}}$ (b) R-(4n+1)	$\frac{1}{4}$	(c)R- <u>nπ</u> 4	(d) R-nπ
	(iii) Range of (a) [-1,1]			(c)[0,1]	(d) (-1,0)
	(iv) Range of (a) $(-\sqrt{2},\sqrt{2})$			(c) (−√2,0)	(d) (0,√Z)
Q 23	many real life electricalsigna	scenarios-rac	lio waves, are shown aphs ,ansv 1 perio	$\int_{-\frac{1}{2\pi}}^{\frac{1}{3\pi}} \frac{3\pi}{3\pi}$	►x

	this line intersec (a) 0 (ii)If both sine a the same interva (a) 4 (iii) The graph o (a) 0	the y=1/2, at how m the between interva (b) 1 nd cosine curve are al[$-2 \pi, 2\pi$] (b) 5 f cosine cuts on X a (b) 1 y points will be sir (b) 1	I $\begin{bmatrix} -\pi, \pi \end{bmatrix}$ (c) 2 e drawn on the sar (c) 6 axis between (0,27 (c) 2	(d) 3 me graph and on (d) 8 ⁽⁾ (d) 3
Q 24	It can be obtain	ed that $sin18^\circ = \frac{\sqrt{5}-1}{4}$	and $\cos 36^\circ = \frac{\sqrt{5}+1}{4}$. Us	sing these
	values,answer th	ne following:		
	(i)sin47°+sin18° - (a) sin36°	- sin11° – sin25°is ec (b) cos36°	jual to (c) sin7°	(d) cos7°
	(ii) cos12°+cos84 (a) -1	$b^{\circ} + cos156^{\circ} - cos132$ (b) $-\frac{1}{2}$	°is equal to (c) ¹ 2	(d)1
	(iii) sin6°-sin66° - (a) 1	+ $sin78^{\circ} - sin42^{\circ}is ec$ (b) $-\frac{1}{2}$	ual to (c) ¹ 2	(d)-1
	(iv)tan81°-tan63° (a) 1	– tan27° + tan9°is eo (b) 2	qual to (c) 3	(d) 4
Q 25		5and siny=5/13,x& lowing questions, a		
	(i)The value of s (a)- <u>56</u> 65	in(x+y)= (b) $-\frac{33}{65}$	(c)- <u>16</u> 65	(d) <u>63</u> 65
	(ii) The value of (a) $-\frac{56}{65}$	$cos(x+y) = (b) - \frac{33}{65}$	(c)- <u>16</u> 65	(d) <u>63</u> 65
	(iii) The value of (a)- $\frac{56}{65}$	$sin(x-y) = (b) - \frac{33}{65}$	(c) $-\frac{16}{65}$	(d) <u>63</u> 65
	(iv) The value of (a) $-\frac{56}{65}$	$cos(x-y) = (b) - \frac{33}{65}$	(c) $-\frac{16}{65}$	(d) <u>63</u> 65

	ASSERTION REASONING
	Each of these questions contains two statements, Assertion and Reason. Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.
	(a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.
	(b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion
	(c) Assertion is correct, reason is incorrect(d) Assertion is incorrect, reason is correct.
Q 26	 Assertion : The ratio of the radii of two circles at the centres of which two equal arcs subtend angles of 30° and 70° is 21 : 10. Reason : Number of radians in an angle subtended at the centre of a circle by an arc is equal to the ratio of the length of the arc to the radius of the circle.
Q 27	Assertion: cosec x is negative in third and fourth quadrants. Reason : cot x decreases from 0 to $-\infty$ in first quadrant and increases from 0 to ∞ in third quadrant
Q 28	Assertion: $cos^3\alpha + cos^3(\alpha + \frac{2\pi}{3}) + cos^3(\alpha + \frac{4\pi}{3}) = 3\cos\alpha\cos(\alpha + \frac{2\pi}{3})$ $cos(\alpha + \frac{4\pi}{3})$ Reason : If a+b+c=0 then $a^3+b^3+c^3=3abc$
Q 29	Assertion: $tan5A$ - $tan3A$ - $tan2A$ = $tan5Atan3Atan2A$ Reason : $x=y+z \Rightarrow tanx-tany-tanz=tanxtanytanz.$
Q 30	Assertion:The maximum value of sinx+cosx is 2 Reason :The maximum value of sinx is 1 and maximum value cos is 1
	VERY SHORT
Q 31	If sin (A+B)=m and sin(A-B)=n then find cos^2B-cos^2A
Q 32	If the arcs of the same lengths in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii
Q 33	If $tan(A - B) = 1$, $sec(A + B) = \frac{2}{\sqrt{3}}$ the smallest positive value of B
	is
Q 34	Find the value of cos ² 75-sin ² 15
Q 35	Evaluate :√3 cosec20-sec20
Q 36	Find the value of $\cos(\frac{3\pi}{4}-x) - \cos(\frac{3\pi}{4}+x)$
Q 37	Evaluate: $sin_{10} \frac{\pi}{10} + sin_{10} \frac{13\pi}{10}$
Q 38	Evaluate : $2\cos\frac{\pi}{13} \cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$
Q 39	Evaluate the value of sin105°

Q 40	Find the value of k if tanA-cotA=k cot2A
-	
Q 41	Convert 1 radian in degree, minute and seconds
Q 42	Convert 40°20' into radian measure
Q 43	In a circle of diameter 56cm, the length of the chord is 28 cm, find the length of the minor arc.
Q 44	A wheel makes 540 revolutions in one minute. Through how many radians does it turn in 12 seconds.
Q 45	Find the value of 2 sin75° sin15°.
Q 46	Find a if sin(-420°) cos390° + cos(-660°) sin330° = - a
Q 47	If sinx + cosec x= 2, then find $sin^8x + cosec^8x$
Q 48	What will be the domain and range of $f(x) = sin \frac{x}{2}$
Q 49	Evaluate the value of sin(-1140)+cos(-450)
Q 50	Find the value oftan15°. tan45° tan75°
	SHORT QUESTIONS
Q 51	If $x = y\cos\frac{2\pi}{3} = z\cos\frac{4\pi}{3}$, then find the value of $xy + yz + zx$
Q 52	Prove that $sin(45+A) sin(45-A) = \frac{cos2A}{2}$
Q 53	Prove that : cot x cot 2x – cot 2x cot 3x – cot 3x cot x=1
Q 54	If $A + B = 45^{\circ}$, then (cot $A - 1$) (cot $B - 1$) is equal to
Q 55	Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ if $\tan x = -\frac{3}{4}$ x lies in the 2nd quadrant
Q 56	Evaluate: $sin\frac{\pi}{8}$
Q 57	If $tan(\frac{\pi}{4} + \theta) - tan(\frac{\pi}{4} - \theta) = k tan 2\theta$, find k
Q 58	Evaluate: $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$
Q 59	Prove that: $\frac{\sin A - \sin B}{\cos B - \cos A} = \cot(\frac{A + B}{2})$
Q 60	Evaluate: sin12°.sin48°.sin54°
Q 61	Evaluate the value of tan2A if sinA=-3/5
Q 62	Evaluate the value of sin75°-cos75°
Q 63	Prove that: $\frac{\sin 2A}{1+\cos 2A}$ =tanA

Q 65	Evaluate the value of (sin3x+sinx)sinx+(cos3x-cosx) cosx
Q 66	The railway train is travelling on a circular curve of 1500 metres radius at the rate of 66km/hr.Through what angle it has turned in10 seconds.
Q 67	Evaluate: $\frac{\sin(180+\theta)\cos(90+\theta)\tan(270-\theta)\cot(360-\theta)}{\sin(360-\theta)\cos(360+\theta)\csc(-\theta)\sin(270-\theta)}$
Q 68	If sinA=-3/5 and A lies in 3^{rd} Quadrant and cosB= 12/13 and B lies in 4^{th} Quadrant ,then find the value of tan (A+B)
Q 69	In any cyclic quadrilateral ABCD, prove that
	cosA+ cosB+ cosC +cosD=0
Q 70	Show that tan $3x$ tan $2x$ tan $x = \tan 3x - \tan 2x - \tan x$.
	LONG QUESTIONS
Q 71	Prove that $:(1+COS\frac{\pi}{8})(1+COS\frac{3\pi}{8})(1+COS\frac{5\pi}{8})(1+COS\frac{7\pi}{8})=1/8$
Q 72	Prove that : $sin^{4}\frac{\pi}{8} + sin^{4}\frac{3\pi}{8} + sin^{4}\frac{5\pi}{8} + sin^{4}\frac{7\pi}{8} = 3/2$
Q 73	Prove that : sin20.sin40.sin60.sin80=3/16
Q 74	Prove that: $cos^2\alpha + cos^2(\alpha + 120) + cos^2(\alpha - 120) = 3/2$
Q 74	Prove that $\frac{\sin(4A-2B)+\sin(4B-2A)}{\cos(4A-2B)+\cos(4A-2B)} = \tan(A+B)$
Q 75	Prove that : $\frac{\sin A - \sin 5A + \sin 9A - \sin 13A}{\cos A - \cos 5A - \cos 9A + \cos 13A} = \cot 4A$
Q 76	Prove that $:\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 8A}}} = 2\cos A$
Q 77	Prove that : $sin 4A = 4sin A cos^3 A - 4cos A sin^3 A$
Q 78	If $A+B+C=\pi$, then prove that:
	$\tan_{2}^{\underline{A}}\tan_{2}^{\underline{B}} + \tan_{2}^{\underline{B}}\tan_{2}^{\underline{C}} + \tan_{2}^{\underline{C}}\tan_{2}^{\underline{A}} = 1$
Q 79	Prove that $2 \sin^2 \beta + 4 \cos(a + \beta) \sin a \sin \beta + \cos 2(a + \beta)$ is independent of β .
Q 80	Sketch the graph of cos2x and cos $(2x-\frac{\pi}{4})$

SOLUTIONS:- MCQs

1.b	2.d	3.a	4.b	5.d
6.a	7.c	8.b	9.b	10.c
11.a	12.a	13.d	14.a	15.c
16.a	17.a	18.a	19.d	20.b

21.CASE STUDY-1	(i)c	(ii)b	(iii)b	(iv)c
22. CASE STUDY-2	(i)b	(ii)a	(iii)a	(iv)b
23.CASE STUDY-3	(i)c	(ii)a	(iii)c	(iv)a
24.CASE STUDY-4	(i)d	(ii)b	(iii)c	(iv)d
25.CASE STUDY-5	(i)a	(ii)b	(iii)c	(iv)d

ASSERTION AND REASON:-

26. d	27. с	28. a	29. a	30. d

VERY SHORT QUESTIONS:-

31. m ² – n ²	32. 22:13	33. ^{7Π} 24	34. 0	35. 4
36. √2sinx	37. $-\frac{1}{2}$	38. 0	39. $\frac{\sqrt{3}+1}{2\sqrt{2}}$	40. k=-2
41. 57 [°] 16 ['] 22 ^{''}	42. ¹²¹ ₅₄₀	43 . $\frac{28\pi}{3}$	44. 216π	45. 1/2
46. a=1	47. 2	48. Domain-R Range-[-1,1]	49. 0	50. 1

SHORT QUESTIONS:-

51.	$x = y \cos \frac{2\pi}{3} - z \cos \frac{4\pi}{3}$ $\Rightarrow \frac{x}{1-2} - \frac{x}{2} = \frac{-x}{2} = k(\text{let})$ $\Rightarrow x = k; y = -2k; z = -2k$ Now xy + yz + zx = (k).(-2k) + (-2k)(-2k) + (-2k)(k) $= -2k^{2} + 4k^{2} - 2k^{2}$ = 0
52.	$sin(A+B)sin(A-B)=sin^{2}A-sin^{2}B$ $sin(45+A)sin(45-A)=sin^{2}45-sin^{2}A$ $=(\frac{1}{\sqrt{2}})^{2}-sin^{2}A$

	1–2sin ² A
	$=\frac{1}{\cos 2A}$
	$=\frac{1}{2}$
53.	$\cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x$
	We have $3x = x + 2x$
	$\cot 3x = \cot (x + 2x)$ $\cot x \cot 2x - 1$
	$\cot 3x = \frac{1}{\cot x + \cot 2x}$ By cross multiplication $\cot 3x$ ($\cot x + \cot 2x$) = $\cot x \cot 2x - 1$
	$\Rightarrow \cot x \cot 3x + \cot 2x \cot 3x = \cos x \cot 2x - 1$
	\Rightarrow cos x cot 2x - cot 2x cot 3x - cot 3x cot x = 1
54.	cot(A+B)=cot45
	\Rightarrow cot(A+B)=1
	$\Rightarrow \frac{cotB+cotA}{cotA.cotB-1} = 1$
	⇒cotB+cotA=cotAcotB-1
	$\Rightarrow cotB + cotA - cotAcotB + 1 = 0$
	\Rightarrow (cotA-1)(cotB-1)=0
55.	If x lies in second Quadrant, then x/2 is lies in first Quadrant.
	tanx=-3/4 ,then cosx=-4/5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\sin^{2} \pm \sqrt{2}$ = and co $= \sqrt{2}$
	$\frac{2}{10} = \frac{10}{10} = \frac{10}{10} = \frac{10}{10} = \frac{10}{10}$
	$\frac{\tan^x = 2}{2 \cos^2} = 3$
	2
56.	$\pi \sqrt{1-\cos^{\frac{\pi}{4}}}$
	$\sin \frac{\pi}{8} = \sqrt{\frac{1 - \cos \frac{\pi}{4}}{2}}$
	$\frac{3}{1 \sqrt{1}}$ 2
	$\sqrt[1-v]{2}$
	$=$ $\frac{1}{2}$
	$=\sqrt[n]{\frac{2}{2}}$ $=\sqrt{\frac{(\sqrt{2}-1)}{2\sqrt{2}}}$
	$=\sqrt{(\sqrt{2}-1)}$
	2√Z
	$ tan^{\frac{n}{2}} + tan\theta$ $tan^{\frac{n}{2}} + tan\theta$
57.	$\tan\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} - \theta\right) = \left[\frac{\tan^{\frac{\pi}{4}} + \tan\theta}{4\pi}\right] - \left[\frac{\tan^{\frac{\pi}{4}} - \tan\theta}{4\pi}\right]$ $= \left[\frac{1 + \tan\theta}{1 - \tan\theta}\right] - \left[\frac{1 - \tan\theta}{1 + \tan\theta}\right]$ $\Rightarrow 4\tan\theta = 2\tan 2\theta$
	$\begin{bmatrix} 4 & 4 & 1-tan_4tan\theta \\ 1+tan\theta \end{bmatrix} = \begin{bmatrix} 1-tan_4tan\theta & 1+tan_4tan\theta \end{bmatrix}$
	$= \lfloor \frac{1}{1 - tan\theta} \rfloor - \lfloor \frac{1}{1 + tan\theta} \rfloor$
	$\Rightarrow \frac{4tan\theta}{1-tan^2\theta} = 2tan2\theta$
	\Rightarrow k=2
58.	$\frac{\pi}{\cos 7} \cos \frac{4\pi}{7} \cos \frac{\pi}{7}$
	Divide and multiply with 2 cin
	$2\sin^{\pi}_{-}$ π 2π 4π
	Divide and multiply with 2 sin $\frac{\pi}{7}$ = $\frac{2 \sin^{\pi}}{2 \sin^{\pi}_{7}} [\cos^{\pi}_{7} \cos^{2\pi}_{7} \cos^{4\pi}_{7}]$
	7 , , , ,

r	
	$=\frac{\frac{51n}{2}\cos^{2}\cos^{2}}{\frac{7}{2}\sin^{2}\frac{\pi}{7}}$
	Divide and multiply by2 $2sin^{\frac{2\pi}{cos}}cos^{\frac{4\pi}{cos}}cos^{\frac{4\pi}{cos}}$
	$= \begin{bmatrix} \frac{7}{2.2} \frac{7}{5} \sin \frac{\pi}{7} \\ \sin \frac{4\pi}{5} \cos \frac{4\pi}{5} \end{bmatrix}$
	$=\frac{7}{2.2 \sin \frac{\pi}{7}}$
	Again divide and multiply2 $2\sin\frac{4\pi}{\cos^{4\pi}}$
	$= \frac{2 \sin \pi}{2.2 2 \sin \pi}$
	sin
	$ = 2.2.2 \sin \frac{\pi}{7} \\ \sin \left(u + \frac{\pi}{7} \right) $
	$= \frac{1}{2.2.2 \sin^2 \pi}$ $-\sin\left(\frac{\pi}{2}\right)$
	$=\frac{1}{2.2.2 \sin \frac{\pi}{7}}$
	=_8
59.	$= \frac{2 \cos(-\sin(-))}{4 + B + \frac{2}{2}}$
	$=\frac{2}{2 \sin(\frac{A+B}{2})\sin(\frac{A-B}{2})}$ $=\cot(\frac{A+B}{2})$
60.	sin12 [°] .sin48 [°] .sin54 [°] Divide and multiply by 2
	$= 1/2(2\sin 12 \cdot \sin 48 \cdot \sin 54)$
	$=\frac{1}{2}\{(\cos(12-48)-\cos(12+48))\sin 54$
	$= \frac{1}{2} (COS36 - cos60) cos36$
	$=\frac{1}{2}(\cos 36 - \cos 60)\cos 36$ = $\frac{1}{2}(\frac{\sqrt{5}+1}{4} - \frac{1}{2})(\frac{\sqrt{5}+1}{4})$ = $\frac{1}{2}(\frac{\sqrt{5}+1}{4})(\frac{\sqrt{5}+1}{4})$ = $\frac{1}{32}(5-1)$
	$= \frac{2}{1} \frac{(-4)}{1} \frac{(-4)}{1}$
	=4/32
	=1/8
61.	$\frac{2tanA}{2(-3)} = \frac{1-tan^2A}{1-tan^2A}$
	$ tan2A = \frac{1}{1 - tan^2A} = \frac{1 - tan^2A}{1 - tan^2A} = \frac{1 - \frac{t^4}{4}}{2} = \frac{1 - \frac{t^4}{4}}{7} = 1 - \frac{$
	$=\frac{-24}{7}$
62.	śin75-cos75
02.	$=\sin 75 - \sin 15 = 2\cos \frac{(75+15)}{2} \sin \frac{(75-15)}{2}$
	$=2\cos 45 \sin 30$ =2. $\frac{1}{\sqrt{2}}$ = $\frac{1}{\sqrt{2}}$

63.	$=\frac{2\sin A\cos A}{2\cos^2 A}$
	=tanA
64.	$= \frac{1 + \cos A + \cos 2A}{\sin A + 2\sin A \cos A}$ = $\frac{1 + \cos A + 2\cos^2 A - 1}{\sin A(1 + 2\cos A)}$ = $\frac{\cos A(1 + 2\cos A)}{\cos A(1 + 2\cos A)}$ = tanA
65.	$sin3x+sinx)sinx+(cos3x-cosx) cosx$ $=2sin\frac{(3x+x)}{2}cos\frac{(3-x)}{2})sinx - 2sin\frac{(3x+x)}{2}sin\frac{(3x-x)}{2}cosx$ $=2sin2xcosxsinx-2sin2xsinxcosx$ $=0$
66.	Speed=66km/hr=66x5/18=55/3m/sec Therefore distance travelled in 10 seconds=550/3m $\Rightarrow \theta = l/r$ $\Rightarrow \theta = \frac{550}{\frac{3}{11}} \div 1500$ $\Rightarrow \theta = \frac{11}{90}rad.$
67.	$= \frac{(-\sin\theta)(-\sin\theta)(\cos\theta) - \cos\theta}{(-\sin\theta)(\cos\theta) - \cos\theta}$ $= \frac{\sin^2\theta}{\cos^2\theta} cot^2\theta$ $= 1$
68.	sinA=-3/5and cosB=12/13 =⇒tanA=3/4;tanB=-5/12 tan(A+B)= $\frac{tanA+tanB}{1-tanAtanB}$ =place the values ,we get 16/63
69.	$A+C=\pi$ (Opposite angles of cyclic quadrilateral are supplementary) $.A=\pi - C$ $.cos A=cos (\pi-C)$ $.cos A=-cos C$ $cos A+cos C=0$ Similarly $.cos B+cos D=0$ $=cos A+cos B+cos C+cos D=0$
70.	$tan3x=tan(2x+x)$ $.\Rightarrow tan3x=$ $\frac{tan2x+tanx}{1-tan2x.tanx}$ $.\Rightarrow tan3x-tanx-tan2x=tanx.tan2x.tan3x$

LONG QUESTIONS

71.	$ \begin{array}{l} :(1+COS\frac{\pi}{8})(1+COS\frac{3\pi}{8})(1+COS\frac{5\pi}{8})(1+COS\frac{7\pi}{8}) \\ =(1+COS\frac{\pi}{8})(1+COS\frac{\pi}{8})(1+COS\frac{5\pi}{8})(1+COS\frac{3\pi}{8}) \\ =:(1+COS\frac{\pi}{8})(1-COS\frac{\pi}{8})(1-COS\frac{3\pi}{8})(1+COS\frac{3\pi}{8}) \\ =:(1-COS^{2}\frac{\pi}{8})(1-COS^{2}\frac{3\pi}{8}) \\ =sin^{2}\frac{\pi}{8}.sin^{2}\frac{3\pi}{8} \\ =\frac{1-cos^{\pi}}{2}(1-cos^{2}\frac{\pi}{8}) \\ =(\frac{1-\sqrt{2}}{2})(\frac{4}{2}) \\ =(\frac{1-\sqrt{2}}{2})(\frac{1+\sqrt{2}}{2}) \\ =(\frac{\sqrt{2}-1}{2\sqrt{2}})(\frac{\sqrt{2}+1}{2\sqrt{2}}) \\ =\frac{-8}{8} = 1/8 \end{array} $
72.	$ \frac{\sin^{4} \pi + \sin^{4} \frac{3\pi}{8} + \sin^{4} \frac{5\pi}{8} + \sin^{4} \frac{\pi}{8}}{8} = \sin^{4} \frac{\pi}{4} + \sin^{4} \frac{7\pi}{4} + \sin^{4} \frac{5\pi}{8} + \sin^{4} \frac{3\pi}{8} = \sin^{4} \frac{\pi}{4} + \sin^{4} \frac{\pi}{3} + \sin^{4} \frac{3\pi}{8} + \sin^{4} \frac{\pi}{8} = 2\sin^{4} \frac{\pi}{8} + 2\sin^{4} \frac{3\pi}{8} + \sin^{4} \frac{\pi}{8} = 2\sin^{4} \frac{\pi}{8} + 2\sin^{4} \frac{3\pi}{8} = 2(\frac{1 - \cos^{\pi}}{2})^{2} + 2(\frac{2}{2})^{2} = 2(\frac{-1 - \cos^{\pi}}{2})^{2} + 2(\frac{-2}{2})^{2} = 2(\frac{-1 - \cos^{\pi}}{2})^{2} + 2(\frac{-\sqrt{2}}{2})^{2} = 2(\frac{\sqrt{2} - 1}{2})^{2} + 2(\frac{\sqrt{2} + 1}{2})^{2} = 2(\frac{\sqrt{2} - 1}{2})^{2} + (\frac{\sqrt{2} + 1}{2})^{2} = 2(\frac{\sqrt{2} - 1}{2})^{2} + (\frac{\sqrt{2} + 1}{2})^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} (\sqrt{2} - 1)^{2} + (\sqrt{2} - 1)^{2} = \frac{2}{\sqrt{2}} ($
73.	$sin20.sin40.sin60.sin80=1/2{2 sin20.sin40.sin60.sin80}=1/2{[cos(40-20)-cos(40+2 \sqrt{2} 80]0)}=1/2[{cos(40-20)-cos(40+2 \sqrt{2} 80]0)}=sin=\frac{\sqrt{3}}{4}[{cos20-cos60}{sin80}]=\frac{\sqrt{3}}{4}[{cos20.sin80 - cos60.sin80}]=\frac{\sqrt{3}}{4}[{cos20.sin80 - 1.sin80}]=\frac{\sqrt{3}}{8}[{cos20.sin80 - 1.sin80}]=\frac{\sqrt{3}}{8}[{cos20.sin80 - sin80}]=\frac{\sqrt{3}}{8}[{sin(80 + 20) + cos(80 - 60) - sin80}]=\frac{\sqrt{3}}{8}[{sin(80 + 20) + cos(80 - 60) - sin80}]=\frac{\sqrt{3}}{8}[{sin (47) - sin80}]$

74	$\frac{\sin(4A-2B)+\sin(4B-2A)}{2}$
74.	$= \cos(4A-2B) + \cos(4A-2B)$
	$2\sin^{(4A-2B+4B-2A)}\cos^{(4A-2B-4B+2A)}$
	$=\frac{2}{2\cos^{(4A-2B+4B-2A)}\cos^{(4A-2B-4B+2A)}}$
	$\frac{2\cos \sqrt{2} + \cos \sqrt{2}}{2\sin(2A+2B)\cos(6A-6B)}$
	$=\frac{2}{2C05(2A+2B)}cos^{(6A-6B$
	$=\frac{2\sin\left(A+B\right)}{2}$
	$=\frac{1}{2\cos(A+B)}$
	=tan(A+B)
75.	$= \frac{516A - 5165A + 5165A - 51615A}{124}$
	cosA-cos5A-cos9A+cos13A
	sinA+sin9A-sin5A-sin13A
	- $\cos A - \cos 9A - \cos 5A + \cos 13A$
	$2sin^{(A+9A)}cos^{(A-9A)}-2sin^{(5A+13A)}cos^{(5A-13A)}$
	$=\frac{2}{-2sin^{(A+9A)}sin^{(A-9A)}-2sin^{(13A+9A)}sin^{(13A-A)}}{2}sin^{(13A-A)}sin^{(13A-A)}}{2}$
	$= \frac{2\sin 5A\sin 4A - 2\sin 9A\sin 4A}{2\sin 5A\sin 4A - 2\sin 9A\sin 4A}$
	2cos4A(sin5A-sin9A)
	$=\frac{2}{2\sin 4A(\sin 5A-\sin 9A)}$
	=cot4A
76.	$=\sqrt{2} + \sqrt{2 + \sqrt{2 + 2\cos 8A}}$
	$= \sqrt{2} + \sqrt{2} + \sqrt{2} + 2\cos 8A$
	$=\sqrt{2} + \sqrt{2} + \sqrt{2(1 + \cos 8A)}$
	$=\sqrt{2} + \sqrt{2} + \sqrt{2(2\cos^2 4A)}$
	$=\sqrt{2} + \sqrt{2 + \sqrt{4\cos^2 4A}}$
	$=\sqrt{2 + \sqrt{2 + 2\cos 4A}}$
	$=\sqrt{2+\sqrt{2+2c0S4A}}$
	$=\sqrt{2} + \sqrt{2(1 + \cos 4A)}$
	$=\sqrt{2 + \sqrt{4\cos^2 2A}}$
	$=\sqrt{2+2cos2A}$
	$=\sqrt{2(1 + \cos 2A)}$
	$=\sqrt{2.2cos^2A}$
	=2cosA
77.	sin4A=2sin2Acos2A
	=2(2sinAcosA)($cos^2A - sin^2A$)
	=4sinA cos^3A -4cosA sin^3A
78.	A+B+C=π
, 0.	$A = B + C = \pi$
	··· 2 ⁺ 2 ⁺ 2 ⁻ 2

	$ \Rightarrow \frac{A}{2} + \frac{B}{2} = \frac{\pi}{2} - \frac{C}{2} \Rightarrow \tan \left(\frac{A}{2}\right) = \tan \left(\pi - \frac{C}{2}\right) + \frac{2}{2} = 2 = 2 \Rightarrow \frac{\tan^{A} + \tan^{B} - 2}{2} = \cot^{C} - 2 \Rightarrow \frac{\tan^{A} + \tan^{B} - 2}{1 - \tan^{2} \tan^{2} - 2} = \frac{1}{2} \Rightarrow \frac{\tan^{A} + \tan^{B} - 2}{1 - \tan^{A} \tan^{B} - 2} = \frac{1}{2} \\ \Rightarrow \frac{\tan^{A} + \tan^{B} - 2}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{C}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{C}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{C}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} = \frac{1}{2} \\ \Rightarrow \tan^{A} - 2 = \frac{1}{2} \\ \Rightarrow \tan^{A}$
79.	=2 $\sin^2\beta + 4\cos(a + \beta)\sin a \sin\beta + \cos 2(a + \beta)$ =2 $\sin^2\beta + 4(\cos a \cos\beta - \sin a \sin\beta)\sin a \sin\beta + 1 - 2\sin^2(a + \beta)$ =2 $\sin^2\beta + 4(\cos a \cos\beta \sin a \sin\beta - \sin^2 a \sin^2\beta) + 1 - 2(\sin a \cos\beta + \cos^2\beta)$ =2 $\sin^2\beta + 4\cos a \cos\beta \sin a \sin\beta - 4\sin^2 a \sin^2\beta + 1 - 2(\sin^2 a \cos^2\beta + 2\sin a \cos\beta \sin a \cos\beta + \cos^2 a \sin^2\beta)$ =2 $\sin^2\beta + 4\cos a \cos\beta \sin a \sin\beta - 4\sin^2 a \sin^2\beta + 1 - 2\sin^2 a \cos^2\beta - 4\sin a \cos\beta \sin a \cos\beta - 2\cos^2 a \sin^2\beta$ =2 $\sin^2\beta - 4\sin^2 a \sin^2\beta + 1 - 2\sin^2 a \cos^2\beta - 2\cos^2 a \sin^2\beta$ =2 $\sin^2\beta - 4\sin^2 a \sin^2\beta + 1 - 2\sin^2 a (1 - \sin^2\beta) - 2(1 - \sin^2 a) \sin^2\beta$ =1 $-2\sin^2 a = \cos^2 a = independent of\beta$
80.	Draw appropriate graphs.

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : COMPLEX NUMBERS

	MCQ
Q1	The value of i ⁵²⁸
	(a) 1
	(b) -1
	(C) i
	(d) -i
Q2	$[i^{19} + (\frac{1}{i})^{25}]^2$ is equal to
	(a) 4
	(b) -4
	(C) i
	(d) —i
Q3	$i^{592+}i^{590+}i^{588+i^{586+}i^{584}}$ is equal to
	$\frac{1592 + 1590 + 1500 + 1500 + 1504}{1582 + 1580 + 1578 + 1576 + 1574}$ is equal to (a) -1
	(b)1
	(c) -2i (d) i
Q4	$i^{n} + i^{n+1} + i^{n+2} + i^{n+3}$ is equal to
	(a)0
	(b) 1 (c) -1
	(d) 2
Q 5	The conjugate of i-35
	(a)1
	(b) -1
	(c)i (d) –i
Q 6	If $z_1 = 3 + 2i$ and $z_1 = 2 - 4i$ and $ z_1 + z_2 ^2 + z_1 - z_2 ^2$ is equal
	(a) 11
	(b)22
	(c) 55 (d)66

Q 7	The value of $\frac{1}{2}$
	(a)i
	(b)2i
	(c) -i (d)-2i
Q 8	The real part of $\frac{(1+1)^2}{3-i}$ is
	$(a)\frac{1}{3}$ 3-1
	$(b) - \frac{1}{5}$ $(c) - \frac{1}{3}$
Q 9	(d) None of these The conjugate of the complex number 213
	$\overline{4-3i}$
	$(a)\frac{7-26i}{25}$
	$(b)\frac{7-26i}{25}$
	(c) $\frac{\frac{23}{-7-26i}}{25}$
	$(d) \frac{7+26i}{2r}$
Q10	If $z(2 - i) = (3 + i)$, then z^{20} is equal to
Q10	(a) 2^{10}
	(b) -2 ¹⁰
	(c) 2^{20} (d)- 2^{20}
Q11	If $4x + i(3x - y) = 3 + i(-6)$ then the values of x and y are
	(a) $x = 3, y = 4$
	(b) x=3/4, y= 33/4 (c)x =4. y =3
	(d)x =33. Y =4
Q 12	If $i^{103} = a + ib$ then a +b is equal to
	(a) 1 (b) -1
	(c) 0
Q13	(d) 2 If $z_1 = \sqrt{3} + 1\sqrt{3}$ and $z_2 = \sqrt{3} + 1$ then the quadrant in which — lie is
Q10	Z2
	(a) I (b) II
	(c) III
	(d) IV

Q14	The conjugate of
	$(a)^{\frac{-2}{-2} + 11} i$ $(1-2i)^2$
	$(1-21)^{2}$ $(a)_{25}^{\frac{-2}{25}} + \frac{11}{25}i$ $(b)_{\frac{2}{5}}^{2} - \frac{11}{25}i$ $(c)_{\frac{2}{5}}^{2} - \frac{11}{25}i$ $(d)_{\frac{2}{5}}^{2} - \frac{-11}{25}i$
	$\binom{25}{25}$ 25 (c) $-\frac{11}{25}$ i
	$\binom{2}{25}$ $\frac{25}{25}$
	(0) 1 25 25
Q15	If $z = -5i^{-15} - 6i^{-8}$ then \overline{z} is equal to
	(a) -6-5i (b) -6 +5i
	(c) 6-5i
	(d) 6 +5i
Q16	$(1+i)^8 + (1-i)^8$ equalto
	(a) 1 (b)2
	(c) 8
Q 17	(d) 32 Which of the following options defined 'imaginary number'?
	(a)Square root of any number
	(b) Square root of positive number
	(c) Square root of negative number(d)Cube root of number
0.19	
Q 18	If $z = \frac{7-i}{3-4i}$ then $ z ^{14}$
	(a) 2 ⁷ (b) 2 ⁷ i
	(c) -2 ⁷
0.10	(d) $-2^{7}i$ The argument of $\frac{1-1}{2}$ is
Q 19	1+i
	$ \begin{array}{c} (a) \frac{\pi}{2} \\ (b) \frac{2\pi}{2} \end{array} $
	$(b)\frac{\pi}{2}$
	$ \begin{array}{c} (c) \frac{\pi}{4} \\ (d) \frac{\pi}{c} \end{array} $
	6
Q 20	If $Z_1 = 1 + i$, $Z_2 = 2 - i$ and $\overline{Z_2} = a + ib$, then $a + b$ is equal to
	(a) 2 (b) 1
	(c) 3
	(d) 4

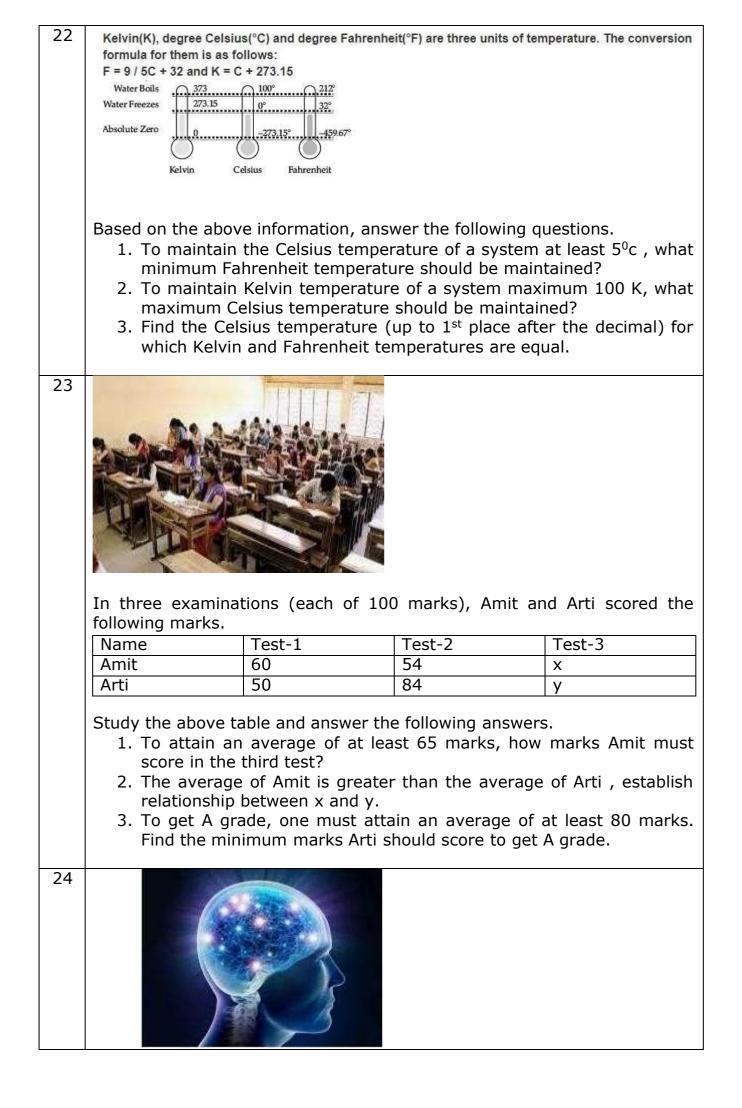
	CASE BASED/SOURCE BASED / PASSAGE BASED
Q 21	Conjugate of a complex number $z = x + iy$ is $x - iy$ and denoted by $\overline{z} = x - iy$ Based on above information answer the following questions: (a).Find x if $sinx + icos2x$ and $cos2x - isin2x$ are conjugate each other. (b) Solve the equation $z^2 + z$.
Q 22	An ant is moving around a few food pieces scattered on the floor along the curve $\left \frac{z-2}{z-3}\right = 2$. (a) What is the shape of the path described by the ant (b) Find the equation of the path described.
Q 23	The conjugate of a complex number z is the complex number z is the complex number, obtained by z.It is denoted by \overline{z} . The modulus of a complex number $z = a + ib$ is defined as the non-negative real number $\sqrt{a^2 + b^2}$. It is denoted by $ z $ i. e $ z = \sqrt{a^2 + b^2}$ (a) If $(x - iy)(3 + 5i)$ is the conjugate of $-6 - 24i$, the find the value of $x + y$ (b) If $f(z) = \frac{7-z}{1-z^2}$, where $z = 1 + 2i$ then find $ f(z) $.
Q 24	ASSERTION REASONING
Q 24	Assertion (A) if $i = \sqrt{-1}$ then $i^{4k} = 1, i^{4k+1} = i$, $i^{4k+2} = -1i^{4k+3} = -i$. Reason (R) $i^{4k} + i^{4k+1} + i^{4k+2} + i^{4k+3} = 1$ (a) A is true, R is true; R is a correct explanation of A.
	 (b) A is true, R is true; R is not a correct explanation of A. (c) A is true; R is false (d) A is false; R is true.
Q 25	Assertion: For real roots of $ax^2 + bx + c$, $D \ge 0$. Reason:The greatest value of λ for which $(2\lambda - 1)x^2 - 4x + (2\lambda - 1) = 0$
	 (a) A is true, R is true; R is a correct explanation of A. (b) A is true, R is true; R is not a correct explanation of A. (c) A is true; R is false (d) A is false; R is true.

Q 26	Assertion: If $ z_1 + z_2 ^2 = z_1 ^2 + z_2 ^2$, then $\frac{z_1}{z_1}$ is purely imaginary
	Reason: If z is purely imaginary, then $+\bar{z} = 0^{22}$.
	 (a) A is true, R is true; R is a correct explanation of A. (b) A is true, R is true; R is not a correct explanation of A. (c) A is true; R is false (d) A is false; R is true.
Q 27	Assertion: The equation $ix^2 - 3ix + 2i = 0$ has non real roots. Reason: If a, b, c are real and $b^2 - 4ac \ge 0$, then the roots of the equation $ax^2 + bx + c = 0$ are real and if $b^2 - 4ac < 0$, then the roots of the equation $ax^2 + bx + c = 0$ are non-real.
	 (a) A is true, R is true; R is a correct explanation of A. (b) A is true, R is true; R is not a correct explanation of A. (c) A is true; R is false (d) A is false; R is true.
	VERY SHORT
Q 28	Express the following complex number in the form $a + ib$
	$\frac{3-\sqrt{-16}}{1-\sqrt{-9}}$
Q 29	Find the modulus and conjugate of $(4+5i)^2$. $(2+3i)^2$
Q 30	For any complex number prove that $ z^2 = z ^2$
Q 31	Evaluatei ⁻⁹⁹⁹
Q 32	Find the value of $(-\sqrt{-1})^{4n+3}$ where n is any natural number.
Q 33	Evaluate $1 + i^2 + i^4 + i^6 + \dots + i^{20}$.
Q 34	Find the multiplicate inverse $z = 3 - 2i$
Q 35	Check if $z = \left(\frac{3+2i}{2-3i}\right) + \left(\frac{3-2i}{2+3i}\right)$ is purely real or purely imaginary.
Q 36	If z_{1,z_2} are $1 - i$ and $-2 + 4i$ respectively find $Im(\underline{z_{1,z_2}})$
Q 37	Find the real values of x and y if
	(1-i)x + (1+i)y = 1-3i
Q 38	If $\binom{1-i}{1+i} = a + ib$ find a and b

Q 39	If a = $cos\theta$ + $isin\theta$, find the value of $\frac{1+a}{1+a}$
	<u>1-a</u>
Q 40	What is smallest positive integer n for which $(1 + i)^{2n} = (1 - i)^{2n}$?
Q 41	If z_{1,z_2,z_3} are complex numbers such that $ z_{1,j} = z_2 = z_3 =$
	$\left \frac{1}{z_{1,}} + \frac{1}{z_{2}} + \frac{1}{z_{3}}\right = 1$, then find the value of $ z_{1+} + z_{2+} + z_{3} $.
Q 42	If $z_{1,} = 2 - i$ and $z_2 = -2 + i$ find
	(i)Re $\left(\frac{z_1 z_2}{\overline{z_1}}\right)$ (ii) Im $\left(\frac{1}{z_{1\overline{z_1}}}\right)$
	SHORT QUESTIONS
Q 43	If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$
Q 44	If $\begin{pmatrix} 1+i \\ \frac{1-i}{1-i} \end{pmatrix}^{m} = 1$ then find the least positive integral value of m.
Q 45	Simplify $(1 + i)^4 (1 + \frac{1}{i})^4$
Q 46	Find the value of: $i^{45} + i^{46} + i^{47} + i^{48}$.
Q 47	If $z(2-i)=(3+i)$, then z^{20} is equal to.
Q 48	Evaluate $\sum_{n=1}^{13} (1^n + 1^{n+1})$ where $n \in N$.
Q 49	Evaluate $1 + i^2 + i^4 + i^6 + \dots + i^{2n}$.
Q 50	Find the value of $(1 + i)^6 + (1 - i)^3$
Q 51	Find the real values of x and y if $\frac{x-1}{3+i} + \frac{y-1}{3-i} = i$.
Q 52	Find all non-zero complex numbers z satisfying $\bar{z} = iz^2$.
Q 53	If $ 1 - i ^x = 2^x$, find non zero integral solution.
Q 54	Solve the equation $ z + 1 = z + 2(1 + i)$
Q 55	Find real θ such that $\frac{3+21510\theta}{1-2i\sin\theta}$ is purely real $\frac{1-2i\sin\theta}{1-2i\sin\theta}$
Q 56	Show that $\left \frac{z-2}{z-3}\right = 2$ represents a circle. Find centre and radius .
Q 57	Find smallest positive integer n for which $\frac{(1+1)}{(1-i)^{n-2}}$ is a real number.
Q 58	Find the modulus and the amplitude of $\frac{1+2i}{1-3i}$
Q 59	If(x+iy)(2-3i)=4+i,then find x and y

Q 60	Find x and y if $\left(\frac{1+i}{1-i}\right)^3 + \left(\frac{1-i}{1+i}\right)^3 = x + iy$
	LONG QUESTIONS
Q 61	If x+iy= $\sqrt{\frac{a+ib}{c+id}}$, then prove that $(x^2 + y^2)^2 = \frac{a^{2+b^2}}{c^2+d^2}$
Q 62	Find the modulus and argument of the complex number 1 + 7i $(2-i)^2$
Q 63	Find the value of a such that the sum of the squares of therootsoftheequation x^2 -(a-2)x-(a+1)=0isleast.
Q 64	For what values of x and y are the numbers $3 + ix^2 y$ and $x^2 + y + 4i$ are conjugate of each other.
Q 65	If $z = x + iy$ and $w = \frac{ 1-iz }{ z-i }$ and $ w = 1$ then show that z is purely real.
Q 66	Prove that maximum value of $ z + + z - 1 $ is 1
Q 67	If $ z + 1 = \sqrt{2} z - 1 $ prove that z describes a circle.
Q 68	If $z_{1,z_{2}}$ are complex numbers such that $\frac{zz_{1}}{3z_{2}}$ is purely imaginary number the find $\left \frac{z_{1-,z_{2}}}{z_{1+}z_{2}}\right $.
Q 69	$ z = 1$ then prove that $\frac{z^{-1}}{z+1}$ is purely imaginary. What can you conclude if $z = 1$.
Q 70	If the real part $\frac{z+z}{\overline{z}-1} = 4$, then show that the locus of the point representing z in the complex plane is a circle.

<u>Answer Key</u>


1. a	2. b	3.a	4. a	5. c	6. c	7.a	8. b	9. c	10. b
11. b	12. b	13. a	14. b	15. a	16. d	17. c	18. a	19. b	20. a
21. No value of n	22 - (x -	$(\frac{10^2}{3}) + (y)$	4	23.i. 0	ii. $\frac{ z }{2}$	24. c	25.c	26. b	27. d
$\frac{28. \frac{3}{2} + 1i}{\frac{2}{2} \frac{2}{2}}$		29. ⁵²⁵ -	– i <u>92</u> 169	30-	31. i	32. i	33.1	$34 - \frac{3}{13} +$	$-\frac{2}{13}\mathbf{i}$
35.0	36. 2	37. x=2,	y=-1	38. (1,0)		39. i <i>cot</i> ^θ /2		40. n=2	41.1
42. $\frac{-2}{5}, 0$		44. 4	45. 16	46.0	472 ¹⁰	48. –1 + i	49.0 i odd 1 if even	f n is n is	50. –2 – 10i
51. x= -4, y=6	52. <i>z</i>	$= 0, i, \frac{\sqrt{3}}{2}$	$\frac{3}{2} - \frac{1}{2}i, -\frac{1}{2}i$	$\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	53. No	54. $z = \frac{1}{2} - \frac{1}{2}$	2i	55. $\theta = t$	ηπ
56. r= $r = \frac{2}{3}$ and cnetre $(\frac{10}{3}, 0)$			57.1	58. Modulus = 1 Amplitude $\theta = \sqrt[7]{\sqrt{2}}$			$\theta = \frac{3\pi}{4}$	59. x= 5/13, y= 14/13	
60. x = 0, y = 0			62. √ 2 , θ	$\theta = \frac{3\pi}{4}$ 63. 70. minimum val			n value of a =1		
$63. x = \pm 2, y = -1$			68. 1	3. 1 6			69. purely real		

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS-XI CHAPTER: LINEAR INEQUALITIES

	MCQ TYPE
1	Solve $7x < 24$ when $x \in \mathbb{N}$
	(a){1,2,3,4} (b){0,2,3,4} (c){1,2,3} (d) {0,2,3,4}
2	Solve $3-2x < 9$ when $x \in R$. Express the solution in the form of interval.
	(a) $[-3,\infty)$ (b) $(-3,\infty)$ (c) $[-3,\infty]$ (d) $[-2,\infty)$
3	If(x-3)/(x-2)>0 then x belongs
	(a)(−∞,2)∪(3,∞)
	(b) (−∞,−3) ∪(−5,∞)
	(c)(−∞,2]∪[5,∞)
	(d) (2,3)
4	If $x>0$ and $y<0$ then (x,y) lies in
	(a) I quadrant
	(b) II quadrant
	(c) II Iquadrant
	(d) IV quadrant
5	If $-2 < 2x - 1 < 2$ then the value of x lies in the
	interval (a)(1/2,3/2)
	(b)(-1/2, 3/2)
	(c) (3/2,1/2) (d)(3/2,1/2)
6	The solution of $ 2/(x-4) > 1$ where $x \neq 4$ is
	(a) (2,6) (b) (2,4) ∪ (4,6)
	(c) $(2,4) \cup (4,\infty)$
	(d) $(-\infty, 4) \cup (4, 6)$
7	The solution of the $0 < 3(x - 2)/5 < 15$ is
	(a)2 <x<27< th=""></x<27<>
	(b) 27 <x<-2 (c) -27<x<2< th=""></x<2<></x<-2
	(c) $-27 < x < -2$ (d) $-27 < x < -2$
L	

-	
8	Solve: $f(x) = {(x - 1) \times (2 - x)}/(x - 3) \ge 0$
	(a) (-∞,1] U (2,∞)
	(b) (-∞,1] U [2, 3)
	(c) (-∞,1] U (3,∞)
	(d) None of these
9	The solution of the inequality $3(2-x) \ge 2(1-x)$ for real x is:
	(a) x<4
	(b) x>4
	(c) x≤4
	(d) x≥4
10	The solution to $ 3x-1 +1<3$ is
10	(a)2 <x<3 4<="" th=""></x<3>
	(b)-1/3 < x < 1
	(c) $-1/3 < x < \frac{1}{4}$
	(d) $-3 < x < 3$
11	Solve: $3x+5 < x-7$, when x is are a real number
	(a)x < -12
	(b) $x > -6$
	(c) x<-6
	(d) None of these
12	If x-3 < 7 and x is a real number than x belongs to
	(a) (4,10)
	(b) (-10,4)
	(c) (4,-10)
	(d) None of these
13	The solution set of $-x^2 > 16$, x is a real number, is
	(a) (-4,4)
	(b) (0,4)
	(c) (-4,0)
	(d) Empty set
14	Set of points in the second quadrant is represented by
	(a) X>0 and y<0
	(b) X<0 and y <0
	(c) $X > 0$ and $y > 0$
	(d) X<0 and y>0
15	The graph of $x < y$
	(a) Contains origin
	(b) Contains (-2,3)
	(c) Contains (2,2)
	(d) None of these
16	If $-\frac{1}{x} < \frac{2}{3}$ then
	(a) x can be 2
	(b) x can be -1
	(C) x can be 0
	(d) None of these

17	$x^2 - 1 \ge 8$ then x belongs to
17	(a) $R-(-3,3)$
	(b) (-3,3)
	(c) (0,3)
	(d) (-3,0)
18	The open upper half plane of x-axis can be expressed as
10	(a) X>0 and y<0
	(b) $X > 0$
	(c) Y>0
	(d) X<0
19	The word "linear" stands for
	(a) One term
	(b) One power
	(c) One degree (d) None of these
20	
20	x-3 < 0 Then solution set of x is
	(a) (0,3) (b) (-3,0)
	(c) (-3,3)
	(d) None of these
	SOURCE BASED / CASE STUDY QUESTIONS
21	
	$500 \text{ ml} = \frac{800}{700}$
	$\pm \frac{400}{300}$
	± 200
	A beaker contains 640 litres of 8% solution of boric acid. This is to be
	diluted by adding 2% solution of boric acid to it. Based on this information
	answer the following questions.
	1. If x litres of 2% boric acid solution is added to the beaker, find the
	quantity of acid in the resulting solution.
	 Find the initial quantity of water in the beaker. Find the initial quantity of Boric acid in the beaker .
1	

	IQ of a person is calculated by the formula IQ = $\frac{M}{2} \times 100$
	<i>c</i> Where M is the mental age and C is the chronological age of a person. Answer the following questions.
	1. If IQ of a person of Mental age 30 years is 60 , find the
	chronological age of the person. 2. A person's Chronological age is 50 years, to have IQ at least70,
	what minimum Mental age he should have in completed years. 3. Mental age of a person is 30 years. To have IQ between 50 and 60 , what his chronological age should be?
25	Consider the following system of linear inequalities $x - 2y \le 0$, $2x + y \le 4$, $y \le 2$, $x \ge 0$.
	Based on the above information, answer the following questions:
	1. The graph of $x - 2y \le 0$ contains the origin?
	2. In which quadrants the solution region cannot lie.
	3. Show the region $2x + y \le 4$.
	VERY SHORT ANSWER TYPE QUESTIONS
26	Minimum value of x-3 is 7 , find minimum value of x
27	Maximum value of 2m-3 is 7; find the maximum value of m.
28	If $-3 < m < 7$, find the minimum value of $ 2m + 10 $.
29	If $ x + 2 \le 9$, find interval of x
30	If $x \ge -3$, find the minimum value of $x + 5$
31	If $x^2 \le 9$, find the interval of x .
32	If $ x - 3 < 8$, find the interval of x
33	If $-11 < 4x - 3 \le 13$, find interval of x.
34	Represent solution set of $x - 3 < 6$ on number line.
35	Represent solution set of $\frac{x}{-2}$ < 3 on number line.
36	Represent solution set of $x^2 \le 4$ on number line.
37	How many points are there in the solution set of $x^2 < 0$, xcR
38	How many integral solutions are there for the inequation $-5 < 3x < 6$?
39	Write any one solution of $x - 2y < -6$.
40	Write one solution of $ x - 3 < y$
41	Represent first quadrant in terms of inequalities of x and y.
42	Represent the first and fourth quadrants together in terms of inequalities of x and y.

43	Represent third quadrant in terms of inequalities of x and y.								
44	Write the interval in which sin^2x lies for any real x.								
45	Write the interval in which $\sin x + 3 \text{ lies}$. For any real x.								
	ASSERTION REASONING TYPE QUESTIONS								
46	Assertion: $ 3x - 5 > 9$ implies $x \in (-\infty, \frac{4}{2}) \cup (\frac{14}{2}, \infty)$								
	 Reason: The region containing all the solutions of inequality is called the solution region. (a) Assertion and reason both are correct statements and reason is the correct explanation of the assertion. (b) Assertion and reason both are correct statements and reason is not the correct explanation of the assertion. (c) Assertion is correct statement and reason is wrong statement. (d) reason is correct statement and assertion is wrong statement. 								
47	 Assertion: If 11x - 9 ≤ 68, then x ∈ (-∞, 7). Reason: If an inequality consist of signs ≤ or ≥, then the point on the line are also included in the solution region. (a) Assertion and reason both are correct statements and reason is the correct explanation of the assertion. (b) Assertion and reason both are correct statements and reason is not the correct explanation of the assertion. (c) Assertion is correct statement and reason is wrong statement. (d) Reason is correct statement and assertion is wrong statement. 								
48	Assertion : If $x \ge -3$, then $x + 5 \ge 2$.								
	Reason : Same number can be added to both sides of the inequality without changing the sign of inequality.								
	 (a) Assertion and reason both are correct statements and reason is the correct explanation of the assertion. (b) Assertion and reason both are correct statements and reason is not the correct explanation of the assertion. (c) Assertion is correct statement and reason is wrong statement. (d) Reason is correct statement and assertion is wrong statement. 								

40	
49	Assertion : If a < b, c < 0, then a/c < b/c .
	Reason : If both sides are divided by the same negative quantity, then the inequality is reversed.
	 (a) Assertion and reason both are correct statements and reason is the correct explanation of the assertion. (b) Assertion and reason both are correct statements and reason is not the correct explanation of the assertion. (c) Assertion is correct statement and reason is wrong statement. (d) reason is correct statement and assertion is wrong statement.
50	Assertion : If $-5 \le 2x + 9 \le 2$, then $x \in [-7, -3.5]$.
	Reason : The graphical representation of $-5 \le 2x + 9 \le 2$ is
	-3.5
	 (a) Assertion and reason both are correct statements and reason is the correct explanation of the assertion.
	 (b) Assertion and reason both are correct statements and reason is not the correct explanation of the assertion. (c) Assertion is correct statement and reason is wrong statement. (d) Reason is correct statement and assertion is wrong statement.
	SHORT ANSWER TYPE QUESTIONS
51	Solve $2m - 3 < -8$ when m is a natural number.
52	Solve: $(m-3)$ $(m+2)$ <0 when m is a real number.
53	Solve: $ m - 5 < 6$
54	Solve $4x+3<5x+7$ if x is a natural number.
55	Solve: $\frac{x-3}{x+5} < 0$, if x is a realnumber.
56	Solve :x+y<5 graphically. (Not in syllabus).
57	Solve $3x + 2y > 6$ graphically. (Not in syllabus).
58	Solve $5x - 3 > 3x - 5$, if x is a real number.
59	Solve: $\frac{x-3}{x-5} > 2$, for real x
60	Solve : $0 < -\frac{x}{2} < 3$ for real x
61	Solve: $ x-3 \ge 3$ for real x
62	We know that $sinx \in [-1,1]$, $\star x \in R$. Find the range of $2sinx - 3$
63	Solve : x+5<3 on number line
64	Represent the solution set of $3x - 5 \ge 7$ on real number line.
65	Represent the solution set of $ x + 5 < 6$ on real number line
66	The maximum value of $7x - 5$ is 9. Find the maximum value of $2x+3$.
67 68	The minimum value of $x - 2$ is 12, find the minimum value of $3x+5$ Find the solutions of $ 2 = x - 2$
ØØ	Find the solutions of $ 2 - x = x - 2$

-	
69	Solve : $1 \le x - 2 \le 3$ for real x.
70	Solve: $10 \le -5(x-2) < 20$ for real x
	LONG ANSWER TYPE QUESTIONS. (Not in syllabus).
71	Solve the following system of in equalities graphically
	2x+y≤24, x+y<11, 2x+5y≤40, x≥0, y≥0
72	Solve the following system of inequalities graphically
	3x+2y≥24, 3x+y≤15, x≥4
73	
	$x-2y \leq 3, \qquad 3x+4y > 12, \qquad x \geq 0, \qquad y \geq 1$
74	5, 1 51 ,
	3x+4y≤60, x+3y≤30, x≥0, y≥0
75	
	2x+y≥4, x+y≤3, 2x -3y≤6
76	Solve the following system of inequalities graphically
	$4x + 3y \le 60$, $y \ge 2x$, $x \ge 3$, x , $y \ge 0$
77	Solve the following system of inequalities graphically
	$3x + 2y \le 150$, $x + 4y \le 80$, $x \le 15$, $y \ge 0$, $x \ge 0$
78	
	$x+2y\leq 10$, $x+y\geq 1$, $x-y\leq 0$, $x\geq 0$, $y\geq 0$
79	Solve the following system of inequalities graphically
	$5x + 4y \le 20, \qquad x \ge 1, \qquad y \ge 2$
80	Solve the following system of in equalities graphically
	2x+y≥8, x+2y≥10

ANSWERS/SOLUTIONS MCQ TYPE

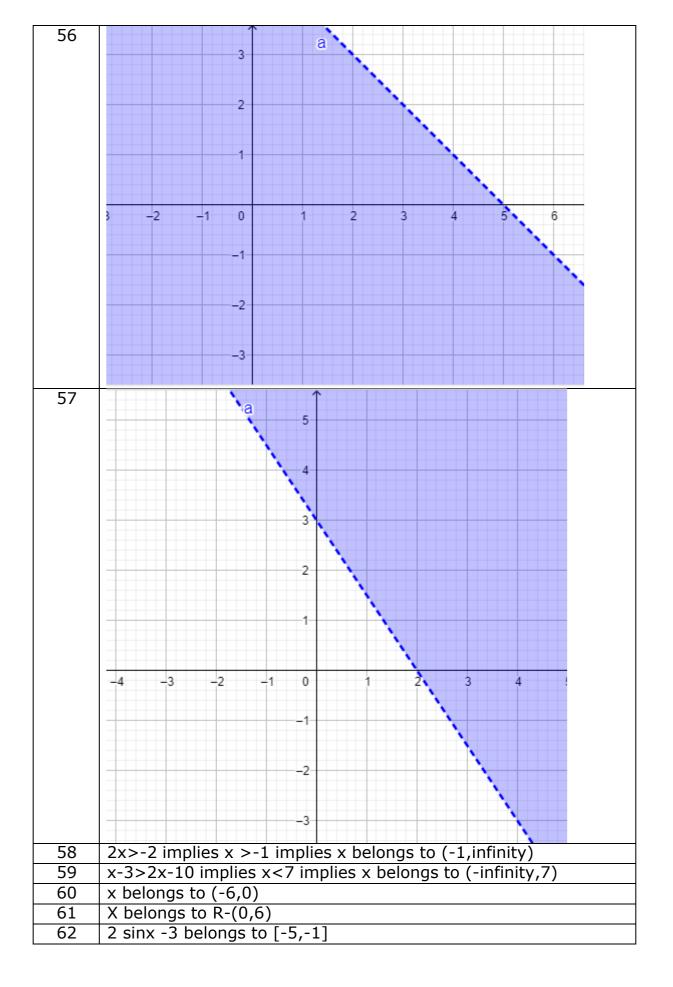
1	С	2	b	3	а	4	d	5	b
6	а	7	а	8	b	9	С	10	b
11	С	12	d	13	d	14	d	15	b
16	а	17	а	18	С	19	С	20	d

SOURCE BASED/CASE STUDY

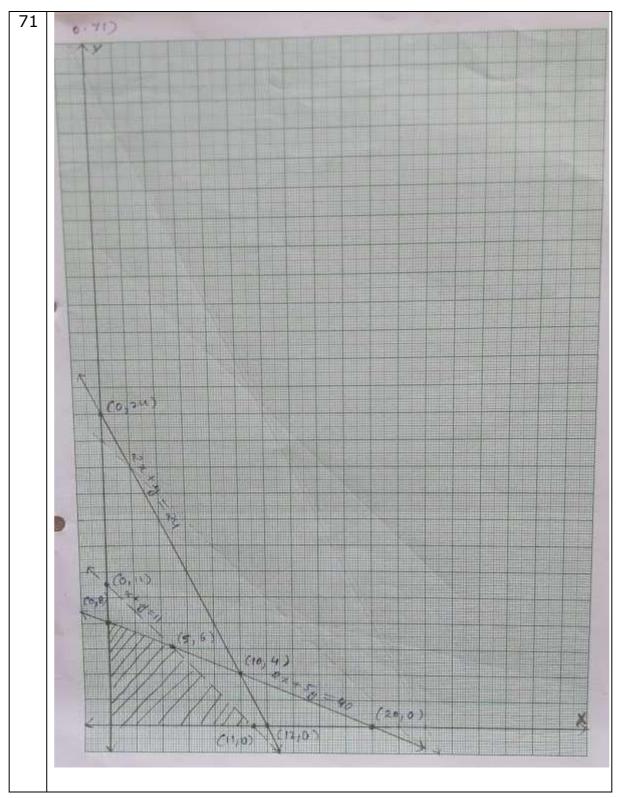
21	1. (51.2 +x/50) litres 2. 588.8 litres 3. 51.2 litres
22	1. 41 F 2173.15 C 3. 301.4 C
23	1. 81 MARKS 2. X-Y >20 3. She cant get grade A
24	1. 50 years 2. 71 years 3.(50,60)
25	1. Yes 2. Second and third quadrants 3. Proper shading

VERY SHORT ANSWER TYPE

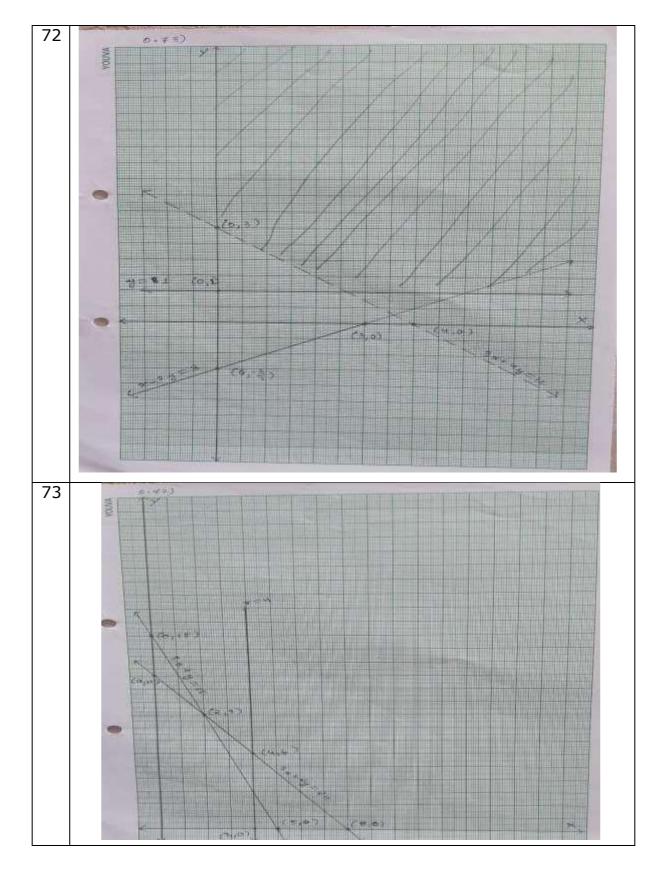
26	$x \ge 10$ so minimum value of x is 10
27	$m \le 5$ so maximum value of m is 5
28	Minimum value of $ 2m + 10 $ is 4
29	X belongs to [-11,7]
30	Minimum value of x+5 is 2
31	X belongs to [-3,3]
32	X belongs to (-11,11)
33	X belongs to (-2,4)
34	$x-3 < 6 \Rightarrow br < 9 \Rightarrow (maximum -)$
35	$\frac{x}{-4} < 3 \Rightarrow x > -6 \Rightarrow \langle -\frac{2}{6} \rangle$

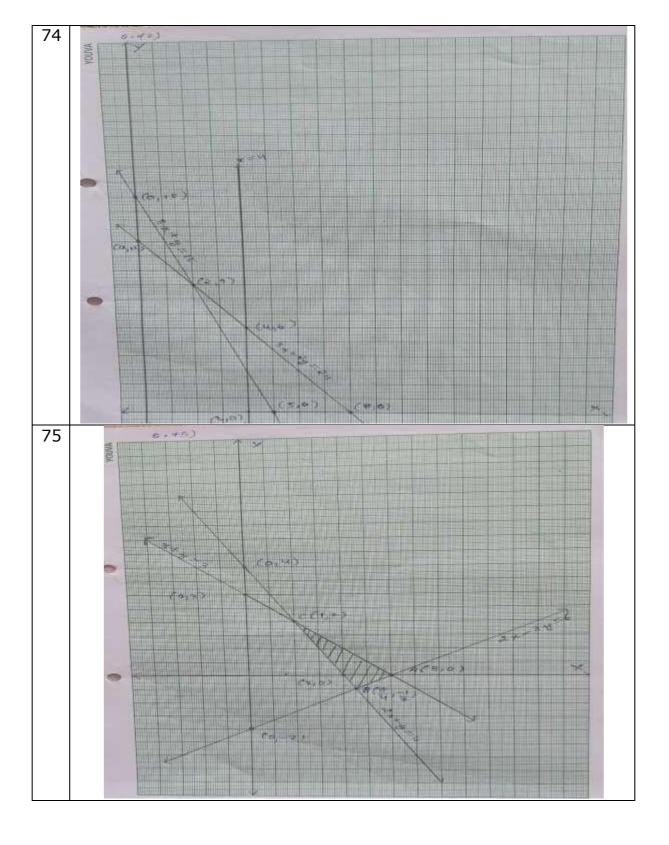

37	No point
38	X belongs to {-1,0,1}
39	(x,y) = (1,4)
40	(x,y) = (1,4)
41	x>0 , y>0
42	x>0
43	X<0, y<0
44	[0,1]
45	[2,4]

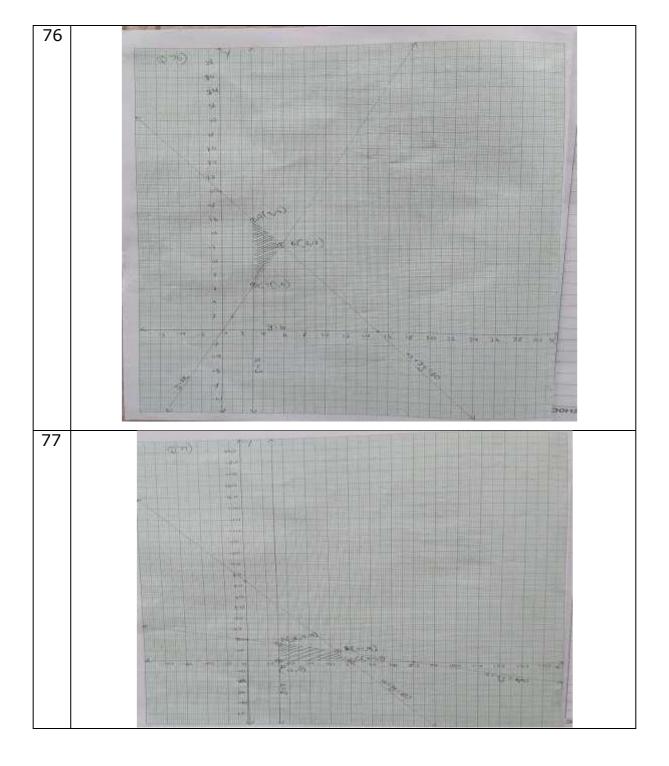
ASSERTION-REASON TYPE

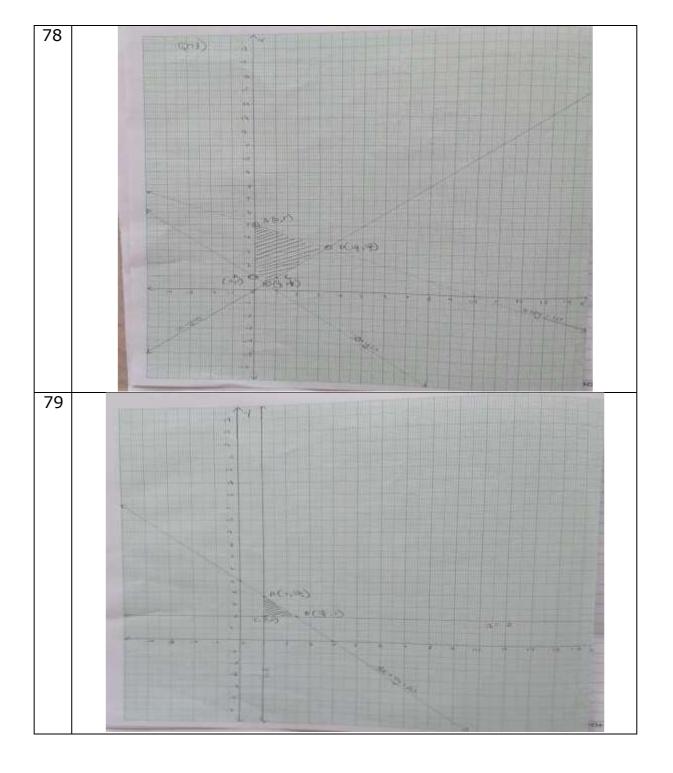

46	b	47	d	48	а	49	d	50	а

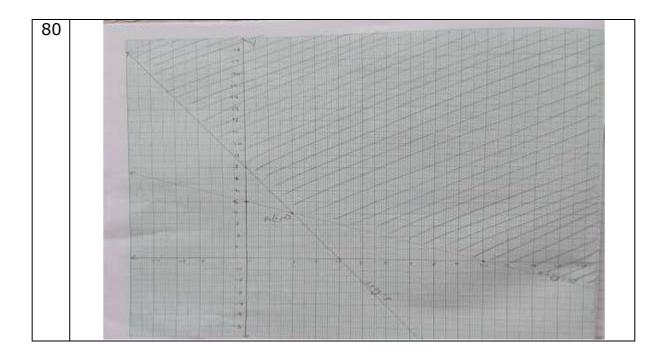
SHORT ANSWER TYPE


51	2m-3<-8 implies m<-2.5 but x is a natural number so x
	belongs to { }
52	m belongs to (-2,3)
53	m belongs to (-1,11)
54	x belongs to N
55	x belongs to (-5,3)




63	x + 5 < 3 x < -x z = -x z = -x
64	$ \Rightarrow 3x > 1x $ $ \Rightarrow x > 1x $ $ \Rightarrow x > 1x $ $ \Rightarrow x > 1x $
65	$1 \approx +51 < 6 \qquad \checkmark$ $-G < \approx +5 < 6$ $-11 < \approx < -1$ $< \qquad
66	$2x + 3 \le 7$
67	$3x + 5 \ge 47$
68	$x \ge 2$
69	x belongs to [3,5]
70	x belongs to (-2,0]




LONG ANSWER TYPE

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : PERMUTATION AND COMBINATION

CONCEPTS AND KEY POINTS:

Fundamental principle of counting:

- **1.** Addition Rule: Let two events A and B can occur by m and n ways respectively and both cannot be done simultaneously. Then A or B (at least one of them) can be done by (m + n) ways.
- **2. Multiplication Rule**: Let two events A and B can occur by m and n ways respectively. Then A and B (both of them) can be done by $(m \times n)$ ways.

PERMUTATION (Arrangement)

- **1.** Number of permutations of n distinct things taken r at a time, $0 \le r \le n$ $n_{P_r} = n(n-1)(n-2) \dots \dots (n-r+1)$
- **2.** Number of permutations of n distinct things taken all at a time = n!
- **3.** Number of permutations (with repetition) of n distinct things taken r at a time $= n^r$
- **4.** Number of permutations of n distinct things taken all at a time such that p things must always together = $(n p + 1)! \times p!$
- **5.** Number of permutations of n distinct things taken all at a time such that p_1, p_2, \dots, p_r things of them are alike and $p_1 + p_2 + \dots + p_r \le n$ is $= \frac{n!}{p_1! \times p_2! \times \dots \times p_r!}$

COMBINATION (Selection)

1. Number of combinations of n distinct things taken r at a time, $0 \le r \le n$

$$nc_{r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} = \frac{n!}{(n-r)! r!}$$

- **2.** Number of combinations of n distinct things taken r at a time, $0 \le r \le n$ such that one thing is always selected is $(n-1)c_{(r-1)}$.
- **3.** Number of combinations of n distinct things taken r at a time, $0 \le r \le n$ such that one thing is never selected is $(n 1)c_r$.
- **4.** $n_{C_{\rm r}} + n_{C_{({\rm r}-1)}} = (n+1)c_{\rm r}$
- **5.** If $n_{\mathcal{C}_p} = n_{\mathcal{C}_g}$, then either p = q or p + q = 1.

NOTE:

1. Number of permutations of n distinct things taken p, where $0 \le p \le n$, at a time such that p things must always occur= $(n-1)c_{(n-1)} \times p!$

- **2.** Number of permutations of n distinct things taken r at a time such that p things must never occur together = $(n p)c_r \times r!$
- **3.** Number of line segments joining n non collinear points is n_{C2} .
- **4.** Number of line segments joining n points in which p points collinear is $n_{c_2} p_{c_2} + 1$.

Number of diagonals in n sided polygon is $n_{c_2} - n = \frac{n(n-3)}{2}$.

	MCQ
Q1	A coin is tossed n times. The number of possible outcomes is (a) $2n$ (b) ${}^{n}C_{2}$ (c) n^{2} (d) 2^{n}
Q2	A convex polygon has 65 diagonals. The number of its sides is equal to: (a) 13 (b) 10 (c) 22 (d) 11
Q3	Number of diagonals of a convex hexagon is (a) 3 (b) 6 (c) 9 (d) 12
Q4	In how many ways can 10 lion and 6 tigers be arranged in arow so that
	no two tigers are together?
	(a) $10! \times 11_{C6}$
	(b) $10! \times 10_{C6}$
	(c) $6! \times 10_{C6}$
	(d) $6! \times 10_{C7}$
Q 5	The total number of ways of selecting six coins out of 20one - rupee
	coins, 10 fifty paise coins and 7 twenty – five paise coin is:
	(a) 37 _{C6}
	(b) 56
	(c) 28
	(d) 29
Q 6	Given 4 flags of different colors, how many differentsignals can be
	generated, if a signal requires the use of2 flags one below the other?
	(a) 12
	(b) 13
	(c) 14

	(d) 15									
Q 7	In an examination, there are three multiple choice questions and each									
	question has 4 choices. Number of ways in which a student can fail to get									
	all answers correct is:									
	(a) 11									
	(b) 12									
	(c) 27									
	(d) 63									
Q 8	There are 10 true-false questions in a examination. Thenthese questions									
	can be answered in:									
	(a) 100									
	(b) 20									
	(c) 512									
	(d) 1024									
Q 9	To fill 12 vacancies, there are 25 candidates of which fiveare from									
	scheduled caste. If 3 of the vacancies arereserved for scheduled caste									
	candidates while the rest areopen to all, then the number of ways in									
	which theselection can be made:									
	(a) $5_{C_3} + 22_{C_9}$									
	(b) $22c_9 - 5c_3$									
	(c) $5_{C_3} + 22_{C_3}$									
	(d) None									
Q10	A father with 8 children takes them 3 at a time to thezoological garden,									
z =0	as often as he can without taking thesame 3 children together more than									
	once. The number oftimes he will go to the garden is:									
	(a) 56									
	(b) 100									
	(c) 112									
	(d) None									
Q11	Number of words from the letters of the words BHARAT inwhich B and H									
~~ *	will never come together is:									
	(a) 210									
	(b) 240									
	(b) 240 (c) 422									

	(d) 400
Q 12	If all the words formed by the letters of the word HAPPY is arranged
Q 12	according to the dictionary, then the place of HAPPY is:
	(a) 60
	(b) 12
	(c) 13
	(d) 24
Q13	Everybody in a room shakes hands with everybody else. The total
	number of handshakes is 66. The total number of person is :
	(a) 11
	(b) 12
	(c) 13
	(d) 14
Q14	A bag contains 3 black, 4 white and 2 red balls, all the balls being
~	different. Number of selections of atmost 6 balls containing balls of all the
	colors is:
	(a) 1008
	(b) 1080
	(c) 1204
	(d) 1130
Q15	The total number of words formed by the letters of the word
	MISSISSIPPI such that all S's and all I's are occur together, is:
	(a) 5!
	(b) $5! \times 2$
	(c) $\frac{11!}{4!}$
	(d) None
Q16	The number of words formed by letters of the word EQUATIONS
	containing 2 consonants and 3 vowels, is:
	(a) 72
	(b) 120
	(c) 7200
	(d) 60

Q 17	, , , , , ,									
	from 22 players, always including 2 of them and excluding 4 of ther	m, is:								
	(a) 16 _C									
	(b) $16c_{5}$									
	(c) $16c_{q}$									
	(d) $20c_{9}$									
	9									
Q 18	The sum of the digits in the unit place of all the numbers formed with the									
	help of 3, 4, 5, 6 taken all at a time is:									
	(a) 432									
	(b) 108									
	(c) 36									
	(d) 18									
Q 19	The number of ways in which 5 prizes be distributed among 4 boys	while								
۹ ـ	each boy is capable of having any number of prizes is:									
	(a) 5^4									
	(b) 4^5									
	(c) $4! \times 2^4$									
	(d) $4! \times 5$									
Q 20	Total number of n – digit number $(n > 1)$, having the property t	hat no								
	two consecutive digits are same, is:									
	(a) 8^n									
	(b) 9 ⁿ									
	(c) $9 \times 10^{n-1}$									
	(d) None									
	CASE BASED									
Q 21	Sunita and her friends went for a trip to Shimla. They stayed in a her									
	There were 4 vacant rooms A,B,C,D. Out of these 4 vacant rooms, rooms A and B were double share rooms and two rooms C and D ca									
	contain one person each.									
	(i) Find the number of ways in which room A can be filled?									
	(ii) If room A and B are already filled each, then find the number of ways in which room C can be filled.									
	(iii) Find the total number of ways of accommodating Sunita	a and								
	her friends in these 4 vacant rooms.(iv) If room A is filled with 2 persons, then find the number	in								
	(iv) If room A is filled with 2 persons, then find the number in which room C and D can be filled.									

Q 22	In a certain city all telephone numbers have seven digits. City is divided											
	in to six zones. Each zone is allotted a specific non – zero digit which is to											
	be used as first digit of each telephone number of that zone.											
	Based on the above information, answer the following questions (i)How many telephone numbers are there in each zone, if digit on first											
	place is not used again?											
	(a) 9 ⁶											
	(b) 10 ⁶											
	(c) $10_{P_{6}}$											
	(d) 9_{P_6} (ii) How many telephone numbers are there in the city if there is no											
	restrictions?											
	(a) 6×9^{6}											
	(b) 6×10^{6}											
	(c) $6 \times 10_{P_6}$											
	(d) $6 \times 9_{P_{6}}$											
	(iii) How many telephone numbers are there in the city with all digits											
	distinct?											
	(a) 9 ⁶											
	(b) 10 ⁶											
	(c) 10_{P_6}											
	$(d)9_{P_{6}}$											
	(iv) How many different telephone numbers are there in the city if the											
	first two digits of different zones are 12, 23, 34, 45 56 and 67?											
	(a) 6×10^5											
	(b) 6×8^5											
	(c) $6 \times 10_{P_{5}}$											
	$(d) \ 6 \times 8_{P_5}$											
Q 23	The students of class XIwere given a task to arrange all letters of the											
	word EQUATIONS in all possible ways.											
	Based on the above information, answer the following questions: (i) In how many ways can all letters of the word EQUATIONS be arranged?											
	(a) 9!											
	(b) 10!											
L												

	(c) $9_{P_{7}}$										
	$(d) \ 10_{P_7}$										
	(ii) In how many ways can all letters of the word EQUATIONS be										
	arranged so that all vowels are occur together?										
	arranged so that an vowers are occur together:										
	(a) 5! × 5!										
	(b) 25!										
	(c) 6!										
	(d) 5 × 6!										
	(iii) In how many ways can all letters of the word EQUATIONS be										
	arranged so that all consonants are occur together?										
	(a) 5! × 5!										
	(b) $2 \times 4! \times 5!$										
	(c) 6!										
	$(d) 5! \times 6!$										
	(u) 5: × 0:										
	(iv) In how many ways can all letters of the word EQUATIONS be										
	arranged so that the positions of vowels and consonants are unaltered?										
	(a) 5! × 5!										
	(b) $4! \times 5!$ (c) $6! \times 4!$										
	(c) $6! \times 4!$ (d) $5! \times 6!$										
Q 24											
Q 24	using toothpaste. A survey team has some persons and survey owner										
	makes a team out of total persons available at that time. If he has a										
	group of 5 persons available at that time out of which2 are men and 3 are women										
	(i) If a committee of 3 persons is to be constituted from the										
	available group. In how many ways this can be done?How										
	many of these committees would consist of 1man and 2 women?										
0.05	(ii) If P(2n-1,n):P(2n+1,n-1)=22:7, find n.										
Q 25	Two friends Swati and KOMAL are playing cards. Swati asks Komal to choose any four cards from a pack of 52 cards. Based on it answer the										
	following:										
	(i) In how many ways can Komal select 4 cards from same suite										
	and she select all 4 cards from different suites? (ii) In how many ways can she select all face cards?										

	ASSERTION REASONING QUESTIONS:
	In the following questions,a statement of assertion(A) is followed by a statement of reasoning(R). Mark the correct choice:
	 (a) Both A and R are true and R is correct explanation of A. (b) Both A and R are true and R is not correct explanation of A. (c) A is true and R is false (d) A is false and R is true.
Q26	Assertion: The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is ${}^{9}C_{3}$.
	Reason: The number of ways of choosing any 3 places from 9 different places is ${}^{9}C_{3}$.
Q27	Assertion: The number of rectangles on a chess board is ${}^{8}C_{2}X {}^{8}C_{2}$ Reason: To form a rectangle ,we have to select any two of horizontal line and any two of the vertical line.
Q28	Assertion: If n is a positive integer, then $n(n^2-1)(n+2)$ is divisible by 24.
	Reason: Product of r consecutive whole numbers is divisible by r.
Q29	Assertion: The product of five consecutives natural numbers is divisible by 4!
	Reason:Product of n consecutive natural numbers is divisible by (n+1)!
Q30	Assertion:Number of lines formed by joining n points on a circle is $n(n-1)/2$
	Reason: $C(n,3) = n(n-1)/2$
	VERY SHORT ANSWER TYPE QUESTIONS
Q 31	Find r , if $p_r = 2880$ and $C_r = 120$.
Q 32	If there are 30 students in a group. If all shake hands with one another ,how many hand shake are possible?
Q 33	Find r, if ${}^{10}C_{2r} = {}^{10}C_{r+2}$
Q 34	How many words with 2 different vowels and 2 different consonants can be formed from the alphabets?
Q 35	How many committees of five persons with a chairperson can be selected from 12 persons?
Q36	If ${}^{n}C_{8} = {}^{n}C_{6}$. Find ${}^{n}C_{2}$
Q37	How many rectangles can be formed from the chess board of any size?
Q38	Evaluate: 2.5!-3.4!
Q39	Find the number of different four digit numbers that can be formed with digits 2,3,4,7 and using each digit once.
Q40	Evaluate: $\frac{6}{5}$.5!- $\frac{5}{4}$.4!.
Q41	Evaluate:4!-3!.
Q42	Find the value of P(7,3)
Q43	A college has 6 good badminton players. A team of 4 has to be sent for inter college tournament. In how many ways can the team be selected.
Q44	Six identical coins are arranged in a row. Determine the number of ways in which 3 heads and 3 tails can appear.
Q45	In how many different ways can the letter of word 'HEXAGON' be permuted?

	There are 3 different rings to be born in four fingers with atmost one in each finger. In how many ways can this be done?
	In how many ways 2 different prizes be awarded to 15 students, without giving both to the same student?
-	How many words of three distinct English alphabets are there?
	There are 12 buses running between Jammu and Delhi. In how many ways can a man go from Jammu to Delhi and return by the same bus.
Q50	Find r if P(11,r)= P(12,r-1)
	SHORT ANSWER TYPE QUESTIONS
	Out of 18 points in a plane , no three points are in the same line except five points which are collinear. Find the number of lines that can be formed joining the points.
	There are two identical red and two identical black and white balls. In how many ways can the balls be placed in the cells such that balls of same color do not occupy any two consecutive cells?
Q 53	Determine n if ${}^{2n}C_3$: ${}^{n}C_3$ =11:1
	A boy has 4 movie tickets and 9 movies of his interest in the theatre.Of these 9, he does not want to see Marvels part 2 ,unless part 1 is seen. Inhow many ways can he choose 3 movies to be seen?
	How many 4-letter code can be formed using the first 10 letters of the English alphabet, if no letter can be repeated?
Q 56	Evaluate
	$\frac{n!}{(n-r)!},$ When (i) n = 6, r = 2 (ii) n = 9, r = 5
Q 57	Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
	In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
-	Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
	How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
	It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
	In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Q 63	We wish to select 6 persons from 8 ,but if the person A is chosen,then B
	must be chosen. In how many ways can selections be made?

choose (i) four cards of same suit		listed in dictionary. Then what is the rank of the word RACHIT?								
 Q66 If ¹³P_{X+1>2} ¹³P_X then find the set of values of x. Q67 Find the number of positive integers greater than 6000 and less than 7000 which are divisible by 5, provided that no digit is to be repeated. Q68 There are 10 persons named P1,P2P10. Out of 10,5 persons are to be arranged in a line such that Q 69 A student is allowed to select atleast one piece of fruit from 6 bananas,5 oranges and 4 apples. In how many ways can he make a selection? Q70 Find the number of ways in which 13 different books can be packed into five parcels if four parcels contain 3 books each and the fifth only one. LONG QUESTIONS Q 71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are all together, (iii) At least 3 girls? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color. Q 74 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 	Q65									
 Q67 Find the number of positive integers greater than 6000 and less than 7000 which are divisible by 5, provided that no digit is to be repeated. Q68 There are 10 persons named P1,P2P10. Out of 10,5 persons are to be arranged in a line such that Q 69 A student is allowed to select atleast one piece of fruit from 6 bananas,5 oranges and 4 apples. In how many ways can he make a selection? Q70 Find the number of ways in which 13 different books can be packed into five parcels if four parcels contain 3 books each and the fifth only one. LONG QUESTIONS Q 71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) All letters are used at a time, (iii) all letters are used at a time, (iii) all letters are used at a time, (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (iii) At least 3 girls? (iii) At most 3 girls? (iii) At most 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Fin	066									
 7000 which are divisible by 5, provided that no digit is to be repeated. Q68 There are 10 persons named P1,P2P10. Out of 10,5 persons are to be arranged in a line such that Q 69 A student is allowed to select atleast one piece of fruit from 6 bananas,5 oranges and 4 apples. In how many ways can he make a selection? Q70 Find the number of ways in which 13 different books can be packed into five parcels if four parcels contain 3 books each and the fifth only one. LONG QUESTIONS Q 71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) All letters are used at a time, (iii) There are always can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (iii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards. Find the number of ways to choose (i) four cards of same suit 	-									
be arranged in a line such that Q 69 A student is allowed to select atleast one piece of fruit from 6 bananas,5 oranges and 4 apples. In how many ways can he make a selection? Q70 Find the number of ways in which 13 different books can be packed into five parcels if four parcels contain 3 books each and the fifth only one. Q70 Find the number of ways in which 13 different books can be packed into five parcels if four parcels contain 3 books each and the fifth only one. Q71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) All letters are used at a time, (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (ii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (iii) They must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none	Q67									
oranges and 4 apples. In how many ways can he make a selection? Q70 Find the number of ways in which 13 different books can be packed into five parcels if four parcels contain 3 books each and the fifth only one. Q 71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (iii) all letters are used at a time, (iii) all letters are used at a time, (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At nest 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit	Q68	be arranged in a line such that								
five parcels if four parcels contain 3 books each and the fifth only one. LONG QUESTIONS Q 71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) all letters are used at a time, (iii) all letters are used at a time, (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (iii) At least 3 girls? (iii) At most 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose	Q 69									
 Q 71 How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) All letters are used at a time, (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) There are 3 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 	Q70									
 of the word MONDAY, assuming that no letter is repeated, if. (i) 4 letters are used at a time, (ii) All letters are used at a time, (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (iii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit		LONG QUESTIONS								
 (iii) all letters are used but first letter is a vowel? Q 72 In how many ways can the letters of the word PERMUTATIONS be arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (iii) At most 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 	Q 71	of the word MONDAY, assuming that no letter is repeated, if.								
 arranged if the (i) Words start with P and end with S, (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 										
 (ii) Vowels are all together, (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? (iii) At most 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) They must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 	Q 72									
 (iii) There are always 4 letters between P and S? Q 73 A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 		(i) Words start with P and end with S,								
 ways can this be done when the committee consists of: (i) Exactly 3 girls? (ii) At least 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 										
 (iii) At most 3 girls? Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 	Q 73	ways can this be done when the committee consists of:								
 Q 74 A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose		(ii) At least 3 girls?								
 of ways in which four marbles can be drawn from the bag if: (i) They can be of any color (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose		(iii) At most 3 girls?								
 (ii) Two must be white and two red (iii) They must be all of same color. Q 75 From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 	Q 74									
 There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen? Q 76 4 cards are chosen from the deck of 52 cards.Find the number of ways to choose (i) four cards of same suit 		(ii) Two must be white and two red								
choose (i) four cards of same suit	Q 75	There are 3 students who decide that either all of them will join or none								
(i) four cards of same suit	Q 76	4 cards are chosen from the deck of 52 cards. Find the number of ways to								
		choose								
(ii) two are red and two are black cards		(i) four cards of same suit								
(II) two are red and two are black cards		(ii) two are red and two are black cards								

r	(III) four could belong to four different outs									
	(iii) four cards belong to four different suits									
	(iv) cards are of same color									
	(v) are face cards									
	(vi) at least two them are red cards?									
Q 77	A tea party is arranged for 18 persons among two sides of a long table									
	with 9 chairs on each side. Four guests wish to sit on one particular side									
	and three on the other side. In how many ways can they be seated?									
Q 78	If $C(n,r-1)=36$, $C(n, r)=84$ and $C(n,r+1)=126$, then find $C(r,2)$.									
Q 79	In a village, there are 87 families of which 52 families have at most 2									
	children. In a rural development program, 20 families are to be helped									
	chosen for assistance, of which at least 18 families must have at most 2									
	children. In how many ways can the choice be made?									
Q 80	Eight chairs are numbered from 1 to 8. Two women and 3 men wish to									
	occupy one chair each. First the women chose the chairs among st the									
	chairs 1 to 4 and then men select from the remaining chairs. Find the									
	possible arrangement.									
I										

ANSWER KEY

PERMUTATIONS AND COMBINATIONS	

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
d	а	с	а	С	а	d	d	а	а
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
b	С	b	d	а	с	b	b	b	b
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
(i) 15 (ii) 2 (iii) 18 (iv) 12	(i) a (ii) b (iii) d (iv) a	(i) a (ii) a (iii) d (iv) b	(i)10,6 (ii) n=10	(i)13 ⁴ (ii)495	а	d	а	С	С
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.

r	=4	435	r=2	50400	3960	91	1296	168	24	114
41.		42.	43.	44.	45.	46.	47.	48.	49.	50.
1	18	210	15	20	5040	24	210	15600	132	9
	51	Number of p	oints=18		I		1	1		
		Number of c	ollinear p	oints=5						
		Required nu	mber of li	$nes = {}^{18}C_2 - {}^{5}C_2$	2+1=144					
	52	CASE 1: 2 b arranged	alls of sar	ne colour and	d 2 balls of	differ	ent col	our are		
				lour and 2 of balls of sam				-		
		Total numbe	er of arrar	igement=6X	3=18					
		Case 2: Two	colours o	out of 3 can b	be selected	in 3 v	vays			
		2 balls of ea	ch colour	can be arran	iged altern	atively	/ in 2 w	ays		
		4 balls can b	be arrange	ed =3X2 way	′S					
		Hence total	ways of a	rrangement=	18+6=24					
	53	Dividing and	l solving e	equation,we g	get8n-4=1	1n-22				
		n=6								
	54	Case 1: Mar	vel part 2	2 is seen						
		Number of v	vays of se	electing 2 mo	vies out of	7 = 7C	2=21			
		CASE 2: MA	RVEL part	t 2 is not see	n					
		Number of v	vays of se	lecting 4 out	of 8= ⁸ C ₄ =	70				
		Hence requi	red numb	er of ways=2	21+70=91					
	55	Let the 4 dig	git code b	e 1234.						
		At the first p	place, the	number of le	tters possi	ble is	10.			
		Let's suppos	se any 1 c	of the ten occ	upies place	e 1.				
		place 2 is 9. taken. The r	Now at 1 number of	n is not allow and 2, any 2 alphabets le possible at 4	2 of the 10 eft for place	alpha	bets ha	ave been		
		Therefore th	ne total nu	umber of 4 le	tter codes=	=10 ×	9 × 8	× 7=504	0.	

56	(i) Given $n = 6$ and $r = 2$
	(i) Given $n = 6$ and $r = 2$
	Putting the value of n and r we get
	$\frac{6!}{(6-2)!}$
	$\Rightarrow \frac{6!}{4!} = \frac{6 \times 5 \times 4!}{4!} = 6 \times 5 = 30.$
	(ii) Given n = 9 and r = 5
	Putting the value of n and r we get
	<u>9!</u> (9-5)!
	$\Rightarrow \frac{9!}{4!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4!}{4!} = 9 \times 8 \times 7 \times 6 \times 5 = 15120.$
57	Total number of digits possible for choosing = 5
	Number of places for which a digit has to be taken $= 4$
	As there is no repetition allowed,
	\Rightarrow Number of permutations =
	${}_{4}^{5}P = \frac{5!}{(5-4)!} = \frac{5!}{1!} = 120.$
	The number will be even when 2 and 4 are at one's place.
	The possibility of $(2, 4)$ at one's place = $2/5 = 0.4$
	Total number of even number = $120 \times 0.4 = 48$.
58	Given 5 boys and 4 girls are in total
	We can select 3 boys from 5 boys in ${}^{5}C_{3}$ ways
	Similarly, we can select 3 boys from 54 girls in ${}^{4}C_{3}$ ways
	\therefore Number of ways a team of 3 boys and 3 girls can be selected is 5C_3 × 4C_3
	$\Rightarrow {}^{5}C_{3} \times {}^{4}C_{3} = $ 5! 4! 5! 4!
	$\frac{5!}{3!(5-3)!} \times \frac{4!}{3!(4-3)!} = \frac{5!}{3! \times 2!} \times \frac{4!}{3! \times 1!}$
	$\Rightarrow {}^{5}C_{3} \times {}^{4}C_{3} = 10 \times 4 = 40$
	: Number of ways a team of 3 boys and 3 girls can be selected is ${}^{5}C_{3} \times {}^{4}C_{3} = 40$ ways
59	Given a deck of 52 cards
	There are 4 Ace cards in a deck of 52 cards.
	According to question, we need to select 1 Ace card out the 4 Ace cards

	Number of wave to calcet 1 Acc from 4 Acc course is ⁴ C
	\therefore Number of ways to select 1 Ace from 4 Ace cards is ${}^{4}C_{1}$
	\Rightarrow More 4 cards are to be selected now from 48 cards (52 cards – 4 Ace cards)
	\therefore Number of ways to select 4 cards from 48 cards is $^{48}C_4$
	$\Rightarrow {}^{4}C_{1} \times {}^{48}C_{4} = \frac{4!}{1!(4-1)!} \times \frac{48!}{4!(48-4)!} = \frac{4!}{1!\times 3!} \times \frac{48!}{4!\times 44!}$
	$\Rightarrow {}^{4}C_{1} \times {}^{48}C_{4} = \frac{4 \times 3!}{1! \times 3!} \times \frac{48 \times 47 \times 46 \times 45 \times 44!}{4! \times 44!} = \frac{4}{1} \times \frac{4669920}{24} = 4 \times 194580 = 778320$
	\therefore Number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination 778320.
60	The word DAUGHTER has 3 vowels A, E, U and 5 consonants D, G, H, T and R.
	The three vowels can be chosen in ${}^{3}C_{2}$ as only two vowels are to be chosen.
	Similarly, the five consonants can be chosen in ${}^{5}C_{3}$ ways.
	\therefore Number of choosing 2 vowels and 5 consonants would be ${}^{3}C_{2} \times {}^{5}C_{3}$
	3! 5!
	$=\frac{3!}{2!(3-2)!} \times \frac{5!}{3!(5-3)!} = \frac{3!}{2!1!} \times \frac{5!}{3!2!}$
	= 30
	∴ Total number of ways of is 30
	Each of these 5 letters can be arranged in 5 ways to form different words = ${}^{5}P_{5}$
	$\Rightarrow \frac{5!}{(5-5)!} = \frac{5!}{0!} = \frac{5!}{1} = 5 \times 4 \times 3 \times 2 \times 1 = 120$
	Total number of words formed would be = $30 \times 120 = 3600$
61	Given there are total 9 people
	Women occupies even places that means they will be sitting on 2^{nd} , 4^{th} , 6^{th} and 8^{th} place where as men will be sitting on 1^{st} , 3^{rd} , 5^{th} , 7^{th} and 9^{th} place.
	4 women can sit in four places and ways they can be seated = ${}^{4}P_{4}$
	$=\frac{4!}{(4-4)!} = \frac{4 \times 3 \times 2 \times 1}{0!} = 24$
	5 men can occupy 5 seats in 5 ways
	The numbers of ways in which these can be seated = ${}^{5}P_{5}$
	$5!$ $5 \times 4 \times 3 \times 2 \times 1$
	$=\frac{5}{(5-5)!}=\frac{5\times1\times5\times2\times1}{1}=120$
	The total numbers of sitting arrangements possible are
	24 × 120 = 2880

62	In the given word ASSASSINATION, there are 4 'S'. Since all the 4 'S' have to be arranged together so let as take them as one unit.
	The remaining letters are= $3 A'$, $2 I'$, $2 N'$, T
	The number of letters to be arranged are 9 (including 4 'S')
	Using the formula n!
	$\overline{p_1!p_2!p_3!}$ where n is number of terms and p_1 , $p_2 p_3$ are the number of times the repeating letters repeat themselves.
	Here $p_1 = 3$, $p_2 = 2$, $p_3 = 2$
	Putting the values in formula we get
	$\frac{10!}{10!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3!}{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3!} = 151200$
	$3! 2! 2!$ $3! \times 2 \times 2 \times 1 \times 1$ $= 131200$
63	Case 1: If both selected=1X1X ⁶ C4=15
	CASE 2: IF NEITHER selected= ${}^{6}C_{6}=1$
	CASE 3: if B is selected but A is not=1X ${}^{6}C_{5}=6$
	REQUIRED WAYS=15+1+6=22
64	Number of words that can start with A= 5!
	Number of words that can start with $C = 5!$
	Number of words that can start with $H= 5!$
	Number of words that can start with $I = 5!$
	TOTAL=480
	Number of words that can start with $R = 1$
	Total words=481
65	Number of letters in automobile licence plate=2
	Number of ways of arranging alphabets=26X25=650
	NUMBER OF DIGITS=3
	Number of ways of arranging digits = 10X9X8=720
	Total number of automobile licence plates=720X650=468000
66	$^{12}P_{X+1} > 2 ^{12}P_X$
	12! = 2 $12!$
	(11-x)! = 2(12-x)!
	Simplifying 12-x>2
	X<10
	X=10,9,8,7,6,5
67	Thouands place can be with 6 only
	Number of ways=1
	Unit place can be filled by 2 ways
·	

	Hundred place can be filled by 8 ways
	Tens place can be filled by 7 ways
	Required number will be =1X8X7X2=112
68	Number of ways in which P1 can be arranged=5!=120
	Number of ways in which other ca be arranged, $^{7}C_{4}$ =35
	Required number of arrangement=35X120=4200
69	None, one or more bananas out of 6 can be selected in 7 ways
	None, one or more oranges out of 5 can be selected in 6 ways
	None, one or more apple out of 4 can be selected in 5 ways
	None,one or more piece of fruit can be selected in 7X6X5=210 ways
	REQUIRED NUMBER OF WAYS=210-1=209.
70	In this case four parcels containing 3 books each are interchangeable, therefore required number of ways= ${}^{13}C_3X{}^{10}C_3X{}^7C_3X{}^4C_3X{}^1C_1/4!=200200$
71	.i) Number of letters to be used =4
	$\Rightarrow \text{Number of permutations} = \frac{6}{4}P = \frac{6!}{(6-4)!} = \frac{6!}{2!} = 360.$
	(0-4). 2.
	(ii) Number of letters to be used = 6
	\Rightarrow Number of permutations =
	${}_{6}^{6}P = \frac{6!}{(6-6)!} = \frac{6!}{0!} = 720.$
	(iii) Number of vowels in MONDAY = 2 (O and A)
	\Rightarrow Number of permutations in vowel =
	${}_{1}^{2}P = 2$
	Now, remaining places = 5
	Remaining letters to be used $=5$
	\Rightarrow Number of permutations =
	${}_{5}^{5}P = \frac{5!}{(5-5)!} = \frac{5!}{0!} = 120.$
	Therefore, total number of permutations = $2 \times 120 = 240$.
72	.(i) Total number of letters in PERMUTATIONS =12
	Only repeated letter is T; 2times
	First and last letter of the word are fixed as P and S respectively.
	Number of letters remaining $=12 - 2 = 10$
	\Rightarrow Number of permutations =
	$\frac{\frac{10}{10}P}{2!} = \frac{10!}{2(10-10)!} = \frac{10!}{2} = 1814400$
	(ii) Number of vowels in PERMUTATIONS = 5 (E, U, A, I, O)

	Now, we consider all the vowels together as one.
	Number of permutations of vowels = 120
	Now total number of letters = $12 - 5 + 1 = 8$
	\Rightarrow Number of permutations =
	$\frac{{}_{g}^{g}P}{2!} = \frac{g!}{2(g-g)!} = \frac{g!}{2} = 20160.$
	Therefore, total number of permutations = $120 \times 20160 = 2419200$
	(iii) Number of places are as 1 2 3 4 5 6 7 8 9 10 11 12
	There should always be 4 letters between P and S.
	Possible places of P and S are 1 and 6, 2and 7, 3 and 8, 4 and 9, 5 and 10, 6 and 11, 7 and 12
	Possible ways =7,
	Also, P and S can be interchanged,
	No. of permutations $=2 \times 7 = 14$
	Remaining 10 places can be filled with 10 remaining letters,
	: No. of permutations = $\frac{10^{\text{p}}}{2!} = \frac{10!}{2(10-10)!} = \frac{10!}{2} = 1814400$
	Therefore, total number of permutations = $14 \times 1814400 = 25401600$.
73	.(i) Given exactly 3 girls
	Total numbers of girls are 4
	Out of which 3 are to be chosen
	\therefore Number of ways in which choice would be made = ${}^{4}C_{3}$
	Numbers of boys are 9 out of which 4 are to be chosen which is given by $^9\text{C}_4$
	Total ways of forming the committee with exactly three girls
	$= {}^{4}C_{3} \times {}^{9}C_{4}$
	$= \frac{4!}{3!(4-3)!} \times \frac{9!}{4!(9-4)!} = \frac{4!}{3!1!} \times \frac{9!}{4!5!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1} = 504$
	(ii) Given at least 3 girls
	There are two possibilities of making committee choosing at least 3 girls
	There are 3 girls and 4 boys or there are 4 girls and 3 boys
	Choosing three girls we have done in (i)
	Choosing four girls and 3 boys would be done in ${}^{4}C_{4}$ ways
	And choosing 3 boys would be done in ${}^{9}C_{3}$
	Total ways = ${}^{4}C_{4} \times {}^{9}C_{3}$
	$=\frac{4!}{4!(4-4)!} \times \frac{9!}{3!(9-3)!} = \frac{4!}{4!0!} \times \frac{9!}{3!6!} = \frac{9 \times 8 \times 7 \times 6!}{3 \times 2 \times 1 \times 6!} = 84$

	Total numbers of ways of making the committee are
	504 + 84 = 588
	(iii) Given at most 3 girls
	In this case the numbers of possibilities are
	0 girl and 7 boys
	1 girl and 6 boys
	2 girls and 5 boys
	3 girls and 4 boys
	Number of ways to choose 0 girl and 7 boys = ${}^{4}C_{0} \times {}^{9}C_{7}$
	$=\frac{4!}{0!(4-0)!} \times \frac{9!}{7!2!} = \frac{4!}{4!} \times \frac{9 \times 8 \times 7!}{7! \times 2 \times 1} = \frac{72}{2} = 36$
	Number of ways of choosing 1 girl and 6 boys = ${}^{4}C_{1} \times {}^{9}C_{6}$
	4! 9! $4 \times 3!$ $9 \times 8 \times 7 \times 6!$
	$\frac{1!3!}{1!3!} \times \frac{6!3!}{6!3!} = \frac{3!}{3!} \times \frac{6! \times 3 \times 2 \times 1}{6! \times 3 \times 2 \times 1} = 336$
	Number of ways of choosing 2 girls and 5 boys = ${}^{4}C_{2} \times {}^{9}C_{5}$ 4! 9! 4! 9 × 7 × 8 × 6 × 5!
	$\frac{4!}{2!2!} \times \frac{9!}{5!4!} = \frac{4!}{2 \times 1 \times 2 \times 1} \times \frac{9 \times 7 \times 8 \times 6 \times 5!}{5!4!} = 756$
	Number of choosing 3 girls and 4 boys has been done in (1)
	= 504
	Total number of ways in which committee can have at most 3 girls are =
	36 + 336 + 756 + 504 = 1632
74	Total number of marbles=11 (i) if they are of any color, required number of ways= ${}^{11}C_4$
	(ii) number of ways of choosing two white and two red marbles= ${}^{6}C_{2}X$ ${}^{5}C_{2}$
	(iii) Required no. of ways= ${}^{6}C_{4} + {}^{5}C_{4}$
75	In this question we get 2 options that is
	(i) Either all 3 will go
	Then remaining students in class are: $25 - 3 = 22$
	Number of students remained to be chosen for party = 7
	Number of ways choosing the remaining 22 students = ${}^{22}C_7$
	$\frac{22!}{7!15!} = 170544$
	(ii) None of them will go
	The students going will be 10
	Remaining students eligible for going = 22
	Number of ways in which these 10 students can be selected are ${}^{22}C_{10}$
	$=\frac{22!}{10!12!}=646646$

	Total numbers of ways in which students can be chosen are		
	= 170544 + 646646 = 817190		
76	(i) $4 \times 13_{C_4}$ (ii) $(26_{C_2})^2$ (iii) $(13)^4$		
	(iv) $2 \times 26_{C_4}$ (v) 12_{C_4} (vi) $52_{C_4} - 26_{C_1} \times 26_{C_3}$		
77	Since 4 guests are to be seated on one side and 3 on other side, so the remaining guests are 11. As the guests are to be divided equally on both sides of table , we have to select 5 for one side where 4 particular guests are to be seated, this can be done in $^{11}\text{C}_5$ Ways		
	Further 9 guests on each side of the table can be arranged among themselves in 9!ways		
	Therefore required no. of ways= ${}^{11}C_5X9!X9!=462.(9!)^2$		
78	We have C(n,r-1)=36,(1)		
	C(n, r)=84(2)		
	and C(n,r+1)=126, (3)		
	dividing 2 and 3 we get 2n-3=5r		
	using 1 and 2 we get 3n+3=10r		
	solving both eq we get n=9,r=3		
	now $^{r}C_{2}=3$		
79	There are 35 families which have more than 2 children. We may select 2 or 1 or no family out of those 35 and correspondingly we have to select 18,19,or 20 families out of 52 having atmost two children.		
	Required number of ways= ${}^{52}C_{18} X {}^{35}C_2 + {}^{52}C_{19} X {}^{35}C_{1+} {}^{52}C_{20} X {}^{35}C_0$		
80	W1 can occupy chair marked 1 to 4 in 4 different ways		
	W2 can occupy chair marked 1 to 4 in 3 different ways		
	Total no. of ways in which women can occupy $chairs={}^{4}P_{2}=12$		
	M1 can occupy any of 6 different chairs in 6 different ways		
	M2 can occupy any of 5 different chairs in 5 different ways		
	M3 can occupy any of 4 different chairs in 4 different ways		
	Total no. of ways in which men can occupy $chairs={}^{6}P_{3}=120$		
	Hence total number of ways in which men and women can be seated= $120x12=1440$		

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT: 2022 – 23

CLASS: XI

CHAPTER: BINOMIAL THEOREM

	MULTIPLE CHOICE QUESTIONS		
Q. 1	The number of terms in the expansion of $(x^2 - 2xy + y^2)^{10}$ is:		
	(a) 11		
	(b) 15		
	(c) 20		
	(d) 21		
Q. 2	The total number of terms in the expansion of $(x + a)^{51} - (x - a)^{51}$ after simplification is:		
	(a) 102		
	(b) 25		
	(c) 26		
	(d) None of these		
Q. 3	The term independent of x in the expansion of $(2x + \frac{1}{3x^2})^9$ is:		
	(a) 2 nd		
	(b) 3 rd		
	(c) 4 th		
	(d) 5 th		
Q. 4	In the expansion of $\left(\sqrt[3]{\frac{1}{x}}{3} - \sqrt[3]{\frac{1}{x}}{3}\right)^{10}$, $x > 0$, the constant term is:		
	(a) – 70		
	(b) 70		
	(c) 210		
	(d) - 210		
	(e)		
Q. 5	The coefficient of x^{-12} in the expansion of $(x + y)^{20}$ is: $\frac{1}{x^3}$		

	(a) C ²⁰ ₈
	(b) $C_8^{20}y^8$
	(c) C_{12}^{20}
	(d) $C_{12}^{20}y^8$
Q. 6	In the binomial expansion of $(a - b)^n$, $n \ge 5$ the sum of the 5 th and 6 th
	terms is zero. Then a/b equals:
	(a) $\frac{n-5}{4}$
	(b) $\frac{n-4}{5}$
	(c) $\frac{n-5}{-6}$
	(d) $\frac{n-6}{4}$
Q. 7	If the coefficient of $(2r + 3)^{th}$ and $(r - 1)^{th}$ in $(1 + x)^{15}$ are equal, then n
~ ! /	is:
	(a) 6
	(b) 5
	(c) 4
	(d) 3
Q. 8	In the expansion of $(1 + x)^{15}$, the middle term is:
	(a) 308
	(b) 462
	(c) 924
	(d) 1848
Q. 9	The coefficient of x^6 in the expansion of $(x^3 + \frac{1}{x}^8)$ is:
	(a) – 252
	(b) 252
	(c) 63
	(d) - 63
Q. 10	If the coefficient of x^2 and x^3 in the expansion of $(3 + mx)^9$ are equal,
	then the value of m is:

	(a) $-\frac{9}{7}$
	(b) $-\frac{7}{9}$
	(c) $\frac{9}{7}$
	(d) <u>Z</u>
	The constant term in $(\sqrt{x} - \frac{k^{10}}{2})$ is 405, then $ k = \dots$
Q. 11	$\frac{1}{x^2}$
	(a) 9
	(b) 1
	(c) 3
	(d) 2
Q. 12	Remainder when (27)999 is divided by 7 is:
	(a) 4
	(b) 5
	(c) 3
	(d) 6
Q. 13	$(\sqrt{5}+2)^4 + (\sqrt{5}-2)^4 = \cdots \dots$
	(a) 212
	(b) 322
	(c) 218
	(d) 328
Q. 14	$2^{2n} - 3n - 1$ is divisible by:
	(a) 3
	(b) 9
	(c) 4
	(d) 16
Q. 15	$(r+1)^{th}$ from the end in the expansion of $(x+a)^{n}$ is:
	(a) $\frac{n}{(r)} \frac{n-r}{x} \frac{n-r}{a}$

	(b) $n r n - r$				
	(c) $x^r a^r$				
	(d) $\binom{r}{n}_{(r)x} \frac{n-r}{a}$				
	ASSERTION REASONING QUESTIONS				
Q. 16	Assertion (S): T is the middle term in the expansion of $(2x + \frac{1}{2x})^8$.				
	Reason (S_2): The number of terms in the expansion of $(x + a)^n$ is				
	n+1.				
	(a) S_1 is true, S_2 is true and S_2 is correct explanation of S_1 .				
	(b) S_1 is true, S_2 is true but S_2 is not correct explanation of S_1 .				
	(c) S_1 is true, S_2 is false.				
	(d) S_1 is false, S_2 is true.				
Q. 17	Assertion (S ₁): The coefficients of x^3 in the expansion of $(1 + x)^n$ is 20,				
	then $n = 6$.				
	Reason (S_2) : $\stackrel{n}{\longrightarrow} = 20 \implies n = 6$				
	(3				
	(a) S_1 is true, S_2 is true and S_2 is correct explanation of S_1 .				
	(b) S_1 is true, S_2 is true but S_2 is not correct explanation of S_1 .				
	(c) S_1 is true, S_2 is false.				
	(d) S_1 is false, S_2 is true.				
Q. 18	Assertion (S_1) : The coefficients of terms equidistant from beginning				
	and end in the expansion of $(x + a)^n$ are equal.				
	Reason $(S_2): \binom{n}{r} = \binom{n}{n-r}$				
	(a) S_1 is true, S_2 is true and S_2 is correct explanation of S_1 .				
	(b) S_1 is true, S_2 is true but S_2 is not correct explanation of S_1 .				
	(c) S_1 is true, S_2 is false.				
	(d) S_1 is false, S_2 is true.				
Q. 19	Assertion (S_1) : The number of terms in the expansion of				
	$(3x + y)^8 - (3x - y)^8$ is 4.				
4					

	Reason (S ₂): If n is even, then $(x + a)^n - (x - a)^n$ has $\frac{n}{2}$ terms.		
	(a) S_1 is true, S_2 is true and S_2 is correct explanation of S_1 .		
	(b) S_1 is true, S_2 is true but S_2 is not correct explanation of S_1 .		
	(c) S_1 is true, S_2 is false.		
	(d) S_1 is false, S_2 is true.		
Q. 20	Assertion (S ₁): The r^{th} term from the end in the expansion of $(x + a)^{n}$ is $\binom{n}{n-r+1} x^{r-1}a^{n-r+1}$		
	Reason (S ₂): The r^{th} term from the end in the expansion of $(x + a)^n$		
	is $(n - r + 2)^{th}$ term.		
	(a) S_1 is true, S_2 is true and S_2 is correct explanation of S_1 .		
	(b) S_1 is true, S_2 is true but S_2 is not correct explanation of S_1 .		
	(c) S_1 is true, S_2 is false.		
	(d) S_1 is false, S_2 is true.		
	VERY SHORT ANSWER QUESTIONS		
Q.21	If the coefficients of 2^{nd} , 3^{rd} and the 4^{th} terms in the expansion of		
	$(1 + x)^n$ are in A.P. then find the value of n.		
Q.22	Prove that: $\sum_{r=0}^{n} n_{c} 4^{r} = 5^{n}$		
Q.23	Find a, if the 17^{th} and 18^{th} term of the expansion $(2 + a)^{50}$ are equal.		
Q.24	The coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio $1:7:42$. Find n.		
Q.25	Expand: $(x^2 + 1 - 2x)^3$		
Q.26	Using binomial theorem, evaluate: (0.99) ⁵		
Q.27	Find the coefficient of x^5 in the expansion of $(3x^2 + \frac{1}{3x})^{10}$.		
Q.28	Write general term in the expansion of $(3 z^2 - \frac{3}{3 z^2})^{35}$		
Q. 29	Using binomial theorem, show that 3 is a factor of $7^n - 4^n$, where $n \in N$.		

Q. 30	Show that sum of powers of a and b of each term in the expansion of
	$(x+a)^n$ is always n.
	SHORT ANSWER QUESTIONS
Q.31	If the coefficient of x^7 and x^8 in the expansion of $(2 + x^n)^n$ are equal, $\frac{1}{3}$
	then find n.
Q.32	Find the term independent of x in the expansion of $(\sqrt[3]{x} + \frac{1}{2\sqrt[3]{x}})^{18}, x > 0$.
Q. 33	If the coefficient of $(r-5)^{th}$ and $(2r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find r.
Q. 34	Find the coefficient of a^4 in the product $(1 + 2a)^4(2 - a)^5$ using binomial theorem.
Q. 35	The sum of the coefficients of the first three terms in the expansion of $(x - 3)^m$, $x \in 0.m$ being a natural number, is 559. Find the term of the expansion containing x^3 .
Q. 36	Show that the coefficient of the middle term in the expansion of
Q. 50	$(1 + x)^{2n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$.
Q. 37	If p is a real number and the middle term in the expansion of $\binom{p}{2} + 2$
	is 1120, then find the value of p.
Q. 38	Find the coefficient of x^4 in the expansion of of $(1 + x + x^2 + x^3)^{11}$.
Q.39	If the coefficient of 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(1 + x)^{2n}$
	are in A.P., show that $2n^2 - 9n + 7 = 0$.
Q. 40	Find the 6 th term of the expansion $(y^{-}_{2} + x^{-}_{3})^{n}$, if the coefficient of 3 rd
	term from end is 45.
	LONG ANSWER QUESTIONS
Q.41	Find the term independent of x in the expansion $of(1 + x + x)$

	$ \begin{array}{c} 2 x^{3} \left(\frac{3}{2} x^{2} - \frac{1}{3 x}\right) \\ 2 & 3 x \end{array} $
Q.42	Find n, if ratio of the 7 th term from beginning and 7 th term from end in the expansion of $(\sqrt[3]{2} + \frac{1}{\sqrt{3}})^n$, is $\frac{1}{6}$.
Q. 43	The 2 nd , 3 rd and 4 th terms in the expansion of $(x + a)^n$ are 240, 720 and 1080 respectively. Find x, a and n.

Middle Term not in syllabus

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
(a)	(c)	(c)	(c)	(b)	(b)	(b)	(c)	(a)	(c)
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
(c)	(d)	(b)	(b)	(b)	(b)	(a)	(a)	(a)	(a)
26.	1 – 6 <i>x</i> 0.951	$+ 15 x^2 -$. 0.252	$5 x^4 - 6 x$ 2 2	8. (-1)	8			
		38 43				$\frac{5}{x^3y^2}$	41. 17,	/54	

ANSWER KEY

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI **CHAPTER : SEQUENCES AND SERIES**

Important Points:

- A sequence refers to an arrangement of numbers in a definite order according to some rule.
- If a_1 , a_2 , a_3 , a_4 , is a sequence then $a_1+a_2+a_3+a_4+$ is called series.
- An arithmetic progression (A.P.) is a sequence in which terms increase or decrease regularly by the same constant. This constant is called common difference (denoted by d) of the A.P. The first term and the last term of an A.P are denoted by *a* and *l* respectively.
- •
- The general term of an A.P. is given by $a_n = a + (n-1)d$ The sum of the first n terms of an A.P is given by $S_n = \frac{n}{2}[2a + (n-1)d]$
- The sum of all terms of a finite A.P whose first term is a and the last term is lis given by S = $\frac{n}{2}(a+l)$
- The arithmetic mean of two numbers a and b is given by A.M = $\frac{(a+b)}{2}$

The sequence a, A.M, b form an A.P.

- A sequence is called a geometric progression (G.P.) if the ratio of any term to its preceding term is same throughout. This constant ratio is called the common ratio (denoted by *r*).
- The general term of a G.P. is given by $a_n = ar^{n-1}$, where a is the first term and r is the common ratio of the G.P.
- The sum of the first n terms of a G.P is given by Sn = $\frac{a(r^{n}-1)}{r-1}$ or $\frac{a(1-r^{n})}{1-r}$, if $r \in 1$.
- The sum of terms in an infinite G.P. is given by $S_{\infty} = \frac{a}{(1-r)}$, $r \in 1$.
- The geometric mean (G.M) of any two positive numbers a and b is given by \sqrt{ab} .

The sequence a, G.M, b form a G.P.

	MCQs	
Q1	If the nth term of an AP is 3n - 4, the 10th term of AP is	
	(a) 12	
	(b) 22	
	(c) 26	
	(d) 30	

Q2	If 2/3, k, 5/8 are in AP then the value of k is
	(a) 31/24
	(b) 31/48
	(c) 24/31
	(d) 48/31
Q3	If the third term of an A.P. is 7 and its 7th term is 2 more than three times of its third term, then the sum of its first 20 terms is
	(a) 228
	(b) 74
	(c) 740
	(d) 1090
Q4	For a G.P. the ratio of the 7th and the third terms is 16. What is the common ratio?
	(a) 2
	(b) ±2
	(c) 4
	(d) ±4
Q 5	If the sum of the first 2n terms of the A.P. 2, 5, 8,, is equal to the sum of the first n terms of the A.P. 57, 59, 61,, then n equals
	(a) 10
	(b) 12
	(c) 11
	(d) 13
Q 6	How many terms of G.P. 3, 32 , 33 , are needed to give the sum 120?
	(a) 3
	(b) 4
	(c) 5
	(d) 6
L	
Q 7	Next term of the sequence 0.02, 0.006, 0.0018, is
Q 7	Next term of the sequence 0.02, 0.006, 0.0018, is (a) 0.000054

	(c) 0.00054
	(d) 0.00036
Q 8	A man saves Rs 135/- in the first year, Rs 150/- in the second year and in this way he increases his savings by Rs 15/- every year. In what time will his total savings be Rs 5550/-?
	(a) 20 years
	(b) 25 years
	(c) 30 years
	(d) 35 years
Q 9	The fourth, seventh and tenth terms of a G.P. are p, q, r respectively, then :
	(a) $p^2 = q^2 + r^2$
	(b) $q^2 = pr$
	(c) $p^2 = qr$
	(d) $pqr + pq + 1 = 0$
Q10	4th term from the end of the G.P. 3, 6, 12, 24.,, 3072 is
	(a) 348
	(b) 843
	(c) 438
	(d) 384
	CASE BASED/SOURCE BASED / PASSAGE BASED QUESTIONS
Q 11	150 workers were engaged to finish a job in a certain number of days. 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work.

	(i) Find the A.P. representing the above situation.
	(ii) In how many days was the work completed?
Q 12	A company produces 500 computers in the third year and 600 computers in theseventh year. Assuming that the production increases uniformly by aconstant number every year, answer the following questions.
	(i) How many computers were produced in the first year?
	(ii) By what number does the production increase every year?
	(iii) How many computers will be produced in the 21 st year?
	(iv) Find the total production in 10 years.
Q 13	Each side of an equilateral triangle is 24 cm. The mid-point of its sides are joined to form another triangle. This process is going on continuously.

	$\begin{array}{c} A \\ 24 \text{ cm} \\ 12 \text{ cm} \\ 12 \text{ cm} \\ 12 \text{ cm} \\ B \\ P \\ 24 \text{ cm} \\ C \\ 24 \text{ cm} \end{array}$
	Based on the above information, answer the following questions.
	(i) What is the length of the side of the fifth triangle?
	(ii) What is the sum of the perimeters of the first six triangles?
Q 14	Rahul being a plant lover decides toopen a nursery and he bought fewplants with pots. He wants to place potsin such a way that number of pots infirst row is 2, in second row is 4 and in third row is 8 and so on.
	Answer the following questions based on the above information.
	(i) Find the number of pots in the 8 th row.
	(ii) Find the total number of pots in 10 rows.
	(iii) If Rahul wants to place 510 pots in all, how many rows will be formed?
Q 15	Asif buys a scooter for Rs 22000. He pays Rs 4000 in cash and agrees to pay the balance in annual installments of Rs 1000 plus 10% interest on the unpaid amount.

	Based on the above information, answer the following questions.
	(i) What will be the first installment?
	(ii) In how many installments will he be able to repay the loan?
	(iii) Find the total amount paid as installments.
	VERY SHORT QUESTIONS
Q 16	If $S_n = 3n^2 + 2n$, then write a_2 .
Q 17	If sum of first n terms of an A.P is $2n^2 + 7n$, write its nth term.
Q 18	If in a G.P., $a_3 + a_5 = 90$ and if $r = 2$ find the first term of the G.P.
Q 19	If the product of 3 consecutive terms of G.P. is 27, find the middle term.
Q 20	In an A.P, 8, 11, 14, find $S_n - S_{n-1}$
Q 21	The first term of a G.P. is 2 and sum to infinity is 6, find common ratio.
Q 22	The A.M. of two numbers is 34 and G.M. is 16, the numbers areand
Q 23	The sum of first 10terms of G.P. is equal to 244 times the sum of first five terms. Then the common ratio is
Q 24	The third term of a geometric progression is 4. Find the product of the first five terms.
Q 25	The first term of a GP is 1. The sum of the third term and fifth term is 90. The common ratio of GP is
	ASSERTION REASON QUESTIONS
	In questions 26 to 30, each question contains A (Assertion) and R (Reason). Each of these questions has the following four choices, out of which only one is correct.

	The sum of first three terms of a G.P. is 15 and sum of next three
Q 35	Insert 5 numbers between 7 and 55 , so that resulting series is A.P.
Q 34	The product of first three terms of a G.P. is 1000. If 6 is added to its second term and 7 is added to its third term, the terms become in A.P. Find the G.P.
Q 33	In an A.P. sum of first 4 terms is 56 and the sum of last 4 terms is 112. If the first term is 11 then find the number of terms.
Q 32	How many numbers are there between 200 and 500, which leave remainder 7 when divided by 9?
Q 31	Write the first negative term of the sequence 20, $19\frac{1}{4}$, $18\frac{1}{2}$, $17\frac{3}{4}$,
	SHORT QUESTIONS
	R: The sum of the first 22 terms of the A.P. $x+y$, $x-y$, $x-3y$,is 22[$x-20y$].
Q 30	A: The sum of the first 22 terms of the A.P. 16, 11, 6, is – 803.
	R: $a_k + a_{n-k+1} = a_1 + a_n$ for $k = 1, 2, 3, \dots, n$
	A: $a_1 + a_2 + a_3 + \dots + a_n = \frac{n}{2}(a_1 + a_n)$
Q 29	Let $a_1, a_2, a_3, \ldots, a_{n-1}, a_n$ be an A.P
	R: If a, b, c are in G.P. then $ac = b^2$
Q 28	A: If the numbers $\frac{-2}{7}$, k , $\frac{-7}{2}$ are in G.P. then k = ± 1
	R: If nth term of a sequence is $a_n = \frac{n(n-2)}{n+3}$ then its 20 th term is $\frac{323}{22}$
Q 27	A: If nth term of a sequence is $a_n = \frac{n}{2^n}$ then its 7 th term is $\frac{47}{128}$
	R: In an A.P, the sum of the terms equidistant from the beginning and the end is always same and is equal to the sum of first and last term.
Q 26	A: If $a_1, a_2, a_3, \dots, a_n, \dots$ is an A.P such that $a_1 + a_4 + a_7 + \dots + a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16} = 98$
	(d) A is false but R is true.
	(c) A is true but R is false.
	(b) Both A and R are true. R is not a correct explanation for A.
I	(a) Both A and R are true. R is a correct explanation for A.

	terms is 120. Find the sum of first n terms.
Q 37	Find the sum of all the natural numbers between 1 and 200 which are neither divisible by 2 nor by 5.
Q 38	If in an A.P. $\frac{a_7}{a_{10}} = \frac{5}{7}$, find $\frac{a_4}{a_7}$
Q 39	Using G.P. prove that $0.03111 = \frac{7}{225}$
	[Hint : 0.03111 = $0.03 + 0.001 + 0.0001 +$ Now use infinite G.P.]
Q 40	Solve : $1 + 6 + 11 + 16 + \dots + x = 148$
	LONG QUESTIONS
Q 41	A square is drawn by joining the mid points of the sides of a square. A third square is drawn inside the second square in the same way and the process is continued indefinitely. If the side of the first square is 15 cm, then find the sum of the areas of all the squares so formed.
Q 42	If a is arithmetic mean of b and c and c, G1 , G2 , b are in G.P. then prove that $G_1^3 + G_2^3 = 2abc$
Q 43	If pth, qth and rth terms of an A.P and G.P both are a, b and c, respectively, then show that $a^{b-c}b^{c-a} c^{a-b} = 1$.
Q 44	Prove that the sum of n numbers between a and b such that the resulting series becomes A.P. is $\frac{n(a+b)}{2}$
Q 45	If a, b, c are in G.P., then prove that
	1 1 1
	$\frac{1}{a^2 - b^2} = \frac{1}{b^2 - c^2} - \frac{1}{b^2}$
	[Hint : Put $b = ar, c = ar^2$]
Q 46	1f the sum of p terms of an A.P is q and the sum of q terms is p, then show that the sum of $p + q$ terms is $-(p + q)$. Also, find the sum of first $p - q$ terms (where $p > q$).
Q 47	If A is the arithmetic mean and G1 , G2 are two geometric means between any two numbers, then prove that $2A = \begin{array}{c} + \\ 1 \\ G_2 \\ \end{array}$
Q 48	Show that the sum of $(m + n)^{th}$ and $(m - n)^{th}$ terms of an A.P. is equal to twice the m th term.
Q 49	The sums of n terms of two arithmetic progressions are in the ratio

	5n+4: 9n+6. Find the ratio of their 18th terms.
Q 50	Find two positive numbers whose difference is 12 and whose arithmetic mean exceeds the geometric mean by 2.

AP not in syllabus

ANSWERS

MCQs

Q 1- c	Q 2- b	Q 3- c	Q 4- b	Q 5- c
Q 6- b	Q 7- c	Q 8- a	Q 9- b	Q 10- d

CASE BASED QUESTIONS

- Q 11 (i) 150, 146, 142,
 - (ii) 25 days
- Q 12 (i) 450
 - (ii) 25
 - (iii) 950
 - (iv) 5625
- Q 13 (i) 1.5 cm
 - (ii) 567/4 cm
- Q 14 (i) 256
 - (ii) 2046
 - (iii) 8
- Q 15 (i) Rs 2800
 - (ii) 18
 - (iii) Rs 35100

VERY SHORT QUESTIONS

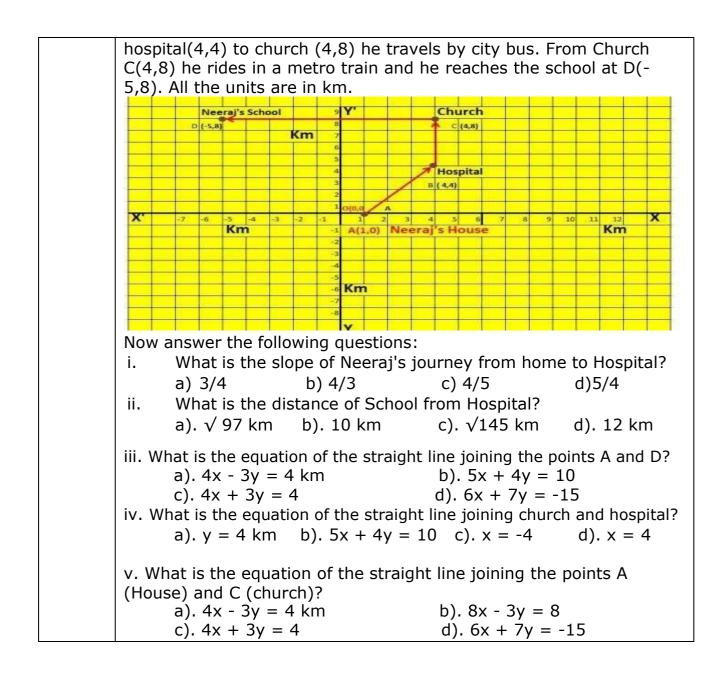
Q 16: 11	Q 17: 4n+5	Q 18: 9/2	Q 19: 3	Q 20: 3n+5
Q 21: 2/3	Q 22: 64 & 4	Q 23: 3	Q 24: 4 ⁵	Q 25: 3

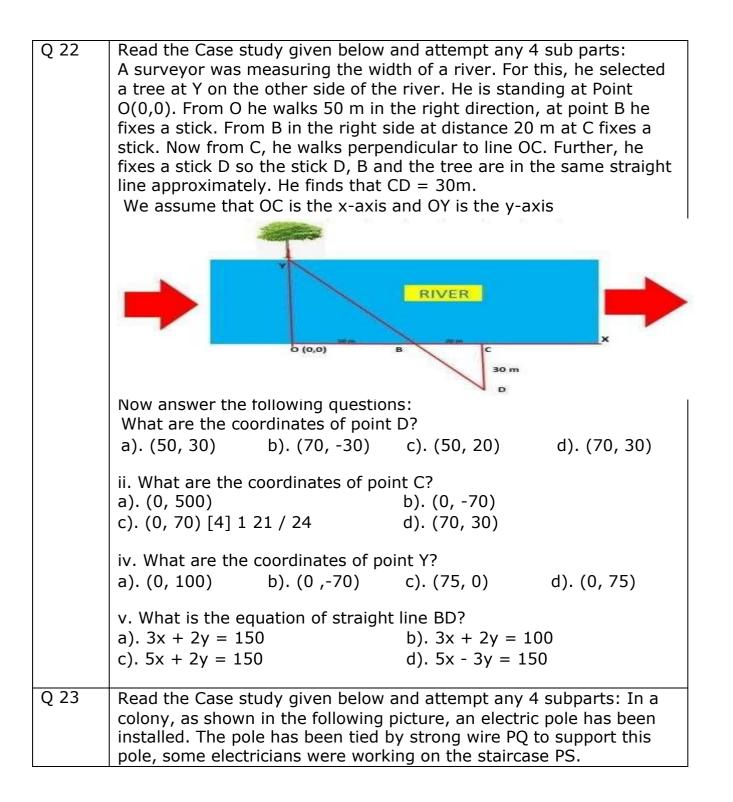
ASSERTION REASON QUESTIONS

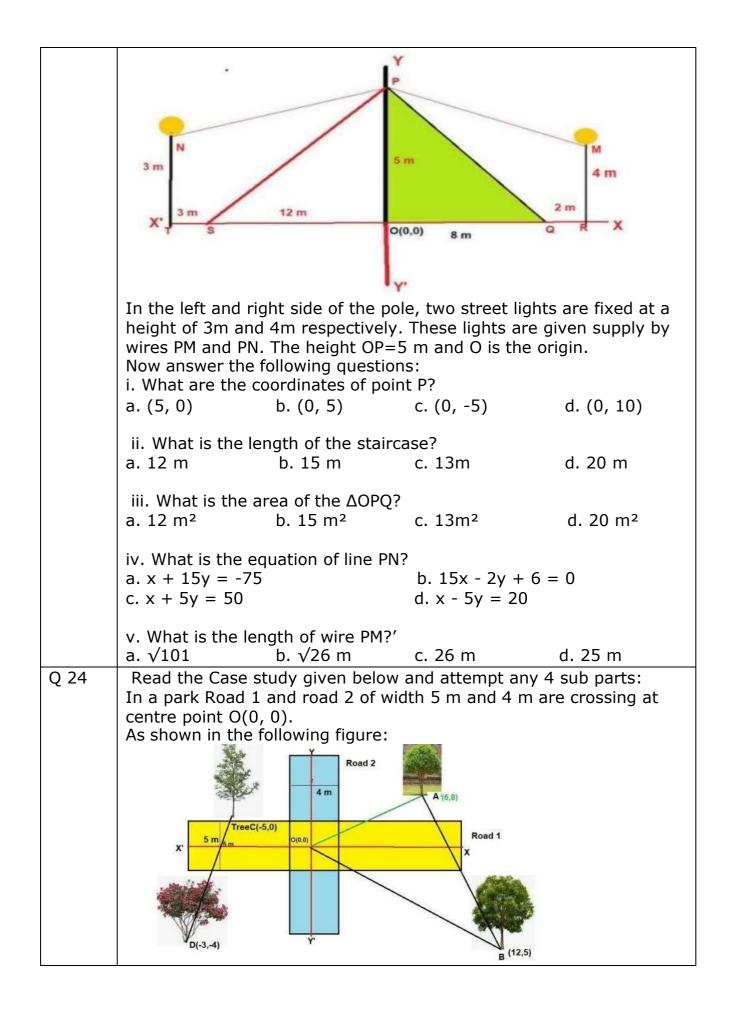
Q 26: a Q 27: c Q 28: a Q 29: a Q 30: b	

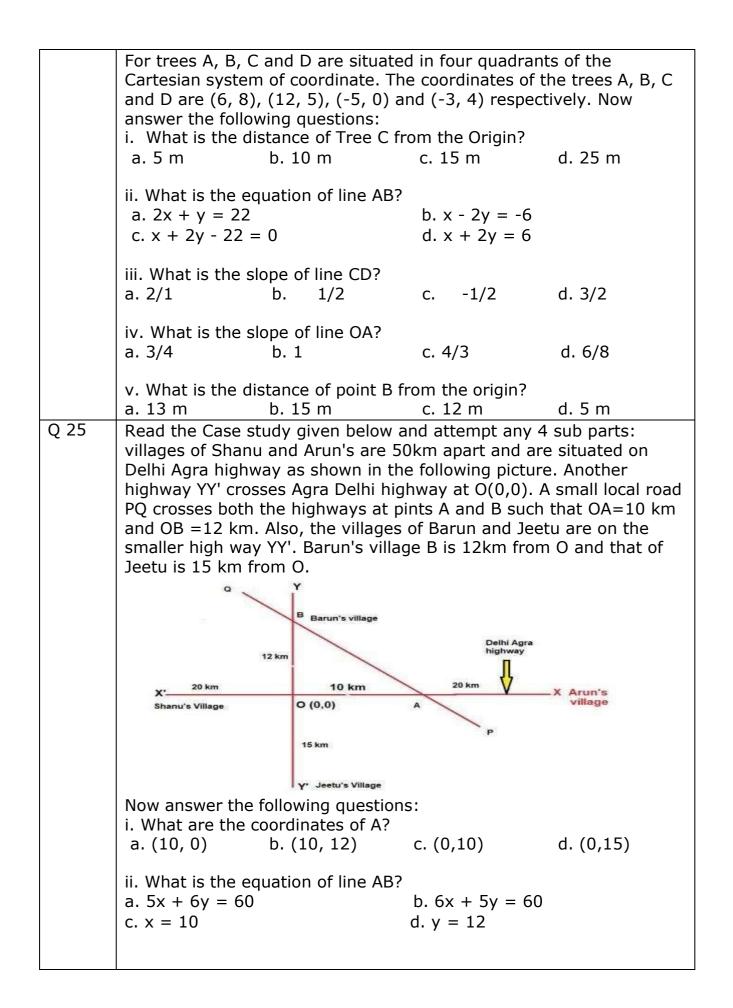
SHORT QUESTIONS

Q31: -1/4	Q32: 33	Q33: 11
Q34: 5,10,20, Or 20,10,5,	Q35: 15, 23, 31, 39, 47	Q36: $\frac{15}{7}(2^n-1)$
Q37: 7999	Q38: 3/5	Q40: 36


LONG QUESTIONS


Q41: 450 cm ² Q46: $(p-q)\frac{(p+2q)}{p}$	Q49: 179:321	Q50: 16,4	
---	--------------	-----------	--


KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : Straight Lines


	MCQ
Q1	The inclination of the line $x - y + 3 = 0$ with the positive direction of x-axis is
	(A) 45° (B) 135° (C) – 45° (D) –135°
Q2	The two lines $ax + by = c$ and $a'x + b'y = c'$ are perpendicular if (A) $aa' + bb' = 0$ (B) $ab' = ba'$ (C) $ab + a'b' = 0$ (D) $ab' + ba'$
Q3	The equation of the line passing through $(1, 2)$ and perpendicular to x + y + 7 = 0 is (A) y - x + 1 = 0 (B) y - x - 1 = 0 (C) y - x + 2 = 0 (D) y - x - 2 = 0
Q4	The distance of the point P $(1, -3)$ from the line $2y - 3x = 4$ is (A) 13 (B) 7 $\sqrt{13}$ /13 (C) $\sqrt{13}$ (D) None of these
Q 5	The coordinates of the foot of the perpendicular from the point $(2, 3)$ on the line x + y - 11 = 0 are (A) (-6, 5) (B) (5, 6) (C) (-5, 6) (D) (6, 5)
Q 6	The intercept cut off by a line from y-axis is twice than that from x- axis, and the line passes through the point (1, 2). The equation of the line is (A) $2x + y = 4$ (B) $2x + y + 4 = 0$ (C) $2x - y = 4$ (D) $2x - y + 4 = 0$
Q 7	A line cutting off intercept -3 from the y-axis and the tangent of angle to the x-axis is 3/5, its equation is (a) 5y-3x+15=0(b) 3x-5y+15=0 (c) 5y-3x-15=0 (d) None of these
Q 8	Slope of a line which cuts off intercepts of equal lengths on the axes is (a) -1 (b) 0 (c) 2 (d) $\sqrt{3}$
Q 9	The equation of the straight line passing through the point (3, 2) and perpendicular to the line $y = x$ is (a) $x-y = 5$ (b) $x+y = 5$ (c) $x+y=1$ (d) $x-y=1$

Q10	The equation of the line passing through the point (1,2) and perpendicular to the line $x + y + 1 = 0$ is (a) $y - x + 1 = 0$
	(a) $y-x + 1=0$ (b) $y - x - 1=0$ (c) $y-x + 2 = 0$ (d) $y - x - 2=0$ If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the points (2, -3) and (4, -5),
Q11	If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the points (2, -3) and (4, -5),
	then (a, b) a b is (a) (1,1) (b) (-1,1) (c) (1,-1) (d) (-1,-1)
Q 12	If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be
	(a) $2x + 3y = 12$ (b) $3x + 2y = 12$ (c) $4x-3y = 6$ (d) $5x-2y=10$
Q13	Equation of the line passing through $(1,2)$ and parallel to the line y =
	$\begin{array}{ll} 3x - 1 \text{ is} \\ (a)y + 2 = x + l \\ (c) y - 2 = 3(x - 1) \end{array} \qquad (b) y + 2 = 3(x + 1) \\ (d) y - 2 = x - l \end{array}$
Q14	The point (4, 1) undergoes the following two successive transformations:(i) Reflection about the line $y = x$ (ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are(a) (4,3)(b) (3,4)(c) (1,4)(d) (7/2,7/2)
Q15	A point equidistant from the lines $4x + 3y + 10 = 0$, $5x - 12y + 26 = 0$ and $1x + 24y - 50 = 0$ is (a) (1,-1) (b) (1, 1) (c) (0,0) (d) (0, 1)
Q16	A line passes through (2, 2) and is perpendicular to the line $3x + y = 3$. Its y-intercept is (a) $1/3$ (b) $2/3$ (c) 1 (d) $4/3$
Q 17	The ratio in which the line $3x + 4y + 2 = 0$ divides the distance between the lines $3x + 4y + 5 = 0$ and $3x + 4y - 5 = 0$ is (a) 1:2 (b) 3:7 (c) 2:3 (d) 2:5
Q 18	One vertex of the equilateral triangle with centroid at the origin and one side asx + y- 2 = 0is (a) $(-1,-1)$ (b) $(2,2)$ (c) $(-2,-2)$ (d) $(2,-2)$
Q 19	Equations of diagonals of the square formed by the lines $x = 0, y =$ $0, x = 1$ and $y = 1$ are $(A). y = x, y + x = 1$ $(B). y = x, x + y = 2$ $(C). 2y = x, y + x = 1/3$ $(D). y = 2x, y + 2x = 1$
Q 20	For specifying a straight line, how many geometrical parametersshould be known?(A). 1(B). 2(C). 4(D). 3
	CASE BASED/SOURCE BASED / PASSAGE BASED
Q 21	Read the Case study given below : Neeraj's house is 1 km in the east of origin(0,0), While going to the school first he takes auto till hospital at B(4,4). From the

	iii. What is the dista			
	a. 60 km b.	60/√61 km	c. √61 km	d. 60 km
	iv. What is the slop			1 10/12
	a. 6/5 b.	5/6	c6/5	d. 10/12
	v. What is the lengt a. √61 km b.		a 10 km	d. 2√ 61 km
			C. 10 KIII	U. ZV OI KIII
	ASSERTION REASC	NING		
	Directions Each of these questions contains two statements :			tements ·
	Assertion(A) and R	•		
	alternative choices,	. ,	-	
	to select one of the	-		
	(a) A is true, R is tr	rue; R is a corre	ct explanation fo	or A.
	(b) A is true, R is tr	rue; R is not a co	orrect explanation	on for A.
	(c) A is true; R is fa	alse.		
	(d) A is false; R is t	true.		
Q 26	Assertion (A) The p	point (3, 0) is at	3 units distance	e from theY -axis
	measured along the	e positive X -axi	s and has zero c	listance from the
	X -axis.			
	Reason (R) The po			
	measured along the	e positiveY -axis	and has zero di	stance from the Y
0.27	-axis.		L 2 is perpendicul:	ar ta tha lina v
Q 27	Q 27 Assertion (A) If $x \cos q + y \sin q = 2$ is perpendicular to the $y = 3$, then one of the value of q is p/4.		ar to the line x –	
		-	-	
	Reason (R) If two l	lines $y = m_1 x + m_1 x$	c_1 and $y = m_2 x$	r + c 2 are
	perpendicular then			
Q 28	Assertion (A) Slope of X -axis is zero and slope of Y -axis is		-axis is not	
	defined.			
0.20	Reason (R) Slope o			
Q 29	Assertion (A) The s	slope of the line .	x + 7y = 0 is $1/7$	and y-intercept
	is 0. Reason (R) The slo	no of the line fr	x + 3x - 5 = 0 ic	-2 and v_{-}
	intercept is 5/3		+ 3y - 5 = 0 is	- 2 anu y-
Q 30	If A (- 2, - 1), B (4)	(1) (2) (3) = 1	D(-3, 2) are the	e vertices of
	aparallelogram, the			
	Assertion (A) Slope		of BC and Slope	ofCD = Slope of
	AD.			
	Reason (R) Mid-poi	int of AC =Mid-p	oint of <i>BD</i> .	
	VERY SHORT			
Q 31	Match the question	s given under Co	Jumn C1 with th	eir annronriate
الري	answers given und			
			<u></u>	
	Column C ₁			Column C ₂
L	I			

a) The coordinates of the points P and Q on the line x+5y=13 which are at a distance o units from the line 12x-5y+26=0 are	
b) The coordinates of the points on the line $x+y=4$ which are at a unit distance	ii) -1/3, 11/3, 4/3, 7/3
from the line 4x-3y+10=0 areiii) 1, 12/5,-3	3,16/5
c) The coordinates of the points on the line $B(3,1)$ such that $AP=+Q=QB$ are	joining A (-2,5) and
The value of the λ , if the lines $(2x + 3y + 4) + \lambda (6x - y + 12) = 0$	
are	, , , , ,
Column C1	Column C ₂
a) parallel to y-axis is	i) λ=-3/4
b) perpendicular to $7x+y-4=0$	ii) λ=-1/3
c) Passes through (1,2) is	iii) λ=-17/41
d) parallel to x-axis is	iv) λ=3
The equation of the line through the interse = 0 and $4x - 5y = 2$ an <u>d</u>	ection of the lines 2x – 3y
Column C1	Column C ₂
a) through the point (2,1) is	i) 2x-y =4
b)perpendicular to the line $x+2y+1=0$ is	ii)x+y-5=0
c)parallel to the line $3x+4y+5=0$ is	iii)x-y-1=0
d) equally inclined to the axes is	iv) 3x-4y-1=0
Find the equation of the straight line which $(1, -2)$	passes through the point
Find the equation of the line passing through the point (5,2) and perpendicular to the line joining the points (2, 3) and (3, -1)	
Find the angle between the lines $y = (2 - \sqrt{3}) \sqrt{3} \sqrt{x - 7}$	3) $(x + 5)$ and $y = (2 + -$
Find the equation of the lines which passes and cuts off intercepts from the coordinate is 14.	
Find the points on the line $x+y = 4$ which lies the line $4x + 3y = 10$	e at a unit distance from
	the line x+5y=13 which are at a distance o units from the line 12x-5y+26=0 are b) The coordinates of the points on the line x+y=4 which are at a unit distance from the line 4x-3y+10=0 areiii) 1, 12/5,-3 c) The coordinates of the points on the line B(3,1) such that AP=+Q=QB are The value of the λ , if the lines (2x + 3y + are Column C ₁ a) parallel to y-axis is b) perpendicular to 7x+y-4=0 c) Passes through (1,2) is d) parallel to x-axis is The equation of the line through the interse = 0 and 4x - 5y = 2 and Column C ₁ a) through the point (2,1) is b)perpendicular to the line x+2y+1=0 is c)parallel to the line 3x+4y+5=0 is d) equally inclined to the axes is Find the equation of the line passing throug perpendicular to the line y= (2 - $\sqrt{3}$ $\sqrt{3}$ {x - 7) Find the equation of the lines which passes and cuts off intercepts from the coordinate is 14. Find the points on the line x+y = 4 which line

0.20	Find the equation of lines we structure (4.2)
Q 39	Find the equation of lines passing through (1,2) and making angle 30° with y axis
Q 40	Find the equation of the line passing through the point of intersection of $2x + y = 5$ and $x + 3y + 8 = 0$ and parallel to the line $3x + 4y=1$.
Q 41	For what values of a and b the intercepts cut off on the coordinate axes by the line $ax + by + 8 = 0$ are equal in length but opposite in signs to those cut off by the line $2x - 3y + 6 = 0$ on the axes
Q 42	If the intercept of a line between the coordinate axes is divided by the point $(-5,4)$ in the ratio 1 : 2, then find the equation of the line.
Q 43	Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis
Q 44	Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by $3x + Ay = 4$ and the opposite vertex of the hypotenuse is (2, 2).
Q 45	If the equation of the base of an equilateral triangle is $x + y - 2$ and the vertex is $(2, -1)$, then find the length of the side of the triangle
Q 46	A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
Q 47	Find the equation of the line which passes through the point (-4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
Q 48	If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point
Q 49	Find the equation of a line which passes through the point $(2, 3)$ and makes an angle of 30° with the positive direction of x-axis.
Q 50	The distance between the lines $3x + 4y = 9$ and $6x + 8y = 15$ is
	SHORT QUESTIONS
Q 51	Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
Q 52	Find the equation of the straight line passing through $(1, 2)$ and perpendicular to the line $x + y + 7 = 0$
Q 53	Find the distance between the lines $3x + 4y = 9$ and $6x + 8y = 15$.
Q 54	If the slope of a line passing through the point $A(3, 2)$ is 3 /4
Q 55	Find the equation to the straight line passing through(1,1) and perpendicular to the line $3x-5y+11 = 0$.
Q 56	A ray of light coming from the point $(1, 2)$ is reflected at a point A on the x-axis and then passes through the point $(5, 3)$. Find the coordinates of the point A.
Q 57	If one diagonal of a square is along the line $8x - 15y = 0$ and one of its vertex is at $(1, 2)$, then find the equation of sides of the square passing through this vertex.
Q 58	Find the angle between the x-axis and the line joining the points $(3, -1)$ and $(4, -2)$.

Q 59	The vertices of Δ PQR are P (2, 1), Q (-2, 3) and R (4, 5). Find equation of the median through the vertex R.		
Q 60	Point R (h, k) divides a line segment between the axes in the ratio 1: 2. Find equation of the line.		
Q 61	Find the angle between the lines $y - \sqrt{3x-5}=0$ and $\sqrt{3y} - x + 6 = 0$		
Q 62	Find the distance of the point $(-1, 1)$ from the line $12(x + 6) = 5(y - 2)$		
Q 63	Two lines passing through the point $(2, 3)$ intersects each other at an angle of 60° . If slope of one line is 2, find equation of the other line.		
Q 64	Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and – 6, respectively.		
Q 65	Find the value of p so that the three lines $3x + y - 2 = 0$, $px + 2y - 3 = 0$ and $2x - y - 3 = 0$ may intersect at one point		
Q 66	Find the equation of the line passing through the point of intersection of the lines $4x + 7y - 3 = 0$ and $2x - 3y + 1 = 0$ that has equal intercepts on the axes		
Q 67	If the lines $y = 3x + 1$ and $2y = x + 3$ are equally inclined to the line $y = mx + 4$, find the value of m		
Q 68	Find equation of the line which is equidistant from parallel lines $9x + 6y - 7 = 0$ and $3x + 2y + 6 = 0$.		
Q 69	The hypotenuse of a right angled triangle has its ends at the points $(1, 3)$ and $(-4, 1)$. Find an equation of the legs (perpendicular sides) of the triangle		
Q 70	Find the equation of the lines through the point $(3, 2)$ which make an angle of 45° with the line x – 2y = 3		
	LONG QUESTIONS		
Q 71	A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2, 0)$, $(0, 2)$ and $(1, 1)$ on the line is zero. Find the coordinates of the point P		
Q 72	In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line $x+y = 4$ is at a distance $\sqrt{6/3}$ from the given point.		
Q 73	Find the equations of the lines through the point of intersection of the lines $x-y+1=0$ and $2x - 3y + 5 = 0$ and whose distance from the point (3, 2) is 7/5		
Q 74	 The point (4, 1) undergoes the following two successive transformations: (i) Reflection about the line y = x (ii) Translation through a distance 2 units along the positive x-axis 		

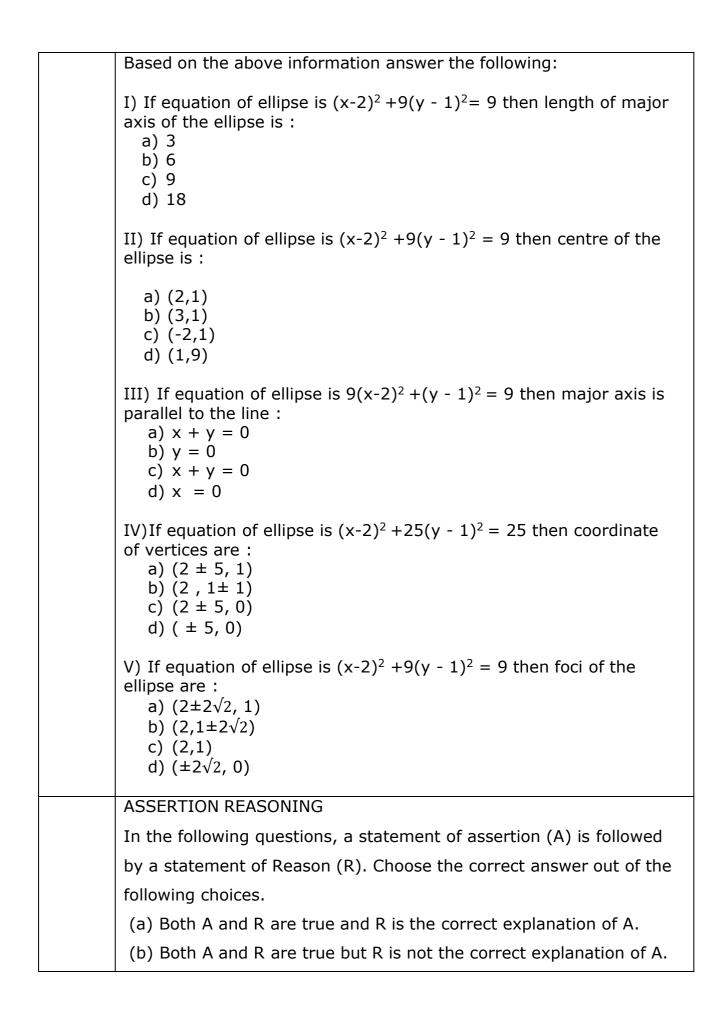
	Then the final coordinates of the point
Q 75	One vertex of the equilateral triangle with centroid at the origin and one side asx + y- 2 = 0isLocus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes.
Q 76	If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$
Q 77	Show that the path of a moving point such that its distances from two lines $3x - 2y = 5$ and $3x + 2y = 5$ are equal is a straight line.
Q 78	Find the area of the triangle formed by the lines $y - x = 0$, $x + y = 0$ and $x - k = 0$
Q 79	If p and q are the lengths of perpendiculars from the origin to the lines $x\cos\theta - y\sin\theta = k\cos2\theta$ and $x \sec\theta + y \csc\theta = k$, respectively, prove that $p^2 + 4q^2 = k^2$
Q 80	Find the distance of the line $4x + 7y + 5 = 0$ from the point (1, 2) along the line $2x - y = 0$

ANSWERS

Q1 (A), Q2 (A), Q3 (B), Q4(C), Q5 (B), Q6 (A), Q7 (A), Q8 (A), Q9 (B), Q10 (B), Q11 (B), Q12 (A), Q13 (C), Q14(B), Q15 (C), Q16 (D), Q17 (B), Q18 (C), Q19 (A), Q20 (B), Q21 i.(b) ii.(a) iii.(c) iv.(d) v (b), Q22 i.(b) ii.(c) iii.(a) iv.(d) v.(a), Q23 i.(b) ii.(c) iii.(d) iv.(b) v.(a), Q 24 i.(a) ii.(c) iii.(b) iv.(c) v.(a), Q25 i.(a) ii.(b) iii.(b) iv.(c) v.(d), Q26 (C), Q27 (C), Q28 (C), Q29 (D), Q30 (D), Q31 a.(iii) b(i) c(ii) Q32 a.(iv) b(iii) c(i) d(ii) Q33 a.(iii) b(i) c(iv) d(ii) Q 34x+y+1=0, Q35x-4y+3=0, Q $36\theta = 60^{\circ}$, Q 37 x+y=7,Q 38 (3,1) and (-7,11),Q 39 $\sqrt{3}$ X-Y- $\sqrt{3}$ +2, Q 40 3X+2Y+3=0, Q 41 A=-8/3 ,B=4, Q 42 8x-5y+60=0, Q 43 $\sqrt{3}X+Y=8$, Q 44x-7y+12=0 and 7x+y=16,Q 45 √2/3, Q 46PROOF, Q 479X-20Y+96=0,Q 48 locus of the point P which is a square ,Q 49 x- $\sqrt{3y+3\sqrt{3}}$ - $2=0,Q 50 3/10 Q 51\sqrt{3}x+y=8,Q 52 x - y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 53 3/10 Q 54 4y - 1 = 0, Q 54 4$ 3x + 1 = 0, Q 555x + 3y + 8 = 0, Q 56 (13/5,0), Q 57 7x + 23y - 53 = 0.,Q 58135°,Q 59 3x - 4y + 8 = 0,Q 60 2kx + hy = 3kh,Q 61 30°, 150°, Q 62 5 units, Q $63(\sqrt{3}-2)x+(1+2\sqrt{3})y=-1+8\sqrt{3}$, Q 64 2x-3y=6, -3x+2y=6, Q 65 5units, Q 66 13x + 13y = 6 Q 67 $(1+5\sqrt{2})/7$ Q 68 18x + 12y + 11 = 0Q 69 x = 1, y = 1 Q 703x - y = 7, x + 3y = 9 Q 71 (1,1), Q 72 $\theta = 105^{\circ}$, Q 73 4x-3y+1=0 and 3x-4y+6=0, Q 74 (-2, -2), Q 75 $4x^{2}y^{2}=p^{2}(x^{2}+y^{2}), Q 78 \text{ k}^{2}$ square units, Q 80 (23 $\sqrt{5}$)18 units

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: 11th CHAPTER : Conic Section

	MCQs
Q1	The equation of circle of radius 5 units touches the coordinates axes in the second quadrant is:
	(a) $x^2 + y^2 + 10x - 10y + 25 = 0$
	(b) $x^2 + y^2 - 10x - 10y + 25 = 0$
	(c) $x^2 + y^2 + 10x + 10y + 25 = 0$
	(d) $x^2 + y^2 - 10x - 10y - 25 = 0$
Q2	Equation of the circle through the origin and cutting intercepts 2 and 4 on the coordinate axes is :
	(a) $x^2 + y^2 - 2x - 4y = 0$ (b) $x^2 + y^2 + 2x + 4y = 0$ (c) $x^2 + y^2 + 4x + 8y = 0$ (d) $x^2 + y^2 - 4x - 8y = 0$
Q3	Equation (4m -3)x ² + my ² +10x - 8y +16 = 0 represent a circle for m = (a) 3 (b) 3/4 (c) 1 (d) -1
Q4	The radius of the circle $x^2 + y^2 + 8x + 10y - 8 = 0$ (a) 8 (b) 10 (c) 9 (d) 7
Q 5	The centre of the circle $x^2 + y^2 + 8x + 10y - 8 = 0$ (a) $(-4, -5)$ (b) $(4, 5)$ (c) $(-8, -10)$ (d) $(8, 10)$


Q 6	Find the equation of the circle with centre $(-3, 2)$ and radius 4.
	(a) $(x - 3)^2 + (y - 2)^2 = 16$ (b) $(x + 3)^2 + (y + 2)^2 = 16$ (c) $(x - 3)^2 + (y + 2)^2 = 16$ (d) $(x + 3)^2 + (y - 2)^2 = 16$
Q 7	Eccentricity of circle is:
	(a) 0 (b) 1 (c) 1.5 (d) 0.5
Q 8	Eccentricity of parabola is:
	(a) 0 (b) 1 (c) 1.5 (d) 0.5
Q 9	Find the equation of the parabola with vertex at $(0, 0)$ and focus at (0, 2). (a) $x^2 = 8y$ (b) $x^2 = -8y$ (c) $y^2 = 8x$ (d) $y^2 = -8x$
Q10	The directrix of parabola y ² =48x is:
	(a) x = -12
	(b) x = 12
	(c) $x = 24$
Q11	(d) $x = -24$ What point of the parabola $x^2 = 9y$ is the abscissa three times that of ordinate.
	(a) (1, 1) (b) (3, 1) (c) (-3, -1) (d) (-3, -3)

Q 12	The point where the axis meets the parabola is called: (a) Latus rectum (b) Tangent (c) Chord (d) Vertex
Q13	The vertex of the parabola $(y + a)^2 = 8a (x - a)$ is (a) (-a, -a) (b) (a, a) (c) (-a, a) (d) (a, -a)
Q14	The length of latus rectum of parabola y ² =16x is: (a) -16 (b) -4 (c) 16 (d) 4
Q15	The focus of parabola $x^2=16y$ is: (a) (-4, 0) (b) (4, 0) (c) (0, 4) (d) (0, -4)
Q16	In an ellipse, the distance between its foci is 6 and its minor axis is 8 then its eccentricity is (a) $4/5$ (b) $1/\sqrt{52}$ (c) $3/5$ (d) ¹ / ₂
Q 17	The difference between the length of the major axis and latus rectum of an ellipse is (a) 2ae ² (b) ae ² (c) 2ae (d) ae
Q 18	The eccentricity of ellipse , if the minor axis is equal to the distance between the foci,is

	(a) √3/2
	(b) 2/√3
	(c) √2/3
	(d) 1/√2
Q 19	The eccentricity of ellipse , $5x^2 + 9y^2 = 1$, is
	(a) 3/4 (b) 4/5 (c) 2/3 (d) ¹ / ₂
Q 20	The eccentricity of rectangular hyperbola ,is
	(a) 1 (b) $\sqrt{2}$ (c) $$ (d) 2
	CASE BASED/SOURCE BASED / PASSAGE BASED
Q 21	"C: x ² + y ² -2x -2ay -8= 0, a is variable."
	Gaurang is analyzing the equation of the given curve and the dependency of curve with 'a' then on the basis of the given equation of the curve solve the following questions:
	 i) The equation represent the family of circles having center in first quadrant , if `a' is: a) Any Real number b) 0 c) Always a negative real number d) Always a positive real number
	 d) Always a positive real number II) If a = 0, then center of C is: a) (1,0) b) (0,1) c) (8,0) d) (0,8)
	III) If a = 0, then radius of C is: a) 1

	c) 2 d) 4
	IV) Curve C Passing through2 fixed points whose coordinates are: a) (-2,0),(4,0) b) (2,0),(4,0) c) (-4,0),(4,0) d) (2,0),(-4,0)
	 V) Eccentricity of the Curve C is Passing through2 fixed points whose coordinates are: a) Depend on the value of a b) Always 0 c) Always 1 d) Always less than 1
Q 22	CASE STUDY : The focus of a parabolic mirror as shown in Fig is at a distance of 5 cm from its vertex and the mirror is 45 cm deep
	Based on the above information answer the following:
	I)What is the equation of the above parabolic section:
	a) $y^2 = -5x$ b) $y^2 = 45x$ c) $y^2 = 5x$ d) $y^2 = 20x$
	II) What is the length of distance AB?
	a) 5 cm b) 45 cm c) 30 cm d) 20 cm
	III)What is the coordinate of focus point of the parabolic mirror?
	a) (5,0) b) (20,0)

	c) (45,30) d) (45,15)			
	IV) What is the coordinate of point A of the parabolic mirror?			
	a) (5,0) b) (45,5) c) (45,20) d) (45,15)			
	V)What is the equation of axis of the parabolic mirror?			
	a) x=0			
	b) y=0			
	c) x=45			
	d) y=45			
Q 23				
	The standard form of the equation of an ellipse with center (h, k) and major axis parallel to the x-axis is			
	$rac{(x-h)^2}{a^2} + rac{(y-k)^2}{b^2} = 1$			
	where			
	• $a > b$			
	- the length of the major axis is $2a$			
	- the coordinates of the vertices are $(h\pm a,k)$			
	- the length of the minor axis is $2b$			
	- the coordinates of the co-vertices are $(h,k\pm b)$			
	- the coordinates of the foci are $(h\pm c,k)$, where $c^2=a^2-b^2$.			
	The standard form of the equation of an ellipse with center (h,k) and major axis parallel to the y-axis is			
	$rac{(x-h)^2}{b^2}+rac{(y-k)^2}{a^2}=1$			
	where			
	• $a > b$			
	- the length of the major axis is $2a$			
	- the coordinates of the vertices are $(h,k\pm a)$			
	• the length of the minor axis is $2b$			
	- the coordinates of the co-vertices are $(h\pm b,k)$			
	- the coordinates of the foci are $(h,k\pm c)$, where $c^2=a^2-b^2$.			

	(c) A is true but R is false.				
	(d) A is false but R is true.				
Q 26	Assertion (A): The Conic section having the equation: $2x^2 - 2y^2 - 2y$				
	5 = 0 is a circle.				
	Reason (R): The Conic section having general equation: Ax 2 + Cy 2				
	+ Dx + Ey + F = 0 is a circle, If A = C.				
Q 27	Assertion (A): The point (1.5, 2) is inside the circle S:x 2 + y 2 - 5x -				
	4y = 0				
	Reason (R): The point (x_1, y_1) is inside, on or outside the circle				
	$S_1 = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$, According as $S_1 < 0$; or =0; or > 0				
Q 28	Assertion (A): The parabola $x^{2} + 6y = 0$ opens upwards along y				
	axis. Reason (R): When the axis of symmetry is along the X-axis the				
	Reason (R): When the axis of symmetry is along the X-axis the parabola opens upwards.				
Q 29	Assertion (A): The major axis of the ellipse $5x^2 + 9y^2 = 1$,				
	is along x axis.				
	Reason (R): The major axis is along the x-axis if the coefficient of				
	\mathbf{x}^2 has the larger denominator and it is along the y-axis if the				
	coefficient of y^2 has the larger denominator in its standard equation				
	$i.e.\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$				
0.22	Accortion (A) Eccontricity of the hyperbole $x^2 + x^2 = 1$ is always less				
Q 30	Assertion (A): Eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is always less				
	than 1.				
	Reason (R): For the hyperbola, $a^2 = c^2 - b^2$, and Eccentricity = c/a.				
	so the eccentricity is always less than one				
	The major axis is along the x-axis if the coefficient of x^2 has the				
	larger denominator and it is along the y-axis if the coefficient of				

	y ² has the larger denominator.
	VERY SHORT
0.21	
Q 31	Find equation of circle with centre (-a,-a) and radius $\sqrt{2}$ a.
Q 32	Find equation of circle whose end points of diameter are $(a,0)$ and $(0,b)$
Q 33	Find radius and centre of circle: $3x^2 + 3y^2 + 9x - 6y + 1 = 0$
Q 34	Find equation of circle with centre (1,5) and pass through the point (7,-1)
Q 35	Does point (7,-5) lie inside ,outside or on the circle $x^2 + y^2 - 6x + 8y + 9 = 0$
Q 36	For what value of k, does the equation $9x^2 + y^2 = k (x^2 - y^2 - 2x)$ represent the equation of a circle?
Q 37	Find equation of the parabola with vertex at origin and directix $y - 2 = 0$
Q 38	Find equation of the parabola with vertex at origin , axis along x axis and passing through the point $(3,2)$.
Q 39	Find equation of the parabola with focus $(3,-4)$ and directrix $x + 1 = 0$
Q 40	Find focus , vertex, and directrix of the parabola y $^2 = x$
Q 41	Determine the equation of the ellipse whose foci are $(4,0)$ and $(-4,0)$, eccentricity = $\frac{1}{3}$.
Q 42	If the distance between the foci of a hyperbola is 16 and eccentricity is $\sqrt{2}$, then obtain its equation.
Q 43	In an ellipse, the distance between its foci is 10 and its minor axis is 8 then its eccentricity
Q 44	Find the equation of diameter of a circle : $x^2 + y^2 + 2x - 4y = 4$, that is parallel to $3x+5y = 4$.
Q 45	Find equation of a parabola whose vertex is at origin and which is symmetric about the x-axis and passes through the point(-2,-3).
Q 46	If the eccentricity of an ellipse is 4/9 and the distance between its foci is 8 units, then find the length of the latus rectum of the ellipse.
Q 47	Find The focus of hyperbola , $9x^2 - 16y^2 = 144$.

Q 48	Find the eccentricity of hyperbola , $3x^2 - 2y^2 = 1$.
Q IO	The the cecentricity of hyperbolic , 5x 2y = 1.
Q 49	Find The equation of hyperbola whose vertices are $(\pm 3, 0)$ and foci are $(\pm 5, 0)$.
Q 50	Find The latus rectum of hyperbola , $16x^2 - 9y^2 = 144$.
	SHORT QUESTIONS
Q 51	Find length of latus rectum of the parabola $x^2 - 4x - 8y + 12 = 0$ is
Q 52	Find the length of axis, foci, vertices, eccentricity of hyperbola , $2x^2$ - $3y^2 = 6$
Q 53	Find equation of hyperbola whose foci are $(\pm 3\sqrt{5}, 0)$ and length of the latus rectum is 8.
Q 54	For the ellipse $3x^2 + 2y^2 = 6$, find the lengths of major and minor axis, eccentricity, foci, vertices and the latus rectum.
Q 55	If the line $y = mx + 1$ is tangent to the parabola $y^2 = 4x$ then find the value of m.
Q 56	Find the equation of ellipse whose eccentricity is $2/3$, latus rectum is 5 and the centre is $(0, 0)$.
Q 57	Show that the set of all points such that the difference of their distances from (4, 0)and (-4, 0) is always equal to 2 represent a hyperbola.
Q 58	The equation of 2 diameters of a circle are $x+y=6$ and $x+2y = 4$, and radius is 10 unit, find the equation of the circle.
Q 59	Find the equation of the circle which passes through the origin and cuts off intercept 4 and 6 on the axises.
Q 60	If the length of the latus rectum of an ellipse with major axis along x axis and centre at origin is 20 units, distance between foci is equal to length of minor axis, then find equation of the ellipse.
Q 61	Find equation of the ellipse whose foci are (2,3) and (-2,3) and whose semi minor axis is $\sqrt{5}$.
Q 62	If eccentricity of a hyperbola is $\sqrt{3}$, then Find eccentricity of conjugate hyperbola.
Q 63	Find vertex and focus of the parabola $2y^2 + 3y - 4x - 3 = 0$.

Q 64	Find radius of a circle passing through foci of $9x^2 + 16y^2 = 144$, and having centre (0,3).
	LONG QUESTIONS
Q 65	Find equation of circle pass through the points $(-1,2)$ & $(3,-2)$ and has its centre on the line x $-2y = 0$
Q 66	Prove that the points $(1,0)$, $(2,-7)$, $(8,1)$ and $(9,-6)$ are concyclic.
Q 67	Find equation of circle drawn on the diagonal of a rectangle as diameter whose sides are $x=4$, $x=-2$, $y=-3$, $y=2$.
Q 68	Find equation of circle which touch the y axis at the point $(0,4)$ and make intercept of 6 on the x axis.
Q 69	Find equation of circle which pass through the points $(0,2)$, $(3,0)$ and $(3,2)$
Q 70	Find equation of circle which pass through the centre of the circle x^2 + y ² + 8x + 10y - 7 = 0 to concentric with the circle $2x^2$ + 2y ² - 8x -12y - 9 = 0
Q 71	An equilateral triangle is inscribed in the parabola $y^2 = 4ax$, whose one vertex is at the vertex of the parabola. Find length of the side of the triangle.
Q 72	A rod of length 12 cm move with its ends always touching the coordinate axes. determine the locus of the point P on the rod, which is 3 cm from the end in contact with x axis.
Q 73	If the lines $2x - 3y = 5$ and $3x-4y = 7$ are the diameters of a circle of area 154 square units, then obtain the equation of the circle.
Q 74	Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : INTRODUCATION TO 3D GEOMETRY

IMPORTANT POINTS

Coordinate axes: In three dimensions the coordinate axes of a rectangular Cartesian coordinate system are three mutually perpendicular lines. The axes are called the x-axis, y-axis and z axis.

• Planes: The three planes determined by the pair of axis are the coordinate planes, called xy, yz and zx planes.

xy – plane i. e, z=0

yz – plane i. e, x=0

zx – plane i. e, y=0

- Octants: The three coordinate planes divide the space into eight parts known as octants.
- Points in 3D: Any point an XY plane (x,y,o) Any point an YZ plane (o,y,z) Any point an ZX plane (x,o,z)
- Distance formula between two points: $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ $PQ = square root of \{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2\}$

Centroid:

 $\left(\frac{x1+x2+x3}{3}, \frac{y1+y2+y3}{3}, \frac{z1+z2+z3}{3}\right)$

<u>MCQ</u>

Q-1.The ratio in which the line joining (2,4,5) and (3,5-9) is divide by the yz Plane is

(a) 2:3 (b) 3:2 (c) 2:3 (d) 4:-3

Q-2.The ratio in which the line joining the points (a,b,c) and (-a,-c,-b) is divided by the xy –plane is

(a) a:b (b) b:c (c) c:a (d) c:b

Q-3.If P(0,1,2),Q(4,-2,1) and O(0,0,0) are three points, then angle POQ =

(a) $\coprod/6$ (b) $\coprod/4$ (c) $\amalg/3$ (d) $\amalg/2$

Q-4. If the extremities of the diagonal of a square are (1,-2,3) and (2,-3,5) then the length of the side is

(a) $\sqrt{6}$ (b) $\sqrt{3}$ (c) $\sqrt{5}$ (d) $\sqrt{7}$ Q-5.The Points (5,-4,2),(4,-3,1),(7,6,4) and (8,-7,5) are the vertices of

(a) A rectangle(b) a square(c) a parallelogram(d) none of these

Q-6. In a three dimensional space the equation $x^2-5x+6=0$ represents

(a) Points	(b) Planes
(c) curves	(d) Pair of Straight lines

Q-7.Let (3,4,-1) and (-1,2,3) be the end points of a diameter of a sphere then, the radius of the sphere is equal to

(a) 2 (b) 3 (c) 6 (d) 7 Q-8.XOZ-Plane divides the join of (2,3,1) and (6,7,1) in the ratio

(a) 3:7 (b) 2:7 (c) -3:7 (d) -2:7

Q-9. What is the locus of a point for which y=0,z=0?

(a) x axis (b) y axis (c) z axis (d) yz-plane

Q-10.The Coordinates of the foot of the perpendicular drawn from the point P(3,4,5) on the yz-plane are

(a) (3,4,0) (b) (0,4,5) (c) (3,0,5) (d) (3,0,0)

Q-11. The Coordinates of the foot of the perpendicular from a point P(6,7,8) on x-axis are

(a) (6,0,0) (b) (0,7,0) (c) (0,0,8) (d) (0,7,8)

Q-12. The perpendicular distance of the point P(6,7,8) from xy plane is

(a) 8 (b) 7 (c) 6 (d) 10

Q-13. The length of the perpendicular drawn from the P(3,4,5) from on y axis is

(a) 10 (b) $\sqrt{34}$ (c) $\sqrt{113}$ (d) $5\sqrt{2}$

Q-14. The perpendicular distance of the point P(3,3,4) from the x-axis is

(a) $3\sqrt{2}$ (b) 5 (c) 3 (d) 4

Q-15 The length of the perpendicular drawn from the point P(a,b,c) from z axis is

(a) $\sqrt{a^2 + b^2}$ (b) $\sqrt{b^2 + c^2}$ (c) $\sqrt{a^2 + c^2}$ (d) $\sqrt{a^2 + b^2} + c^2$ Q-16. A plane is parallel to the yz –plane so it is perpendicular to the

(a) x-axis (b) y-axis (c) z-axis (d) none of these Q-17.The Point (-2,-3,-4) lies in the

(a) first octant (b) seventh octant

(c) Second octant (d) eighth octant

Q-18.If the distance between the points (a,0,1) and (0,1,2) Is $\sqrt{27}$, then the value of a is

(a) 5 (b) \pm 5 (c) -5 (d) none of these Q-19. x-axis is the intersection of the Planes

(a) xy and xz (b)yz and zx

(c) xy and yz	(d) none of these
---------------	-------------------

Q-20. Equation of y-axis is considered as

(a) x=0,y=0	(b) y=0,z=0
(c) z=0,x=0	(d) none of these

Case based/Source Based Questions

Q-21. A three dimensional cartesian coordinate system is formed by a point called the origin (denoted by 0) and a basis& consisting of three mutually perpendicular vectors. These vectors define the three coordinate axes x,y and z axes. They are also known as abscissa, ordinate and applicate axis, respectively. The coordinate of any point in the space is determined by known as coordinate planes divides the space into OCTANTS.

- 1. In which octant does the point (3,-2,-5) lies?(a) II(b) VI(c)VII(d) IV
- 2. If a point lies on Z axis then the coordinates of the point are (a) (x,y,z) (b)(x,y,0) (c)(0,y,0) (d)(0,0,z)
- 3.The locus of a point for which x=0 is(a) xy plane(b) yz plane(c) zx plane(d) none of these
- 4. A Plane is parallel to yz plane so it perpendicular to(a) x-axis(b) y-axis(c) z-axis(d) none of these

Q-22. The coordinates of a point P in the space are (a,b,c) based on the above information, answer the following questions.

- 1. Distance of point P from xy plane is
 - (a) |a| (b)|b| (c)|c| (d) $\sqrt{a^2 + b^2}$

2. The coordinates of foot of perpendicular drawn from point P to yz-plane are

(a) (0,a,b) (b) (0,a,c) (c) (0,b,a) (d) (0,a,b)

3. The Coordinates of foot of perpendicular drawn from point P to z axis are (a) $(0,0,\sqrt{b^2 + c^2})$ (b) (0,0,c)(c) $(0,0,\sqrt{a^2 + b^2})$ (d) $(0,0,\sqrt{c^2 + a^2})$

4. Distance between point P and its image in zx-Plane is

(a) 2|b| (b) 2|a| (c) 2|c| (d) 2|a+c|

Very short Answer Questions.

Q-23. Write the distance of the point P(2,3,5) from the xy-Plane

Q-24. Write the distance of the point P(3,4,5) from z-axis

Q-25. If the distance between the points P(a,2,1) and Q(1,-1-L) is 5 units, find the value of a.

Q-26.The Coordinates of the mid points of sides AB,BC and CA of ABC are D(1,2,-3), E(3,0,1) and F(-1,1,-4) respectively. Write the coordinates of its centroid.

Q-27.Write the cordinates of third vertex of a triangle having centroid at the origin and two vertices are (3,-5,7) and (3,0,1)

Q-28. What is the locus of a point (x,y,z) for y=0,z=0?

Q-29. Find the point on y-axis which is at a distance of $\sqrt{10}$ units from the point(1,2,3).

Q-30.If the origin is the centroid of a triangle ABC having vertices A(a,1,3),B(-2,b,-5) and C(4,7,c). Find the values of a,b,c.

Q-31. Find the distance of the point (a,b,c) from zx-plane.

Q-32. If Land M are the feet of the perpendiculars from P(3,4,5) on xy and yz-planes then find LM.

Q-33. Find the value of β , so that distance between the points (7,1,-3)and (4,5, β) is 13.

Q-34. Are the points A(3,6,9),B(10,20,30) and C(25,-41,5) vertices of a right angled triangle? Justify your answer.

Q-35.Find the mid point of (1,4,6) and (5,8,10).

Q-36. Find the distance between the points A(3,4,5) and origin(0,0,0)

Q-37. A Point is on x-axis what are its y coordinate and z-coordinate?

Q-38. A Point is in the xz plane what can you say about its y-coordinate?

Q-39. Name the octant in which Point (7,-1,5) lie.

Q-40.Find the coordinates of a point on the y-axis which is at a distance of $5\sqrt{2}$ from the point P(3,-2,5)

Q-41.Write the Plane containing the x-axis and y-axis.

Q-42. Find the distance of the point P(3,4,5) from yz Plane.

Short Answer type Questions

Q-43. Show that the points (a,b,c),(b,c,a) and (c,a,b) are vertices of an equilateral triangle.

Q-44. Using distance formula prove that point A(4,-3,-1), B(5,-7,6) And C(3,1,-8) are collinear.

Q-45. Find the point on y-axis which is equidistant from the points (3,1,2) and (5,5,2)

Q-46. Find the point on z-axis which are at a distance $\sqrt{21}$ from the point(1,2,3)

Q-47.Show that the points (0,7,10),(-1,6,6) and (-4,9,6) are the vertices of an isosceles right angled triangle.

Q-48.Three vertices of a parallelogram ABCD are A(3,-1,2),B(1,2,-4) and C(-1,1,2).Find the coordinates of the fourth vertex.

Q-49. Find the equation of the set of the points p such that its distance from the points A(3,4,-5) and B(-2,1,4) are equal.

Q-50.Using section formula, prove that the three points (-4,6,10),(2,4,6) and (14,0,-2) are collinear.

Q-51. Find the coordinates of the point which divides the line segment joining the point (1,-2,3) and (3,4,-5) in the ratio 2:3 internally.

Q-52. Given that P(3,2,-4),Q(5,4,-6) and R(9,8,-10) are collinear. Find the ratio in which Q divides PR.

Q-53. Find the ratio in which yz-Plane divides the line segment formed by joining the points (-2,4,7) and (3,-5,8)

Q-54. Find the coordinates of the points which trisect the line segment joining the point P(4,2,-6) and Q(10,-16,6).

Q-55.Verify that (-1,2,1),(1,-2,5),(4,-7,8) and (2,-3,4) are the vertices of a parallelogram.

Q-56. Given the points A(1,2,-3),B(3,-2,1),find the locus of P if $AP^2-BP^2=18$.

Q-57. Find the locus of a point which is equidistant from the points(3,2,1) and (1,2,3). What surface does it represent?

Q-58. Find the point on the Z-axis which is equidistant from the points(1,5,7) and (5,1,-4).

Q-59. Show that the points (0,7,-10),(1,6,-6)and (4,9,-6) are the vertices of an Isosceles Triangle.

Q-60. Find the image of

(1)(-2,3,4) in the yz-Plane (2)(-5,4,-3) in the xz-Plane

(3) (5,2,-7) in the xy-Plane

Q-61.Name the octants in which following Points lie:

(1) (5,2,3) (2) (-5,4,3) (3) (4,-3,5) (4) (7,4,-3)

Q-62.Show that the Points A(3,3,3), B(0,6,3), C(1,7,7) and D(4,4,7) are vertices of a square.

Long Answer Questions

Q-63.Find the Ratio in which the joining the point A(2,1,5) and B(3,4,3) is divided by the Plane 2x+2y-2z=1 also find the coordinates of the point of division.

Q-64.The mid Points of the sides of a triangle are(1,5,-1),(0,4,-2) and (2,3,4).Find its vertices.

Q-65.Find the Length of the medians of the triangle with vertices A(0,0,6), B(0,4,0) and C(6,0,0).

Q-66.Write the coordinates of the Point P which is five -sixth of the way from A(-2,0,6)to B(10,-6,-12).

Q-67.Find the Equation of the set of point's p, the sum of whose distances from A(4,0,0) and B(-4,0,0) is equal to 10.

Q-68. Show that the three Points A(2,3,4),B(-1,2,-3)and C(-4,1,-10) are collinear and find the ratio in which C divides AB.

Section Formula not in syllabus

Answer kev

<u>MCQ</u>

1-c 2-d 3-d 4-b 5-a 6-b 7-c 8c 9-a 10-b 11-a 12-a 13-b 14-b15-a 16a 17-b 18-b 19-a 20-c

<u>Case study</u>

Q-21. 1-c 2-d 3-b 4-a Q-22. 1-c 2-a 3-b 4-a

Very Short Answer Questions

23. 5	24. 5	25.5,-3	26.(1,1,-2)
27.(-6,5,-8)	28.x axis	29.(0,2,0)	30.a=-
2,b=-8,c=2	31.b	32. √34	3315 or 9
34.	35.(3,6,8)	36. √50	37.(0,0)
38.0	39.OXY'Z or IV		40.(0,-6,0)
and (0,2,0)	41.xy-plane		42. 3 units

Short Answer Questions

44.Proof 45.(0,5,0) 46.(0,0,7)(0,0,-43. Proof 48. (1,2,-8) 49.10x+6y-18z-29=0 1) 47.Proof 51. (9/5, 2/5, -1/5) 50.Proof 52.1:2 54. (6,-4,-2) (8,-10,2) 53.2:3 55.Proof 58.(0,0,3/2) 56.2x-4y+4z-9=0 57.x-z=0 59. Proof 60.(i) (2,3,4) (ii) (-5,-4,-3) (iii) (5,2,7) 61. (1) I (2)II (3)III (4) V 62.Proof

Long Anser Questions

63. 5:7 ; (29/12,9/4,25/6) 64.A(1,2,3) ; B(3,4,5) and C(-1,6,-7) 65. 7, $\sqrt{34}$,7 66.(8,-5,-9) 67.9x²+25y²+25z²-225=0 68. C divides AB in the ratio 2:1 Externally

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

MATHS CONTENT

CLASS: XI

CHAPTER : LIMITS AND DERIVATIVES

KEY POINTS :

Limit

Let y = f(x) be a function of x. If at x = a, f(x) takes indeterminate form, then we consider the values of the function which is very near to a. If these value tend to a definite unique number as x tends to a, then the unique number so obtained is called the limit of f(x) at x = a and we write it as $\lim_{x\to a} f(x)$. **Left Hand and Right-Hand Limits**

If values of the function at the point which are very near to a on the left tends to a definite unique number as x tends to a, then the unique number so obtained is called the left-hand limit of f(x) at x = a, we write it as

$$f(a-0) = \lim_{x \to a^{\text{F}}} f(x) = \lim_{h \to 0} f(a-h)$$

Similarly, right hand limit is

 $f(a + 0) = \lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a + h)$

Existence of Limit

$$\lim_{\substack{x \to a \\ (i) \\ x \to a^-}} f(x) \text{ exists, if}$$

$$\lim_{\substack{x \to a^- \\ (i) \\ x \to a^-}} f(x) \text{ and } \lim_{\substack{x \to a^+ \\ x \to a^+}} f(x) \text{ both exists}$$

$$\lim_{\substack{x \to a^- \\ x \to a^-}} f(x) = \lim_{\substack{x \to a^+ \\ x \to a^+}} f(x)$$

Some Properties of Limits

Let f and g be two functions such that both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exists, then

(i)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

(ii) $\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x)$

(iii)
$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x)$$

(iv)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{x \to a}{\lim_{x \to a} g(x)}$$
, where $g(x) \neq 0$

Some Standard Limits

(i)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

(ii)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

(iii)
$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

(iv)
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$

(v)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

(vi)
$$\lim_{x \to 0} \frac{\log (1 + x)}{x} = 1$$

Derivatives

Suppose f is a real-valued function, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 is called the derivative of f at x
iff $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ exists finitely.

Fundamental <u>Derivative Rules</u> of Function

Let f and g be two functions such that their derivatives are defined in a common domain, then

(i)
$$\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)]$$

(ii) $\frac{d}{dx} [(f(x) - g(x)]] = \frac{d}{dx} [f(x)] - \frac{d}{dx} [g(x)]$
(iii) $\frac{d}{dx} [f(x) \cdot g(x)] = \left[\frac{d}{dx} f(x)\right] \cdot g(x) + f(x) \cdot \left[\frac{d}{dx} g(x)\right]$
(iv) $\frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{\left[\frac{d}{dx} f(x)\right] \cdot g(x) - f(x) \cdot \left[\frac{d}{dx} g(x)\right]}{[g(x)]^2}$

Some Standard Derivatives

(i)
$$\frac{d}{dx} (x^n) = nx^{n-1}$$

(ii) $\frac{d}{dx} (\sin x) = \cos x$
(iii) $\frac{d}{dx} (\cos x) = -\sin x$
(iv) $\frac{d}{dx} (\cos x) = -\sin x$
(iv) $\frac{d}{dx} (\tan x) = \sec^2 x$
(v) $\frac{d}{dx} (\cot x) = -\csc^2 x$
(vi) $\frac{d}{dx} (\cot x) = -\csc^2 x \tan x$
(vi) $\frac{d}{dx} (\sec x) = \sec x \tan x$
(vii) $\frac{d}{dx} (\csc x) = -\csc x \cot x$
(viii) $\frac{d}{dx} (\cos x) = -\csc x \cot x$
(viii) $\frac{d}{dx} (a^x) = a^x \log_e a$
(ix) $\frac{d}{dx} (e^x) = e^x$
(x) $\frac{d}{dx} (\log_e x) = \frac{1}{x}$

	MCQs
Q1	$\lim_{x \to \pi} \frac{\sin x}{x - \pi}$ is equal to:
	(a) 1 $(b) 2$ $(c) -1$ $(d) -2$
Q2	$\lim_{\substack{x \to 0 \\ (a) \ 2}} \frac{1}{1 - \cos x} = (b)^{\frac{2}{2}} (c)^{-\frac{1}{2}} (d)^{-\frac{1}{2}} (d)^{-\frac{1}{$
	(a) 2 (b) ${}^{2}_{c}$ (c) $-{}^{3}$ (d) 1
	$\overline{3}^{\prime}$ $\overline{2}$
Q3	$\lim_{x \to 0} \frac{(1+x)^{-1}}{1-1}$ is equal to:
	$x \to 0$ x (a) n (b) 1 (c) -n (d) 0
Q4	$\lim_{x \to 1} \frac{x - 1}{1}$ is equal to:
	$x \to 1 \overline{x^n - 1}$ $m m m^2$
	(a) 1 (b) $\frac{1}{n}$ (c) $-\frac{1}{n}$ (d) $\frac{1}{n^2}$
Q5	$\lim_{\theta \to 0} \frac{1 - \cos \theta}{1 - \cos \theta}$ is equal to:
	$\frac{(a) 1}{(b) \frac{m}{n}(c) - \frac{m}{n}(d) \frac{m^2}{n^2}}{\lim_{\theta \to 0} \frac{1 + \cos 1\theta}{1 - \cos 6\theta}}$ (a) $\frac{4}{9}(b) \frac{1}{2}(c) - \frac{1}{2}(d) - 1$

Q6	limis equal to:
	$\begin{array}{c} x \to 0 \\ \text{(a)} & -\frac{1}{2} \begin{pmatrix} x \\ b \end{pmatrix} 1 \\ \text{(c)} & \frac{1}{2} \begin{pmatrix} d \end{pmatrix} 1 \end{array}$
Q7	$\lim_{x \to 0} \frac{1}{\sqrt{x+1} - \sqrt{1-x}}$ is equal to:
	(a) 2 (b) 0 (c) 1 (d) -1
Q8	$\lim_{x \to \frac{\pi}{4} tanx = 1}$ is equal to:
	(a) 3 (b) 1 (c) 0 (d) 2
Q9	$\lim_{x \to 1} \frac{(\sqrt{2} - 1)(2x - 3)}{2x^2 + x - 3}$ is equal to:
	(a) $(b) - (c) = 1$ (d) None of these
Q10	If $f(x) = \begin{cases} \frac{\sin [x]}{[x]} &, [x] \in 0 \\ 0 &, [x] = 0 \end{cases}$, where [] denotes the greatest integer
	function , then $\lim_{x\to 0} f(x)$ is equal to: (a) 1 (b) 0 (c) -1 (d) Doesn't exist
Q11	Let $f(x) = x - [x]$, $x \in \mathbb{R}$ then $f'(\frac{1}{2})$ is equal to:
	Let $f(x) = x - [x]$, $x \in \mathbb{R}$ then $f'(\frac{1}{2})$ is equal to: (a) $\frac{3}{\frac{1}{2}}(b) 1$ (c) 0 (d) -1
Q12	If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$ then $\frac{dy}{d_1 x}$ at x=1 is equal to:
	(a) 1 (b) $(c) (d) 0$
Q13	If $f(x) = \frac{1}{2}$ then f'(1) is equal to:
	$If f(x) =t then f'(1) is equal to:(a) \frac{5 (b)^2 \sqrt{x}}{4 (c) - (c)} c) 1 (d) 0\frac{1 + \frac{1}{2}}{4 (c) - (c)} dy$
Q14	$\frac{4}{1+\frac{1}{2}}$, $\frac{1}{2}$, $\frac{1}{2}$
	If $y = -\frac{44}{1-\frac{1}{2}}$, then $\frac{dy}{dx}$ is equal to:
	If $y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$, then $\frac{dy}{dx}$ is equal to: (a) $\frac{-4x}{(x^2 - 1)^2}$ (b) $\frac{-4x}{x^2 - 1}$ (c) $\frac{1 - x^2}{4x}$ (d) $\frac{4x}{x^2 - 1}$
Q15	
	$\frac{1}{\sin x - \cos x}$ $\frac{1}{dx}$
	(a) -2 (b) 0 (c) $\lim_{x\to\pi} f(x)(d)$ Does not exist
Q16	If $f(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}$, then f'(1) is equal to:
	If $f(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}$, then f'(1) is equal to: (a) $\frac{1}{100}$ (b) 100 (c) 0 (d) Does not exist
Q17	If $f(x) = \frac{x - a}{1}$ for some constant a , then f'(a) is equal to:
	If $f(x) = \frac{x - a}{x - a}$ for some constant a , then f'(a) is equal to: (a) 1 (b) 0 (c) $\frac{1}{2}$ (d) Does not exist

Q18	If $f(x) = x^{100} + x^{99} + \dots + x + 1$, then f'(1) is equal to : (a) 5050 (b) 5049 (c) 5051 (d) 50051
Q19	If $y = \underbrace{\lim_{x \to y} x + 9}_{x}$, then \underbrace{ay}_{x} at x=0 is equal to:
	(a) $\cos x$ (b) $\sin 9$ (c) 0 (d) 1
Q20	If $f(x) = 1 - x + x^2 - x^3 + \dots + x^{99} + x^{100}$, then f'(1) is equal to : (a) 150 (b) -50 (c) -150 (d) 50
	CASE BASED/SOURCE BASED / PASSAGE BASED QUESTIONS
Q21	Indeterminate forms of limits. On direct evaluation, if a limit takes the form $\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$,, we use standard
	results for evaluating the limits. The below figure shows a few indeterminate forms. $0 \qquad \infty$
	$\begin{array}{c} \underline{}, \infty^0, \underline{}, 0^0, 1^0, 0 imes \infty, \infty - \infty \\ 0 & \infty \end{array}$
	Based on the above data, answer any four of the following questions
	(i) $\lim_{x \to 1} \frac{x^{6-64}}{x-2} =$
	(a) 0 (b) 80 (c) 192 (d) ∞
	(ii) $\lim_{x \to 1} \frac{x^{10-1}}{x^{10-1}} = (b) 0 (b) \frac{1}{2} = (c) \infty (d) 15$
	(iii) $\lim_{x \to 0} \frac{\sqrt{1+3x} - \sqrt{1-3x}}{x} =$ (c) 0 (b)1 ^x (c) 3 (d) 6
	(iv) $\lim_{x \to 0} \frac{8^{x} - 2^{x}}{x} =$ (d) 0 (b) log2 (c) log4 (d) log8
	(v) $\lim_{x \to 0} \frac{\cos 5x - \cos x}{\frac{x^2}{(b) - 12(c)}} =$ (e) 0 (b)-12(c) 1 (d) 12
022	
Q22	The derivative of y with respect to x is the change in y with respect to a change in x.
	The derivative of $f(x)$ at x_0 is given by
	$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$
	Based on the above information , answer any four of the following questions (i) Derivative of sinx with respect to x is :
	(a) sinx (b) cosx (c) -sinx (d) -cosx
	(ii) Derivative of cosx with respect to x is :

(a) sinx (b) cosx (c) -sinx (d) -cosx
(iii) Derivative of tanx with respect to x is :
(a)
$$sec^2x$$
 (b) $-sec^2x$ (c) $cosec^2x$ (d) $-cosec^2x$
(iv) If $f(x) = x^{100} - x^{80}$, $f'(x)$ is.......
(a) 0 (b) 50 (c) 51 (d) 101
(v) $y = \frac{x}{tanx}$, then $\frac{dy}{dx} =$
(a) cos^3x (b) sec^2x (c) $\frac{tanx-secx}{tan^2x}$ (d) $\frac{tanx-xsec^2x}{tan^2x}$
(d) $\frac{tanx-xsec^2x}{tan^2x}$
(e) sec^2x (c) $\frac{tanx-secx}{tan^2x}$ (f) $\frac{tanx-xsec^2x}{tan^2x}$
(i) The value of g(x) is
(i) The value of g(x) is
(i) The value of g(x) is
(ii) The graph of g(x) is
(iii) The graph of g(x) is
(iii) The graph of g(x) is
(iii) If $\lim_{x \to -1} g(x) = a$, then the value of a is
(a) 0 (b) 2 (c) -2 (d) does not exist
(v) The value of $\lim_{x \to 1^-} g(x)$ is
(a) 0 (b) 2 (c) -2 (d) does not exist
(v) The value of $\lim_{x \to 1^-} g(x)$ is
(a) 0 (b) 2 (c) -2 (d) does not exist

Q24 Le	et f(x) be a real functi	on defined as			
		$\log(1 + ax)$ -	– log (1	(-bx)	
			$\frac{x}{x}$,	x < 0
	f(x) =	$\sqrt{1+bx}$	5	,	x = 0
	1	$\frac{\sqrt{1+Dx}}{x}$, x	> 0
Ba	• ased on the above inf			lowing que	stions:
	(i) $\lim_{x\to 0^-} f(x)$ is (a) $a+b$	(b) a-b (c) b-a	(d) -a-b	
	(ii) $\lim_{x \to 0^+} f(x)$ (a) b	i <i>s</i> (b) ^b 2	(c) ^b / <u>3</u>	(d)	
	(iii) $\lim_{x\to 0^-} f(x) = (a) a+2b=0$	$= \lim_{x \to 0^+} f(x)$ (b) 2a-b=0			
	(iv) The value of b (a) 5	, if $\lim_{x \to 0^+} f(x)$ (b) 15	(x) = f(0) (c) 20	0)i <i>s</i> (d) 10	
	(v) The values of (a) -5,5	a and b if lim (b) -5,10	f(x) = f(x) (c) 5,10	f(0) = f(0) = (d) = 10	$\lim_{x \to 0^+} f(x)$ are
Q25 If	$\lim_{x\to c} f(x)g(x)$ is	s of the form1∝	, then		
	lin x-	$\inf_{x \to c} f(x)g(x) =$	$\lim_{e^{x\to c}}g(x)$	$f(x) = \int f(x) dx$	1]
Fo	or example:	-	-	L	
		$\lim_{x\to 0} ($	$(1 + ax)^{-1}$	T	
=	$\lim_{x \to 0^{-1}} (1 + ax - ax)$	- 1)			
=1	$\lim_{e} x \to 0^{-1} (1 + ax - ax) = \lim_{x \to 0^{-1}} x = 1$	$\lim_{x\to 0} a = e$	а		
	ased on the above inf	$\frac{e}{2}$ formation , answ	ver the fo	llowing que	estions:
	(i) The value of lin	$n_{x\to\infty}\left(\frac{1}{x+2}\right)$ i.	S		
	(a) <i>e</i>	(b) e^{-1}	(c) <i>e</i>	-5	(d) <i>e</i> ⁵
	(ii) The value of lir	$n_{x\to 0} \{ tan \left(\frac{n}{4} \right) - \frac{n}{4} \right)$	$(x)^{\overline{x}}$ is		
	(ii) The value of lin (a) e^2 (iii) The value of lin	(b) e^3 $\lim_{x \to \infty} \pi(\sin x)^{\tan^2}$	c) e c) e	-2	(d) 1
	(a) <i>e</i> ²	$x \rightarrow 2 \frac{1}{(b) e^2}$	(c) e	2 ¹	(d) $e^{-\frac{1}{2}}$

	(iv) The value of $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x *}{3}\right)$ is
	(a) $(abc)^{\frac{1}{3}}$ (b) $\frac{1}{3}(abc)_{1+tanx}(c) \log(abc)^{\frac{1}{3}}$ (d) 1
	(v) The value of $\lim_{x\to 0} \frac{1+tanx}{(1+sinx)}$ is (a) e (b) (c) 1 (d) 0
	(a) e (b) (c) 1 (d) 0 e
	ASSERTION REASONING QUESTIONS
Q26	Statement: $f(x) = sin^2x - \frac{1}{2}cos^2x + cot\alpha$, then $f'(x) = 0$
	 Reason: Derivative of a constant function is always zero. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is NOT the correct explanation of A. (c) A is true but R is false (d) A is false but R is true (e) Both A and R are false
Q27	Statement: The derivative of $y = 2x - \frac{3}{4}$ is 2.
	 Reason: The derivative of y=cx is c. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is NOT the correct explanation of A. (c) A is true but R is false (d) A is false but R is true (e) Both A and R are false
Q28	Statement: The derivative of $(x) = x^3 is x^2$.
	Reason: The derivative of $(x) = x^n$ is nx^{n-1} .
	 (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is NOT the correct explanation of A. (c) A is true but R is false (d) A is false but R is true (e) Both A and R are false
Q29	Statement: $\lim_{x\to 0} \frac{\sin ax}{b}$ is equal to $\frac{a}{b}$
	Reason: $\lim_{x \to 0} \frac{\sin x}{x} = 1$
	 (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is NOT the correct explanation of A. (c) A is true but R is false (d) A is false but R is true (e) Both A and R are false
Q30	Statement: $\lim_{x\to 0} \frac{\cos 2x-1}{\cos 2x-1}$ is equal to 4
	Reason: $\lim_{x \to 0} \frac{tanx cosx - 1}{z = 1}$
	 (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is NOT the correct explanation of A. (c) A is true but R is false (d) A is false but R is true (e) Both A and R are false

	VERY SHORT ANSWER QUESTIONS
Q31	Find lim
032	$\frac{x \rightarrow a}{x + a} e^{-1}$
Q32	Find the value of $\lim_{x \to 0} \frac{x^{-1}}{x}$
Q33	Evaluate lim
	$x \to 0$ x
Q34	Evaluate $\lim_{x \to 3} \frac{\sqrt{2x+3}}{x}$
	x+3
Q35	Evaluate $\lim_{x \to 1} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$
	1+ <i>x</i>
Q36	Evaluate $\lim_{n \to \infty} \frac{1}{n^2}$
027	n^2
Q37	Find n, if $\lim_{x \to 2} \frac{x^{-2}}{n-2} = 80$, $n \in N$
Q38	$\frac{x \rightarrow 2}{e - x - 1} \frac{x - 2}{x - 2}$ Find lim
~~~	$\frac{x \to 0}{x}$
Q39	
	Evaluate $\lim_{x\to 5} \frac{1}{x-5}$
Q40	Evaluate lim
041	$x \to 0 x^2$
Q41	Find the derivative of the function $y = 1 + x + x^2 + \dots + x^{50}$ at x=1
Q42	Find the derivative of $2x^4 + x$
Q43	Find f'(x), if $f(x) = (x - 2)^2(2x - 3)$
Q44	Find the derivative of 5secx+4cosx
Q45	Find the derivative of cosecx . cotx
Q46	Find the derivative of (secx-1)(secx+1)
Q47	Find the derivative of sin(x+a)
Q48	Find the derivative of
	x ¹¹
Q49	Find the derivative of $(x^2 + 1)cosx$
Q50	Find the derivative of cot^3x
	SHORT ANSWER QUESTIONS
Q51	$x^{13}-1$
	Evaluate $\lim_{x \to 1} \frac{1}{x^{10}-1}$
Q52	Evaluate $\lim_{x\to 0} \frac{\sin ax + bx}{ax + \sin bx}$, $a, b, a + b \in 0$
Q53	<u>z</u> <u>3</u> -1
	Find $\lim_{z \to 1} \frac{1}{1}$
	z6-1

Q54	Evaluate the left hand and right hand limits of the following functions at x=2. Does $\lim_{x\to 2} f(x)$ exists?
	$2x+3$, if $x \le 2$
	$f(x) = \begin{cases} 2x + 3 &, & \text{if } x \le 2 \\ x + 5 &, & \text{if } x > 2 \end{cases}$
Q55	Show that $\lim_{x \to 4}$ oes not exist.
	x-4 d
Q56	Evaluate $\lim_{x \to 1} \frac{d}{2x^2 + x - 3}$
Q57	Evaluate $\lim_{x \to 1} \frac{x^{n-1}}{x^{n-1}}$
Q58	$\frac{x \rightarrow 1 \ \overline{x^{n} - 1}}{\tan 2x - \sin 2x}$ Evaluate $\lim_{x \rightarrow 0} \frac{\tan 2x - \sin 2x}{x^{3}}$
Q59	Evaluate \lim_{π}
	$x \rightarrow \frac{1}{6} \qquad x - \frac{\pi}{6}$
Q60	Evaluate $\lim_{x \to \frac{\pi}{6}} \frac{x - \frac{\pi}{6}}{x}$ Evaluate $\lim_{x \to 0} \frac{\log(6+x) - \log(6-x)}{x}$
Q61	Find the derivative of cosx by first principle.
Q62	Find the derivative of sin2x by first principle.
Q63	Find the derivative of $f(x) = x \cos x$.
Q64	Differentiate $3^x + x^3 + 4x - 5$ with respect to x
Q65	Differentiate $e^x \sin x + x^n$ with respect to x
Q66	Differentiate $\frac{h}{sinx}$ with respect to x.
Q67	Differentiate $\frac{x^4 + x^3 + x^2 + 1}{x}$ with respect to x.
Q68	Differentiate $\left(x + \frac{1}{x}\right)^3$ with respect to x.
Q69	Differentiate (3x+5)(1+tanx) with respect to x.
Q70	Differentiate $\frac{x^2 cos^{\frac{n}{4}}}{sinx}$ with respect to x.
	LONG ANSWER QUESTIONS
Q71	Find $\lim_{x \to 1} f(x)$, where $f(x) = \{ \begin{array}{c} x - 1 \\ -x^2 - 1 \end{array}, \begin{array}{c} x \leq 1 \\ x > 1 \end{array} \right.$
Q72	Find the value of `k' if $\lim_{x\to 1} \frac{x^4-1}{x-1} = \lim_{x\to k} \frac{x^3-k^3}{x^2-k^2}$
Q73	Find the values of `a' and `b' if $\lim_{x\to 2} f(x)$ and $\lim_{x\to 4} f(x)$ exists, where
	$f(x) = \begin{cases} x^2 + ax + b &, & 0 \le x < 2 \\ 3x + 2 &, & 2 \le x \le 4 \\ 2ax + 5b &, & 4 < x \le 8 \end{cases}$

Q74	Find $\lim_{x \to 0} \left(\frac{\sqrt{1+x^2} - \sqrt{1+x}}{\sqrt{1+x^3} - \sqrt{1+x}} \right)$
Q75	Evaluate $\lim_{x\to 0} \frac{\sec 4x - \sec 2x}{\sec 3x - \sec x}$
Q76	Find the derivative of the following function.
	$f(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$
Q77	Differentiate $f(x) = x^5 e^x + x^3 log x - 2^x$ with respect to x.
Q78	If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, prove that $2x \cdot \frac{dy}{dx} + y = 2\sqrt{x}$
Q79	Differentiate $\sqrt{\frac{w}{1+cos2x}}$ with respect to x
Q80	If $y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}$ prove that $(2xy)\frac{dy}{dx} = \frac{x}{a} - \frac{a}{x}$

ANSWER KEY AND SOLUTIONS

<u>MCQs</u>

1(c)	2(a)	3(a)	4(b)	5(a)	6(c)	7(c)	8(d)	9(b)	10(d)
11(b)	12(d)	13(a)	14(a)	15(a)	16(b)	17(d)	18(a)	19(a)	20(d)

CASE BASED QUESTIONS

Q21	(i)(c)	(ii)(b)	(iii)(c)	(iv)(c)	(v)(b)
Q22	(i)(b)	(ii)(c)	(iii)(a)	(iv)(b)	(v)(d)
Q23	(i)(a)	(ii)(a)	(iii)(c)	(iv)(b)	(v)(b)
Q24	(i)(a)	(ii)(b)	(iii)(c)	(iv)(d)	(v)(b)
Q25	(i)(c)	(ii)(a)	(iii)(d)	(iv)(a)	(V)(C)

ASSERTION REASONING QUESTIONS

Q26	(b)	Both A and R are true but R is NOT the correct explanation of A.
Q27	(a)	Both A and R are true and R is the correct explanation of A
Q28	(d)	A is false but R is true
Q29	(a)	Both A and R are true and R is the correct explanation of A
Q30	(b)	Both A and R are true but R is NOT the correct explanation of A

VERY SHORT ANSWER QUESTIONS

Q31	1	Q32	1	Q33	n	Q34	1	Q35	1
	$\overline{\sqrt{a}}$						2		$\overline{\sqrt{2}}$

Q36	$\frac{1}{2}$	Q37	5	Q38	0	Q39	e ⁵	Q40	1		
Q41		12	75		Q42	$8x^3 + 1$					
Q43		$6x^2 - 22$	2x + 20		Q44	5secx tanx-4sinx					
Q45	- <i>co</i> .	secx(cot ²	x + cos	ec²x)	Q46	$\frac{5}{2tanx. sec^2x}$					
Q47	cos(x+a	a)			Q48	3 11					
						$-\frac{1}{x^{12}}$					
Q49	2x	$cos x - x^2$	sinx – s	inx	Q50	$-3cot^2x.\ cosec^2x$					

SHORT ANSWER QUESTIONS

Q51	$ \lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1} \\ = \lim_{x \to 1} \frac{(x^5)^3 - 1^3}{(x^5)^2 - 1^2} \\ = \lim_{x \to 1} \frac{(x^5 - 1)(x^{10} + x^5 + 1)}{(x^5 - 1)(x^5 + 1)} \{ \therefore a^3 - b^3 = (a - b)(a^2 + b^2 + ab) \} $
	$= \lim_{x \to 1} \frac{(x^{10} + x^5 + 1)}{(x^5 + 1)}$ = $\lim_{x \to 1} \frac{(1^{10} + 1^5 + 1)}{(1^5 + 1)}$ = $\frac{3}{2}$
Q52	sinax + bx
QU2	$\lim_{x \to 0} \frac{1}{ax + \sin bx}$ $\lim_{x \to 0} \frac{\sin ax}{ax + \sin bx} \cdot ax + bx$ $\lim_{x \to 0} \frac{\frac{ax}{ax + \sin bx}}{a + \frac{\sin bx}{bx}} \cdot bx$ $\lim_{x \to 0} \frac{\frac{\sin ax}{a + \frac{\sin bx}{bx}}}{a + \frac{\sin bx}{bx}} \cdot bx$ $= \frac{1 \cdot a + b}{a + 1 \cdot b}$ $= \frac{a + b}{a + b}$
052	=1
Q53	$\lim_{z \to 1} \frac{z^{\frac{1}{2}} - 1}{z^{\frac{1}{6}} - 1} = \lim_{z \to 1} \left(\frac{z^{\frac{1}{2}} - 1}{z - 1} \div \frac{z^{\frac{1}{6}} - 1}{z - 1} \right)$

	$ \begin{array}{ccc} z^{\frac{1}{2}} - 1 & z^{\frac{1}{2}} - 1 \\ = \lim_{z \to 1} (\underline{z - 1}) \div \lim_{z \to 1} (\underline{z - 1}) \end{array} $
	$= \frac{1}{3} \cdot 1 \frac{1}{3} \div \frac{1}{6} \cdot 1 \frac{1}{6}$ $= \frac{1}{3} \times 6$ $= 2$
	$= \frac{1}{3} \times 6$ $= 2$
Q54	L.H.L = $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} (2x+3) = 2+5=7$ and R.H.L = $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (x+5) = 2+5=7$ since $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x)$
	$\therefore \lim_{x \to 2} f(x) \text{ exists and is equal to 7}$
Q55	$\lim_{x \to 4} \frac{ x - 4 }{ x - 4 } \lim_{x \to 4} \{\frac{(x - 4)}{ x - 4 }, x \ge 4$ $\lim_{x \to 4} \frac{ x - 4 }{ x - 4 } \lim_{x \to 4} \frac{-(x - 4)}{ x - 4 }, x \le 4$ L.H.L = $\lim_{x \to 4^-} f(x) = \lim_{x \to 4^-} \frac{(x - 4)}{ x - 4 } = 1$ and L.H.L = $\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \frac{+(-(x - 4))}{ x - 4 } = -1$ since $\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x)$
	$\therefore \lim_{x \to 4} f(x) \text{ does not exist}$
Q56	$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2+x-3}$ $= \lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{(2x+3)(x-1)}$ $= \lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)(\sqrt{x}+1)}{(2x+3)(x-1)(\sqrt{x}+1)}$ $= \lim_{x \to 1} \frac{(2x-3)(x-1)(\sqrt{x}+1)}{(2x+3)(x-1)(\sqrt{x}+1)}$ $= \lim_{x \to 1} \frac{(2x-3)}{(2x+3)(\sqrt{x}+1)}$ $= \lim_{x \to 1} \frac{(2x+3)(\sqrt{x}+1)}{(2x+3)(\sqrt{x}+1)}$

$$\begin{array}{l} \mathbb{Q}^{57} & \lim_{x \to 0} \frac{x^m - 1}{x^n - 1} = \lim_{x \to 1} \frac{x^m - 1}{x - 1} \times \frac{x - 1}{x^n - a^n} \\ & = \frac{m \cdot 1}{m \cdot 1^{m-1}} [\cdot \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}] \\ & = \frac{m}{n \cdot 1} \\ & = \frac{m}{n \cdot 1} \\ & = \frac{m}{n \cdot 1} \\ & = \frac{m}{n} \\ \mathbb{Q}^{58} & \lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3} \\ & = \lim_{x \to 0} \frac{\cos 2x}{x^3} \\ & = \lim_{x \to 0} \frac{\cos 2x - \sin 2x \cdot \cos 2x}{x^3 \cos 2x} \\ & = \lim_{x \to 0} \frac{\sin 2x - \sin 2x \cdot \cos 2x}{x^3 \cos 2x} \\ & = \lim_{x \to 0} \frac{\tan 2x - \sin 2x \cdot \cos 2x}{x^3 \cos 2x} \\ & = \lim_{x \to 0} \frac{\tan 2x}{x^3 \cos 2x} \frac{2 \left[\frac{\sqrt{3}}{x} \sin x - \frac{1}{\cos x} \right]}{x^2} \\ & = 2 \cdot 1 \times 2 \cdot (1)^2 = 4 \end{array}$$

$$\begin{cases} f(x) = \frac{a}{dx} (x \cos x) \\ = x \frac{d}{dx} \cos x + \cos x \frac{d}{dx} \\ = x(-\sin x) + \cos x(1) \\ = -x\sin x + \cos x \end{cases}$$

$$\begin{cases} q_{64} \qquad let f(x) = 3^x + x^3 + 4x - 5 \\ f(x) = \frac{d}{dx} (3^x) + \frac{d}{dx} (x^3) + \frac{d}{dx} (4x) - \frac{d}{dx} (5) \\ = 3^x \log_g 3 + 3x^2 + 4 \cdot 1 - 0 \\ = 3^x \log_g 3 + 3x^2 + 4 \cdot 1 \\ e^{x^2} + 4x^2 + + 1 \\ e^{x^2} + 4x^2 + 1 \\ e^{x^2$$

$$\frac{dy}{dx} = \frac{d}{dx} (x + \frac{1}{x})^{3} = 3 (x + \frac{1}{x})^{-1} \frac{d}{dx} (x + \frac{1}{x}) \\
= 3 (x + \frac{1}{x})^{2} (x - \frac{1}{x^{2}}) \\
= 3x^{2} - \frac{1}{x^{2}} + 3 \\
= 3x^{2} - \frac{1}{x^{2}} + 3 \\
\frac{dy}{dx} = \frac{d}{dx} [(3x + 5)(1 + \tan x)] \\
= (3x + 5) \frac{d}{dx} (1 + \tan x) + (1 + \tan x) \frac{d}{dx} (3x + 5) \\
= (3x + 5)(sec^{2}x) + (1 + \tan x)(3) \\
= 3xsec^{2}x + 5sec^{2}x + 3\tan x + 3 \\$$

$$\frac{Q70}{Let} \quad y = \frac{x^{2}cos^{\frac{\pi}{4}}}{sinx} = \frac{x^{2}}{\sqrt{2}} \\
= \frac{1}{\sqrt{2}} \cdot \frac{x^{2}}{sinx} \\
= \frac{1}{\sqrt{2}} \cdot \frac{x^{2}}{sinx} \\
\frac{dy}{dx} = \frac{1}{\sqrt{2}} [\frac{sinx - d}{dx} (x^{2}) - x^{2} \frac{d}{dx} (sinx)}{sin^{2}x}] \\
\frac{dy}{dx} = \frac{1}{\sqrt{2}} \cdot [\frac{sinx(2x) - x^{2}(cosx)}{sin^{2}x}] \\
\frac{dy}{dx} = \frac{1}{\sqrt{2}} \cdot [\frac{2x \cdot sinx - x^{2}(cosx)}{sin^{2}x}] \\
\frac{dy}{dx} = \frac{1}{\sqrt{2}} \cdot [2cosecx - xcotx cosecx]$$

LONG ANSWER QUESTIONS

Q71 L.H.L =
$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} (x^2 - 1)$$

= (1)² - 1 = 1 - 1 = 0
and R.H.L= $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-x^2 - 1)$
= -(1)² - 1 = -1 - 1 = -2
since $\lim_{x\to 1^-} f(x)$ G $\lim_{x\to 1^+} f(x)$
So $\lim_{x\to 1^-} f(x)$ does not exist
Q72 It is given that $\lim_{x\to 1} \frac{x^{*-1}}{x^{-1}} = \lim_{x\to k} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}$

$$\frac{\lim_{x \to 1} \frac{(x^2 - 1)(x^2 + 1)}{(x - 1)}}{(x - 1)} = \lim_{x \to 1} \frac{(x - k)(x^2 + xk + k^2)}{kk^2 + kk^2 + kk^2}}{kk^2 + kk^2 + kk^2}$$

$$\frac{\lim_{x \to 1} (x + 1)(x^2 + 1)}{(x + 1)(x^2 + 1)} = \frac{k^{x^2 + k}k^2 + k(x + k)}{kk^2 + kk^2 + k(x + k)}$$

$$\frac{\lim_{x \to 1} (x + 1)(x^2 + 1)}{(x + 1)(x^2 +$$

$$\frac{1}{x \to 0} \frac{1}{\cos x} = \frac{1}{\cos x} = \lim_{x \to 0} \frac{1}{\cos x} = \lim_{x \to$$

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : STATISTICS

	MCQ
Q1	Standard deviation of first 10 natural numbers is
	(a) 5.5 (b)3.87 (c) 2.97 (d)2.87
Q2	If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then
	$\frac{1}{n}\sum_{i=1}^{n} xi-\bar{x} =$
	 (a) M.D. about mean (b) S.D. (c) 0 (d) None of these
Q3	S.D. of 15 items is 6 and if each item decreased by 1, then S.D. will be
	(a) 5 (b) 7 (c) $\frac{1}{15}$ (d) 6
Q4	The range of the data 35,50,48,62,27,39,43,72,56,68 is
	(a) 25 (b) 45 (c) 35 (d) 15
Q 5	A set of n values $x_1, x_2, x_3,, x_n$ has S.D. = σ . Then the S.D. of the values $x_1+k, x_2+k, x_3+k,, x_n+k$ will be
	(a) σ (b) $\sigma + k$ (c) σ -k (d) $k\sigma$
Q 6	If $y_i = ax_i + b(aG \ 0)$ for each $i = 1, 2, 3,, n$, then
	(a) $\overline{y} = \overline{x}$ (b) $\sigma_x = \sigma_y$ (c) $\sigma_x = a \sigma_y$

	(d) $\sigma_x = a \sigma_y$
Q 7	If the variance of the numbers 2,4,5,6,8,17 is 23.33, then the
	variance of 4,8,10,12,16,34 will be
	(a) 23.33
	(b) 46.66
	(c) 93.32 (d) none of these
Q 8	When tested, the lives (in hours) of 5 bulbs, were noted as follows:
	1357,1090,1666,1494,1623
	The mean deviation (in hours) from the mean is
	(a) 179
	(b) 178
	(c) 220 (d) 356
Q 9	Which of the following is one of the measures of dispersion?
	(a) Mean
	(b)Range
	(c) Median (d) Mode
Q10	The mean deviation about the mean for the data:
-	6,7,10,12,13,4,8,12 is
	(a) 1.75
	(b)2.5
	(c) 2.05 (d)2.75
Q11	Following are the marks obtained by 9 students in a Mathematics
	test:
	50,69,20,33,53,39,40,65,59
	Mean deviation from the median is
	(a) 9
	(b)10.5
	(c) 12.67 (d)14.76
Q 12	The following information relates to a sample of size 60;
	$\sum x^2 = 18000, \sum x = 960$
	The variance of the data is
	(a) 6.63
	(b)16
	(c) 22
	(d)44
Q13	The mean deviation about the mean for the following data:

		10	20	ГО	70	00	
	Xi	10	30	50	70	90	
	\mathbf{f}_{i}	4	24	28	16	8	
	(a) 16 (b)17 (c) 18 (d)19				I		
Q14			if standard	deviation of	the number	s 2,3,2x	
	and 11 is 3. (a) 2 (b)3 (c) 4 (d)5	.5 is					
Q15	The mean c	leviation fro	om the medi	an for the fo	ollowing serie	es is:	
	1,2,3,4,	4,5,6,7					
	(a) 3.4 (b)4.3 (c) 4.4 (d)3.3						
Q16		e of the dat	ta is 121, th	en the stand	lard deviatio	n of the	
	data is (a) 11 (b)12 (c) 13 (d)1331						
Q 17				n of first n r	natural numb	pers when	
	n is an even (a) $\frac{n^2}{4}$ (b) $\frac{n}{4}$ (c) $\frac{n^2}{2}$ (d) $\frac{n^2-1}{4}$						
Q 18				of 100 items of the items	are 50 and	4	
	(a) 251600 (b) 215600 (c) 216500						

	(d) 215060
Q 19	The standard deviation of the data 6,5,9,13,12,8,10 is
	(a) √ <u>52</u> 7
	(b) $\frac{52^7}{52^7}$
	(c) 6
	(d) 5
Q 20	The standard deviation of some temperature data in degree Celsius is 5. If the data were converted into Fahrenheit , the variance would be
	(a) 81 (b)57
	(c) 36 (d)25
	CASE BASED/SOURCE BASED / PASSAGE BASED
Q 21	The scores of 10 students in a test with maximum marks 50 were as follows:
	28,36,34,28,48,22,35,27,19,41
	(1) Find the variance of marks
	(2)If 2 grace marks are awarded to each student, find the new variance
Q 22	
	The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
	Number of observations =25, mean =18.2 seconds, S.D. = 3.25 seconds.
	Further, another set of 15 observations x_1 , x_2 , x_3 ,, x_{15} also in seconds is now available and we have
	$\sum_{i=1}^{15} x_i = 279$ and $\sum_{i=1}^{15} x_i^2 = 5524$
	(1) Find the mean of all 40 observations.
	(2) Find the standard deviation of all 40 observations.
Q 23	
	Let x_1 , x_2 , x_3 ,, x_n be n observations. If each observation is increased, decreased, multiplied or divided by a non-zero constant a, then the mean is also increased, decreased ,multiplied or divided by the same non-zero constant a. In case of variance, if each

	observation is increasedor decreased by the same constant a, then the variance remains unchanged. But on multiplying or dividing each observation by same non- zero constant a, the variance σ^2 becomes										
	$a^2\sigma^2$ or respectively. So, we can say that variance is independent										
	$\overline{a^2}$										
	of change of origin but not of the scale.										
	Based on the above information answer the following questions:										
	(1) The mean of 10 observations is 18. If each observation is increased by 2, then find the new mean										
	(2) The mean of 7 observations is 25. If 3 is subtracted from each observation, then find the new mean.										
Q 24	Consider the data:										
	Class Frequency										
	0-10 5 10-20 7										
	20-30 15										
	30-40 16										
	40-50 4										
	50-60 2										
	Based on above information answer the following questions.										
	(1) What is the Median of the given data.										
	(2) Find the Mean deviation about median.										
Q 25	You are given some observations as 34, 66, 30, 38, 44, 50, 40, 60, 42, 51. Based on these observations, answer the following questions.										
	(1) Find the mean deviation about the mean.										
	(2) Find the mean deviation about the median.										
	ASSERTION REASONING										
	Assertion-Reasoning MCQs Directions (Q. Nos. 26-30) Each of these questions contains two statements Assertion (A) and Reason (R). Each of the questions has four alternative choices, any one is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.										
	(a) A is true, R is true; R is a correct explanation of A.										
	(b) A is true, R is true; R is not a correct explanation of A.										
	(c) A is true; R is false										
	(d) A is false; R is true.										

r	
Q 26	Assertion (A) The mean deviation about the mean for the data 4, 7, 8, 9, 10, 12, 13, 17 is 3.
	Reason (R) The mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44 is 8.5.
Q 27	Assertion (A) The mean deviation about the mean to find measure of dispersion has certain limitations.
	Reason (R) The sum of deviations from the mean is more than the sum of deviations from median. Therefore, the mean deviation about the mean is not very scientific, where degree of variability is very high.
Q 28	Assertion (A) In order to find the dispersion of values of x from mean x_{-}^{-} we take absolute measure of dispersion.
	Reason (R) Sum of the deviations from mean (\bar{x}) is zero.
Q 29	Assertion (A) The variance of first n even natural numbers is $\frac{n-1}{4}$.
	Reason (R) The sum of first n natural numbers is $\frac{n (n+1)}{2}$ and the
	sum of squares of first n natural numbers is $\frac{n (n+1)(2n+1)}{6}$.
Q 30	Assertion (A) If each of the observations x_1 , x_2 ,, x_n is increased by a, where a is a negative or positive number, then the variance remains unchanged.
	Reason (R) Adding or subtracting a positive or negative number to (or from) each observation of a group does not affect the variance.
	VERY SHORT
Q 31	If for a distribution $\sum (x-5) = 3$, $\sum (x-5)^2 = 43$ and the total number of items is 18, Find the S.D.
Q 32	Find the Variance of first n natural numbers.
Q 33	The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new S.D.
Q 34	The mean and standard deviation of 100 observations are 40 and 5.1 respectively. If the observation 50 is replaced by 40, find the new S.D.
Q 35	Let x_1, x_2, x_3, x_4, x_5 be the observations with mean m and standard deviation s. Find the standard deviation of observations $kx_1, kx_2, kx_3, kx_4, kx_5$.
Q 36	Find the mean deviation from the mean for the set of observations - 1,0,4

Q 37	Find the variance of the following data:
	6, 8, 10, 12, 14, 16, 18, 20, 22, 24
Q 38	Find the mean deviation about the mean for the data :
	38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Q 39	Find the mean deviation about the median of the following data:
	3,6,11,12,18
Q 40	Find the variance of first five natural numbers
Q 41	The variance of 10 observations is 4. If each observation is multiplied by 3, find the variance of the new data.
Q 42	Find the standard deviation of 2,4,5,6,8,17.
Q 43	Find the mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean.
Q 44	Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. What will be the variance of 6, 12, 15, 18, 24, 51?
Q 45	The variance of 20 observations is 5. If each observation is multiplied by 2, find the new variance of the resulting observations
Q 46	Let a, b, c, d, e be the observations with mean m and standard deviation s. Find the standard deviation of the observations $a + k$, $b + k$, $c + k$, $d + k$, $e + k$
Q 47	Consider the first 10 positive integers. If we multiply each number by -1 and then add 1 to each number, Find the variance of the numbers so obtained.
Q 48	The standard deviation of some temperature data in °C is 10. If the data were converted into °F,find the variance.
Q 49	If the variance of a data is 144, then the standard deviation of the data is
Q 50	Find the variance and standard deviation for the following data:
	57, 64, 43, 67, 49, 59, 44, 47, 61, 59
	SHORT QUESTIONS
Q 51	Find the mean and variance for the data 6, 7, 10, 12, 13, 4, 8, 12.
Q 52	If mean and standard deviation of 100 items are 50 and 4 respectively, then find the sum of all the item and the sum of the squares of item
Q 53	The standard deviation for the data 6, 7, 10, 12, 13, 4, 8, 12 is
Q 54	Following are the marks obtained by 9 students in a mathematics test
	50, 69, 20, 33, 53, 39, 40, 65, 59
	Find the mean deviation from the median.

Q 55	Find the mean deviation about the mean for the following data:												
	12, 3, 18	12, 3, 18, 17, 4, 9, 17, 19, 20, 15, 8, 17, 2, 3, 16, 11, 3, 1, 0, 5.											
Q 56	Find mean deviation about the mean for the following data:												
	x _i : 25	x _i : 25681012											
	f _i : 2810785												
Q 57	Find the mean and variance of first 10 multiples of 3												
Q 58	Find the mean and variance for the following frequency distribution												
	Classes		0-10	10	0-20		20-	30		30-40	0	40	-50
	Frequen	icies	5	8			15			16		6	
Q 59	Find the	mean	devia	ation a	bout	the	med	lian f	for th	ne fo	llowin	g da	ata:
	Xi	3	6	9		12		13		15	21		22
	fi	3	4	5		2		4	!	5	4		3
Q 60	Find the	mean	devia	ation a	bout	the	mea	n foi	r the	follo	wing	dat	a.
	Marks obtained	10 [.] 20	- 2	0-30	30-4	40 40-5		·50	50-60		60-70		70-80
	Number of students		3		8		14	4 8		3			2
Q 61	The AM a 63 is add the 10 va	led to	the v										
Q 62	Find the below:	mean	and	/ariano	ce of	the	freq	uenc	y dis	stribu	ition g	jive	n
	Х	$1 \leq x$	< 3	$3 \leq 3$	x < 5		5 ≤ x < 7		< 7	$7 \leq x < 1$		10	
	f	6		4			5			1			
Q 63	For the fi	requei	ncy di	istribui	tion:		1						L
	X	2		3		4		5		6		7	7
	f	4		9		16		14		1	1	6	5
	Find the	standa	ard di	stribut	tion								
Q 64	The frequ	lency	distri	bution	:								
	x	Α		2A		3A		4A		5/	4	6	δA
	f	2		1		1		1		1		1	
	where A value of	-	ositiv	e integ	jer, h	as a	var	iance	e of :	160.	Deter	mir	ne the

Q 65	Find the mean deviation about the mean of the distribution:											
	Size	20	21		22		23		Ž	24		
	Frequency	requency 6 4			5 1			2	1			
Q 66	Find the mean deviation about the median of the following distribution:											
	Marks obtained	10	11		12		14		1	.5		
	No. of students	2	3		8		3		4	ł		
Q 67	There are 60 distribution						-		-	-		
	Marks	0	1	2		3		4		5		
	Frequency	x-2	х	X ²		(x+)	1) ²	2x		X+1		
		where x is a positive integer. Determine the mean and standard deviation of the marks										
Q 68	Calculate the mean deviation about the mean for the following frequency distribution:											
	Class Interval	0-4	4-8	4-8		8-12		12-16		16-20		
	Frequency	4	6	6		8		5		2		
Q 69	The scores c 56, 64, 54, t				-				-	2, 65, 73,		
Q 70	The mean de		of the d	ata 3,	10, 1	0, 4,	7,10	, 5	from t	he mean		
	LONG QUES	TIONS										
Q 71	Calculate the	e mean	deviatio	n abou ⁻	t med	dian f	or the	e fol	lowing) data		
	Class	0-10	10-20	20-30	30)-40	40-5	0	50-60			
	Frequency	Frequency 6 7 15 16 4 2										
Q 72	The mean of of the observ											
Q 73	The mean and standard deviation of 100 observations were calculated as 40 and 5.1, respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?											
Q 74	The mean and respectively mean and ne	. If each	n observa	ation is	mult	tiplied	d by 3	8, fir	nd the	new		
Q 75	The mean ar were found t											

	three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.										
Q 76	Calculate mean, variance and standard deviation for the following distribution.										
	Class	30	-40	40-50	50-60	60-70) 70	-80	80-90	90-100	
	Frequency	3		7	12	15	8		3	2	
Q 77	Calculate th	ne me	ean d	eviation	about m	nedian	for th	ne fol	lowing c	lata :	
	Age (in years)	16-20	21-25	26-30	31-35	36-40	41-45	46-50	51-55		
	Number of persons	5	6	12	14	26	12	16	9		
Q 78	The diamet	ers o	f circ	les (in m	nm) drav	vn in a	desig	jn ar	e given	below:	
	Diameters	33	-36	37-40	41-44	45-	48	49-	-52		
	No. of circles	15		17	21	22		25			
	Calculate th	ne sta	Indar	d deviat	ion and	mean o	diame	eter o	of the cir	cles	
Q 79	The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation If it is replaced by 12.										
Q 80	Determine whose first								ns of an	A.P.	

<u>MCO</u>

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	А	d	b	а	С	С	b	b	d	С	d	а	b	С
16	17	18	19	20										
а	А	а	а	а]									

CASE BASED/SOURCE BASED / PASSAGE BASED 21: (1)69.16 (2) 69.16 22: (1) 18.35 (2) 3.87 23: (1)29 (2) 22 24: (1) 28 (2) 10.16 25: (1) 9 (2) 8.7

	ASSE	RTION REAS	<u>DNING</u>	
26	27	28	29	30
С	а	а	d	а

VERY SHORT QUESTIONS

31	32	33	34	35	36	37	38	39	40
1.54	$n^2 - 1$	12	6	ks	2	33	8.4	4.2	2
	12								
41	42	43	44	45	46	47	48	49	50
36	4.83	2.57	209.97	20	S	8.25	324	12	8.13

SHORT QUESTIONS

51	52	53	54	55	56	57	58	59	60
9, 9.25	5000, 251600	√9.25	12.67	6.2	2.3	16.5, 74.25	27, 132	4.97	10
61	62	63	64	65	66	67	68	69	70
45, 7.65	4.16,4.04	1.38	7	1.25	1.25	2.8, 1.122	3.84	8.6	2.57

LONG QUESTIONS

71	72	73	74	75	76	77	78	79
10.16	4, 9	39.9, 5	24, 12	20, 3.036	62,201, 14.18	7.35	5.55, 43.5	1.98

80	
$a + \frac{n-1}{2} d$,	
2	
$d\sqrt{n^2-1}$	
12	

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS CONTENT CLASS: XI CHAPTER : PROBABILITY

		MCQ		
Q1	If $\frac{1+4P}{4}$, $\frac{1-P}{2}$ and $\frac{1-P}{2}$ then value of p i	^{2p} are the probabiliti s	es of threemutually	y exclusive events,
	(a) <u>1</u> 2	(b) <u>-1</u> 3	$(C)_{\frac{1}{4}}^{1}$	$(d)_{\frac{2}{3}}$
Q2	Which of the foll	owing cannot be the	e probability of an o	event?
	(a) 2/3	(b) - 1/5	(c) 15%	(d) 0.7
Q3	Probability of an	event can be		
	(a) – 0.7	(b) <u>-11</u> 9	(c) 1.001	(d) 0.6
Q4	In an experimen	t, the sum of proba	bilities of different	events is
	(a) 1	(b) 0.5	(c) – 2	(d) 0
Q 5	In rolling a dice,	the probability of g	etting number 8 is	
	(a) 0	(b) 1	(c) -1	$(d)_{\frac{1}{2}}$
Q 6		us throw of 2 coins,	the probability of h	naving
	2 heads is: (a) <u>1</u> 4	(b) <u>-1</u> 2	(C) <u>-1</u> 8	(d) <u>1</u> 6
Q 7		of getting sum more	e than 7 when a pai	ir of
	dice are thrown (a) $\frac{7}{36}$	(b) <u>-</u> 5 12	(c)_7 12	(d) None of these
Q 8		of raining on day 1 i ning on both the da		is 0.3. The
	(a) 0.2	(b) 0.1	(c) 0.06	(d) 0.25
Q 9		vo events, such tha for the complemen	. ,	, , , ,
	(a) <u>-1</u> 9	$(b)_{\frac{2}{3}}$	(C) <u>1</u> 9	(d) <u>-2</u> 9

Q10	represent twoev	of the union of shad – 2P(A ∩B) – P(A ∩B)		AB
Q11	-	s selected at randor the selected letter		PROBABILITY". The
	(a) <u>1</u>	(b) <u>-3</u> 11	(C) <u>4</u> 11	(d) 0
Q 12	5	10 balls, out of whi probability of gettir		eand the others are is
	(a) <u>-</u> 2 5	(b) <u>-3</u> 5	(C) <u>1</u> 2	(d) $\frac{2}{3}$
Q13	The dice are thr a multiple of 4 i		probability of getti	ing thesum of digits as
	(a) <u>1</u> 9	(b) $\frac{1}{3}$	(C) <u>1</u> 4	(d) <u>5</u> 9
Q14	-	ies for A to fail in a pility that either A o		.2 andthat for <i>B</i> is 0.3,
	(a) > 0. 5	(b) 0.5	(c) ≤ 0.5	(d) 0
Q15	If $\frac{2}{11}$ is the proba is	bility of an event, t	hen the probability	of the event 'not A',
	(a) <u>9</u> 11	(b) <u>11</u> 2	(C) <u>11</u> 9	$(d)_{\frac{2}{11}}$
Q16	An experiment i	is called random ex	periment, if it	
		· · ·		
Q 17	An event can be	e classified into vari	ous types on the b	basis of the
	(a) experiment (c) elements		(b) sample spa (d) None of the	
Q 18	An event which simple event.	has only sam	ple point of a samp	ble space, is called
	(a) two	(b) three	(c) one	(d) zero

Q 19	If an event has more than one sample	point then it is called a/an
QIJ	If an event has more than one sample	
	(a) simple event	(b) elementary event
	(c) compound event	(d) None of these
Q20	A die is rolled. Let E be the event "die s shows even number", Then, E and F ar	
	(a) mutually exclusive (c) mutually exclusive and exhaustive	(b) exhaustive (d) None of the above
	CASE BASED/SOURCE BASED	/ PASSAGE BASED
Q 21	If three coins are tossed, all possible of	
	{HHH, HHT, HTH, THH, TTH, HTT, THT,	
	if E1 , E2 ,, En are n events of a san En = S, then E1 , E2 ,, En are called	
	$= \phi$ for i \neq j i.e. events Ei and Ej are pa	
	events E1 , E2 , , Enare called mutua	-
	now answers the following	
	(i) Two events which are mutually exclusion (ii) Three events which are mutually exclusion	
	(ii) Three events which are mutually ex(iii) Two events, which are not mutually	
	(iv) Two events which are mutually excl	
	(v) Three events which are mutually ex	
Q 22	Grandmother of Reena, Simi and Aryar different beautiful colors, of which 4 ar The discs are similar in shape and size. them discs and grandmother draws a d Calculate the probability that it will be (blue, (v) either red or yellow.	e red, 3 are blue and 2 are yellow. Children asked grandmother to give lisc at random from the bag.
Q 23	An urn contain twenty white slips of p ten red slips of paper numbered from 1 paper numbered from 1 through 40 an from 1 through 10. These 80 slips of pa each slip has the equal chance of begin the urn.	1 through 10, forty yellow slips of d ten blue slips of paper numbered aper are thoroughly shuffled so that
	Based on the above information , answ	5
	(i) What is the probability that slip dra	
	(ii) What is the probability that slip dra (iii)What is the probability that slip dra	
	1,2,3 or 4? (iv) What is the probability that slip dr	awn is numbered 5 15 25 or 352
	(v) What is the probability that slip dra (v) What is the probability that slip dra than 12 or yellow and numbered highe	awn is white and number higher

Q 24	The given Venn diagram shows three events A, B and C and also the probabilities of the various intersections (for P(A∩B) = 0.07) Based on the above information , answer the following questions: (i) The value of P(B∩C') is (ii) The value of P(A∩B) is (iii) The value of P(A∩B') is (iv) The value of P(B∩C) is (v) The probability of occurrence of exactly one of the events A, B or C is
Q 25	The letter of the word 'ASSASSINATION' are arranged at random. Based on the above information , answer the following questions: (i) The probability that four S's come consecutively in the word is (ii) The probability that two I's and two N's come together is (iii) The probability that all A's are not coming together is (iv) The probability that no two A's are coming together is (v) The probability that all vowels are coming together is
	ASSERTION REASONING TYPE QUESTIONS
	 Directions (FOR Q- 26 TO 30): Each of these questions contains two statements, Assertion and Reason. Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below. (a) Assertion is correct, reason is correct; reason is a correct explanation for assertion. (b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion (c) Assertion is correct, reason is incorrect (d) Assertion is incorrect, reason is correct.
Q 26	Assertion : Probability of getting a head in a toss of anunbiased coin is 1 2 Reason : In a simultaneous toss of two coins, the probabilityof getting 'no tails' is_1 4
Q 27	Assertion : In tossing a coin, the exhaustive number of cases is 2. Reason : If a pair of dice is thrown, then the exhaustive number of cases is $6 \times 6 = 36$.
Q 28	Assertion :A letter is chosen at random from the word NAGATATION. Then, the total number of outcomes is 10. Reason :A letter is chosen at random from the word 'ASSASSINATION' Then, the total number of outcomes is 13.
Q 29	Consider a single throw of die and two events. A = the number is even = $\{2, 4, 6\}$

r	
	B = the number is a multiple of 3 = {3, 6} Assertion : P(A UB) = $\frac{4}{6} = \frac{2}{3}$ and P(A \cap B) = $\frac{1}{6}$
	Reason : $P(A' \cap B') = P(AUB)' = 1 - \frac{2}{3} = \frac{1}{3}$
	Assertion : Two dice are thrown simultaneously. There are 11 possible outcomes and each of them has a probability 1/11.
	Reason : Probability of an event (E) is defined as $P(E) = \frac{\text{Number of favourable outcome}}{\text{Total number of outcome}}$
	Total number of outcome
	VERY SHORT
	The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
	An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment
	A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
	If 3/4 is the probability of an event, what is the probability of the event "not A"?
	There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?
	If two cards are drawn from a well shuffled pack, what is the probability that at least one of the two is heart?
Q 37	What is the probability that a leap year will have 53 Sundays?
-	What is the probability of getting a total of 10 in a single throw of two dice?
	Two dice are rolled simultaneously. What is the probability that the numbers on them are different
	At random all the letters of the word "ARTICLE" are arranged in all possible ways. What is the probability that the arrangement begins with vowel and ends with a consonant?

	SHORT QUESTIONS
Q 41	A letter is chosen at random from the word "ASSASSINATION". Find the probability that letter is (i) a vowel (ii) a consonant (iii) Letter S
Q 42	A and B are events such that $P(A) = 0.42$, $P(B) = 0.48$ and $P(A \text{ and } B) = 0.16$. Determine (i) $P(\text{not } A)$, (ii) $P(\text{not } B)$ and (iii) $P(A \text{ or } B)$
Q 43	In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology
Q 44	A die has two faces each with number "1", three faces each with number "2" and one face with number "3". If die is rolled once, determine (i) P(2) (ii) P(1 or 3) (iii) P(not 3)
Q 45	In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy (a) one ticket (b) two tickets (c) 10 tickets.
Q 46	A five digit number without repetition is formed by the digits 1, 2, 3, 4, 5, 6, 7, 8. What is the probability that the number has even digits at both ends?
Q 47	4 cards are drawn from a well – shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?
Q 48	A and B are events such that $P(A) = 0.42$, $P(B) = 0.48$ and $P(A \text{ and } B) = 0.16$. Determine (i) $P(\text{not } A)$, (ii) $P(\text{not } B)$ and (iii) $P(A \text{ or } B)$
Q 49	In Class XI of a school 40% of the students study Mathematics and 30% studyBiology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
Q 50	A fair coin is tossed four times, and a person win Re 1 for each head and loseRs 1.50 for each tail that turns up. From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.
	LONG QUESTIONS
Q 51	In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that (i) The student opted for NCC or NSS.

	(ii) The student has opted neither NCC nor NSS.(iii) The student has opted NSS but not NCC.				
Q 52	Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that (a) you both enter the same section? (b) you both enter the different sections?				
Q 53	Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.				
Q 54	One card is drawn from a well shuffled deck of 52 cards. If each outcome is equally likely, calculate the probability that the card will be (i) a diamond (ii) not an ace (iii) a black card (i.e., a club or, a spade) (iv) not a diamond(v) not a black card.				
Q 55	A bag contains 9 discs of which 4 are red, 3 are blue and 2 are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag.Calculate the probability that it will be (i) red, (ii) yellow, (iii) blue, (iv) not blue,(v) either red or blue.				
Q 56	Two students Anil and Ashima appeared in an examination. The probabilitythat Anil will qualify the examination is 0.05 and that Ashima will qualify the examinationis 0.10. The probability that both will qualify the examination is 0.02. Find theprobability that (a) Both Anil and Ashima will not qualify the examination. (b) Atleast one of them will not qualify the examination and (c) Only one of them will qualify the examination.				
Q 57	A committee of two persons is selected from two men and two women. What is the probability that the committee will have (a) no man? (b) one man? (c) two men?				
Q 58	The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e.,from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?				
Q 59	If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, (i) the digits are repeated? (ii) the repetition of digits is not allowed?				
Q 60	Three letters are dictated to three persons and an evelope is addressed to each ofthem, the letters are inserted into the envelopes at random so that each envelopecontains exactly one letter. Find the probability that at least one letter is in its proper envelope.				

ANSWERS:

	MCQ						
Q1	(a) p = 1						
, c							
Q2	(b)						
Q3	(d) Probability of an event always lies between 0 and 1. (both inclusive)						
Q4	(a)						
Q 5	(a) Number 8 does not represent on dice.						
Q 6	(a)						
Q 7	(b)						
Q 8	(d)						
Q 9	(b)						
Q10	(b)						
Q11	(c)						
Q 12	(b)						
Q13	(c)						
Q14	(c)						
Q15	(a)						
Q16	(c)						
Q 17	(c)						
Q 18	(c)						
Q 19	(c)						
Q 20	(d)						
	CASE BASED/SOURCE BASED / PASSAGE BASED						
Q 21							
	(ii) "Getting no heads", "getting exactly one head" and "getting at least						
	twoheads"						
	(iii) "Getting at most two tails", and "getting exactly two tails"						
	(iv) "Getting exactly one head" and "getting exactly two heads"(v) "Getting exactly one tail", "getting exactly two tails", and getting						
	exactly three tails"						
	Note There may be other events also as answer to the above question.						
Q 22	(i) 4/9 (ii) 2/ 9 (iii) 1/3 (iv) 2/3 (v) 2/3						
Q 23	(i) $1/5$ (ii) $\frac{1}{2}$ (iii) $\frac{2}{5}$ (iv) $\frac{1}{2}$ (v) $\frac{2}{5}$						
Q 24	(i) 0.17 (ii) 0.45 (iii) 0.13 (iv) 0.15 (v) 0.31						
Q 25	(i) 2/143 (ii) 2/143 (iii) 25/26 (iv) 15/26 (v) 2/429						
	ASSERTION REASONING						
Q 26	(b)						
Q 27	(b) Both Assertion and Reason is correct.						
Q 28	(b) Both Assertion and Reason are correct.						
Q 29	(b) Both Assertion and Reason are correct but Reason is not the correct						
	explanation.						
Q 30	(d)						

	VERY SHORT						
Q 31	$\{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$						
Q 32	{1HH, 1HT, 1TH, 1TT, 2H, 2T, 3HH, 3HT, 3TH, 3TT, 4H, 4T, 5HH, 5HT,5TH, 5TT, 6H, 6T}						
Q 33	{RW, WR, WW}						
Q 34	1/4						
Q 35	3/5						
Q 36	1/4						
Q 37	2/7						
Q 38	1/12						
Q 39	25/36						
Q 40	2/7						
SHORT QUESTIONS							
Q 41	(i) 6/13 (ii) 7/13 (iii) 4/13						
Q 42	(i) 0.58 (ii) 0.52 (iii) 0.74						
Q 43	0.6						
Q 44	(i)1/2 (ii)1/2 (iii) 5/6						
Q 45	(a) 999/ 1000 (b) 9990C 2/10000 C2 (c) 9990C 10/10000 C10						
Q 46	3/14						
Q 47	$\frac{13_{C_3 13 c_1}}{52 c_{4}}$						
Q 48	(i) 0.58 (ii) 0.52 (iii) 0.74						
Q 49	0.6						
Q 50	Rs 4.00 gain, Rs 1.50 gain, Re 1.00 loss, Rs 3.50 loss, Rs 6.00 loss. P (Winning Rs 4.00) = 1/16, P(Winning Rs 1.50) = 1/4, P (Losing Re. 1.00) = 3/8 P (Losing Rs 3.50) = 1/4, P (Losing Rs 6.00) = 1/16. LONG QUESTIONS						
Q 51	(i) 19/30 (ii) 11/30 (iii) 2/15						
Q 52	(a) 17/33 (b) 16/33						
Q 53	2/3						
Q 54	(i) ¹ / ₄ (ii) 12/13 (iii) ¹ / ₂ (iv) ³ / ₄ (v) ¹ / ₂						
Q 55	(i) 4/9 (ii) 2/9 (iii) 1/3 (iv) 2/3 (v) 7/9						
Q 56	(a) 0.87 (b) 0.98 (c) 0.11						

Q 57	(a) 1/6	(b) 2/3	(c) 1/6	
Q 58	1/5040			
Q 59	(i)2/5	(ii) 3/8		
Q 60	2/3			

Note: Some deleted portion has been included in material which is required for class XII.