

KENDRIYA VIDYALAYA SANGATHAN

AHMEDABAD REGION

ACADEMIC YEAR 2022-23

SUBJECT: MATHEMATICS

COMPENDIUM Of Diverse Questions For **CLASS - IX**

Page 0 of 223

CHIEF PATRON

SMT. SHRUTI BHARGAVA, DEPUTY COMMISSIONER, KVS, AHMEDABAD REGION

PATRON

SMT. VINITA SHARMA, ASSISTANT COMMISSIONER, KVS, AHMEDABAD REGION

UNDER THE SUPERVISION OF SHRI B M SHARMA, PRINCIPAL, KENDRIYA VIDYALAYA INS, VALSURA

CONTENT DEVELOPMENT TEAM

S NO	K V NAME	NAME OF TEACHER
1	CRPF GANDHINAGAR	MRS ANKITA SHARMA
2	KV V V NAGAR	MRS. KUMUD BHATT
3	SEC.30 GANDHINAGAR	SMT.LEENA C.
4	AHMEDABADD CANTT	MRS GANGA MOURA
5	AFS Bhuj	MS. ANJU GAUTAM
6	EME BARODA	MRS POOJA BHADORIA
7	NO.1 BARODA	MRS. SARIKA YADAV
8	SAC AHMEDABAD	MS. BHAKTI JOSHI
9	ONGC CHANDKHEDA	MR SURENDRA PRASAD
10	EME BARODA	MRS MANJU RANI SINGH
11	VALSURA JAMNAGAR	MR RAVI KUMAR
12	VALSURA JAMNAGAR	MR RAJENDER KUMAR
13	SEC.30 GANDHINAGAR	SHRI H M JADEJA
14	SAC AHMEDABAD	MR. BIPIN KUMAR MUDETHIYA
15	CRPF GANDHINAGAR	MR JITENDER KUMAR

TABLE OF CONTENT

CLASS	-	IX
-------	---	----

S. No.	Topic/ Content	Page Number
1	Number System	04-19
2	Polynomials	20-30
3	Coordinate Geometry & Euclid Geometry	31-51
4	Linear Equations In Two Variables	52-71
5	Lines And Angles	72-104
6	Triangles	105-124
7	Quadrilaterals	125-148
8	Circles	149-171
9	Heron's Formula	172-183
10	Surface Areas And Volumes	184-193
11	Statistics	194-223

CHAPTER 01 :NUMBER SYSTEM

REAL NUMBERS

	COMPETENCY BASED QUESTIONS
Q1	Which of the following is a rational number?
	a) π b) 0 c) $1 + \sqrt{3}$ d) $2\sqrt{3}$
Q2	If the HCF of 65 and 117 is expressible in 65m-117, thenthe value of m is?
	a) 4 b) 2 c) 1 d) 3
Q3	Every real number is
	a) Neither rational nor irrational b) Always rational c) Always irrational d) Either rational or irrational
Q4	Find the value of $\sqrt{6} \times \sqrt{27}$:
	a) $9\sqrt{2}$ b) $9\sqrt{3}$ c) $6\sqrt{3}$ d) $2\sqrt{3}$
Q 5	Find the value of $\sqrt[3]{216} - \sqrt[3]{125}$
	a) 1 b) -1 c) 2 d) -2
Q 6	The decimal expansion of $\sqrt{2}$ is:
	a) 1.4121 b) Non-terminating recurring c) Finite decimal d) Non-terminating non-recurring

Q 7	A rational number lying between $\sqrt{2}$ and $\sqrt{3}$ is:
	a) 1.6
	b) 2.9
	d) $\sqrt{11}$
Q 8	Which of the following number is an irrational number?
	a) $\sqrt{16} - 4$
	b) $\sqrt{5} + 3$
	c) $-\sqrt{25}$
09	d) $-\sqrt{36} + \sqrt{64}$
QJ	If $x = \frac{\sqrt{7}}{5}$ and $\frac{3}{X} = \sqrt{7}$, then the value of p is
	a) 25
	b) $\frac{7}{7}$
	$\frac{\sqrt{7}}{\sqrt{7}}$
	$\sqrt{\sqrt{5}}$
	d) $\frac{1}{5}$
Q10	When $15\sqrt{15}$ is divided by $3\sqrt{3}$,find the quotient.
Q10	When $15\sqrt{15}$ is divided by $3\sqrt{3}$,find the quotient. a) $5\sqrt{3}$
Q10	When $15\sqrt{15}$ is divided by $3\sqrt{3}$,find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$
Q10	When $15\sqrt{15}$ is divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $2\sqrt{2}$
Q10	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q10	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS Srikanth has made a project on real numbers, where he finely
Q10 Q 1	When $15\sqrt{15}$ is divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS Srikanth has made a project on real numbers, where he finely explained the applicability of exponential laws and divisibility conditions
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS Srikanth has made a project on real numbers, where he finely explained the applicability of exponential laws and divisibility conditions on real numbers. He also included some assessment questions at the end of his project as listed below
Q10 Q 1	When $15\sqrt{15}$ is divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS Srikanth has made a project on real numbers, where he finely explained the applicability of exponential laws and divisibility conditions on real numbers. He also included some assessment questions at the end of his project as listed below. Answer them.
Q10 Q 1	When $15\sqrt{15}$ divided by $3\sqrt{3}$, find the quotient. a) $5\sqrt{3}$ b) $3\sqrt{5}$ c) $5\sqrt{5}$ d) $3\sqrt{3}$ CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS Source Based Integration of the system of the

(i)	For what value of n, 4^{n} ends in 0?
	a) 10 b) When n is even c) When n is odd d) No value of n
(ii)	<pre>If a is a positive rational number and n is a positive integer greater than 1, then for what value of n, an is a rational number? (a) when n is any even integer (b) when n is any odd integer (c) for all n > 1 (d) only when n=0</pre>
(iii)	If x and y are two odd positive integers, then which of the following is true? (a) x^2+y^2 is even (b) x^2+y^2 is not divisible by 4 (c) x^2+y^2 is odd (d) both (a) and (b)
(iv)	The statement 'One of every three consecutive positive integers is divisible by 3' is (a) always true (b) always false (c) sometimes true (d) None of these
(v)	If n is any odd integer, then $n^2 - 1$ is divisible by (a) 22 (b) 55 (c) 88 (d) 8
Q 2	Rohan started learning cooking in the lockdown. One day he tried to make cake by reading a recipe. Recipe include 1.2 bowl of flour, 2 cup of sugar, 1.73 cup milk and 4 eggs.

(i)	Is 1.73 a whole number
	a) Yes b) No
(ii)	Is 1.2 a rational number
	a) Yes b) No
(iii)	Is 4 is irrational number
	a) Yes b) No
(iv)	Is 2 a whole number
	a) Yes b) No
(v)	Is 1.73 a rational number
	a) Yes b) No
Q 3	
	Laxman plays in the cricket team of his school. Laxman aspires to play in Indian cricket team in future and his bowling numbers are impressive. In the last games 5 games Laxman bowled with an average of 3.142678,2.333,1.2727,1.2353535, 1.875respectively.
(i)	How can you write 3.142678 as a rational number a) $\frac{\frac{3142678}{100000}}{\frac{3142678}{1000000}}$ b) $\frac{\frac{3142678}{100000}}{\frac{3142678}{10000}}$ c) $\frac{\frac{3142678}{10000000}}{\frac{3142678}{10000000}}$
(ii)	How can you write 1.2727 as a rational number
	a) $\frac{14}{11}$ b) $\frac{14}{13}$ c) $\frac{14}{14}$
	d) $\frac{14}{15}$

(iii)	The number 1.23535give us a
	(a) Terminating decimal expansion
	(b) Non-terminating recurring decimal expansion
(iv)	The number 1.875 give us a
	(a) Terminating decimal expansion
	(b) Non-terminating recurring decimal expansion
(v)	Where in number line does number 2.33 lies
	 a) Between 1 and 2 b) Between 2.3 and 3 c) Between 1 and 1.5 d) Between 0.5 and 1
Q 4	
	Rahul and his family is going to Shimla by car. In the journey they made a few stops The speed of car at different interval was 70.66
	km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h .
(i)	km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h .The speed 70.66 km/h lies where on number line?
(i)	 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6
(i)	 Indde a few stops. The speed of call at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3
(i)	Indde a few stops. The speed of call at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7
(i)	 Indee a few stops. The speed of call at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h , 65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4
(i) (ii)	 Indee a few stops. The speed of call at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line?
(i) (ii)	 Inde a rew stops. The speed of call at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line? (a) Between 60.5 and 60.6
(i) (ii)	Indee a few stops: the speed of call at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h , 65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line? (a) Between 60.5 and 60.6 (b) Between 60.6 and 60.7
(i) (ii)	Indee a few stops: The speed of call at uniferent interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line? (a) Between 60.5 and 60.6 (b) Between 60.7 and 60.8
(i) (ii)	Initial a new stops. The speed of call at unreferred was 70.00 km/h , 60.53 km/h , 80.133 km/h , 65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line? (a) Between 60.5 and 60.6 (b) Between 60.7 and 60.8 (d) Between 60.8 and 60.9
(i) (ii) (iii)	Indde a rew stops. The speed of car at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line? (a) Between 60.5 and 60.6 (b) Between 60.7 and 60.8 (c) Between 60.8 and 60.9
(i) (ii) (iii)	Indee a few stops. The speed of car at different interval was 70.00 km/h , 60.53 km/h , 80.133 km/h ,65.311 km/h and 74.331 km/h . The speed 70.66 km/h lies where on number line? (a) Between 70.4 and 70.6 (b) Between 70.2 and 70.3 (c) Between 70.6 and 70.7 (d) Between 70.3 and 70.4 The speed 60.53 km/h lies where on number line? (a) Between 60.5 and 60.6 (b) Between 60.7 and 60.8 (c) Between 60.8 and 60.9 The speed 80.133 km/h lies where on number line? (a) Between 60.8 and 60.9

	(c) Between 80.15 and 80.16
	(d) Between 80.16 and 80.17
(iv)	The speed 65.311 km/h lies where on number line?
	(a) Between 65.309 and 65.310
	(b) Between 65.34 and 65.35
	(c) Between 65.31 and 65.32
	(d) Between 65.36 and 65.37
(v)	The speed 74.331 km/h lies where on number line?
	(a) Between 74.37 and 74.38
	(b) Between 74.35 and 74.36
	(c) Between 74.34 and 74.35
	(d) Between 74.33 and 74.34
Q 5	$\label{eq:relation}$ Rohan was given a task by his sport teacher to complete 5 rounds of the school ground. The distance of one round is $2\sqrt{5+5}\sqrt{3}$ km. He takes 10 minutes to complete one round.
(i)	Is $2\sqrt{5+5}\sqrt{3}a$ rational number?
	a) Yes b) No
(ii)	Total distance Rohan has to cover is
	a) $4 \times (2\sqrt{5}+5\sqrt{3})$ b) $5 \times (2\sqrt{5}+5\sqrt{3})$ c) $3 \times (2\sqrt{5}+5\sqrt{3})$ d) $5 \times (2\sqrt{5}+5\sqrt{2})$
(iii)	Total time taken to complete the rounds
	(a) 20 minutes (b) 40 minutes
	(c) 50 minutes (d) 60 minutes

(iv)	The value of total distance covered by Rohan is a rational number.	
	(a) TRUE (b) FALSE	
(v)	Can we map the $2\sqrt{5+5\sqrt{3}}$ on a number line?	
	a) Yes b) No	
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)	
Q 1	Between any two rational number there are infinitely many rational numbers (True/False)	
Q 2	Zero is an irrational number. (True/False)	
Q 3	The decimal expansion of 36/100 is	·
Q 4	Match the Following	
	A	В
	a.10/3	1.Terminating
	b.3.142678	2.Non-Terminating Recurring
	c.5.32156901	3.Non-Terminating Non-Recurring
Q 5	If $x = 6 \cdot \sqrt{35}$ then the value of $\frac{1}{x} = $?	
Q 6	$\sqrt{2}$ is a rational number (True/False)?	
Q 7	π is an(Rational/Irrational) number.	
Q 8	(64) ^{-1/2} is equal to	
Q 9	Decimal Representation of rational number cannot be non-terminating non-recurring. (True/False)	
Q 10	The $\frac{p}{q}$ form of 0.777777 where p and q are integers and q \neq 0, is	
	$\frac{77}{90}$ (True/False)	
	SHORT ANSWER TYPE QUESTIONS	
Q 1	Let 'a' be a non-zero rational number and 'b' be an irrational number. Is 'ab' necessarily an irrational? Justify your answer with example.	
Q 2	Simplify: $(\sqrt{5} + \sqrt{2})^2$	
Q 3	Express 1.8181 in the form $\frac{p}{q}$ when	The p and q are integers and $q \neq 0$.
Q 4	If $x = \frac{1}{\sqrt{5}-2}$, find the value of $x^3 - 3^2 - 5x + 3$.	

Q 5	Find 'x', if $2^{x-7} \times 5^{x-4} = 1250$.
Q 6	Represent -5/6 on the number line.
Q 7	Multiply $3\sqrt{2}$ by $5\sqrt{3}$.
Q 8	Represent $\sqrt{5}$ on number line
Q 9	Express $0.\overline{6}$ in the form p/q, where p and q are integers and q $\neq 0$.
Q 10	Express $0.\overline{001}$ in the form p/q, where p and q are integers and q $\neq 0$.
	LONG ANSWER TYPE QUESTIONS
Q 1	Represent $\sqrt{5.6}$ geometrically on the number line
Q 2	Find:
	$(i)(64)^{1/2}$
	(ii)(32) ^{1/5}
	(iii) (125) ^{1/3}
Q 3	Are there two irrational numbers whose sum and product both are rationals? Justify.
Q 4	Simplify : $(3\sqrt{5} - 5\sqrt{2})(4\sqrt{5} + 3\sqrt{2})$
Q 5	If $a = 5 + 2\sqrt{6}$ and $b = 1/a$, then what will be the value of $a^2 + b^2$?
Q 6	If $\sqrt{3} = 1.732$, $\sqrt{2} = 1.414$, then the value of $4 / (3\sqrt{3} - 2\sqrt{2}) + 3 / (3\sqrt{3} + 2\sqrt{2})$ is?
Q 7	 Two friends Aayush and Shubham were planting trees along the boundary of their society. While doing this, Aayush said that they could only plant the number of trees which would be a natural number or a positive integer. Shubham agreed with his thought. (i) Are both of them correct? (ii) Define natural number, integers, rational and irrational number.
	(III) what values are depicted from their activity?
Q 8	 Two friends Pankaj and Siddharth went to an antique store to purchase 3⁴ old coins of single type. They finally short-listed coins of two types A and B and decided to choose the one having lowest price. On being asked the price, the shopkeeper told them coin 'A' is priced at Rs.2⁷ each and coin B is priced at Rs.3⁵ each. Pankaj helped Siddharth to select the type of coin on the basis of price. They further decided to distribute coins among their 3² friends. (i) Which type do you think they finally bought based on lowest price? What is the total price they paid to the shopkeeper? (ii) Find the number of coins each of which their friends received.

	(iii) What values did Pankaj depict when he helped Siddharth?
Q 9	State whether the following statement is true: There is a number x such that x^2 is irrational but x^4 is rational. Justify your answer by an example.
Q 10	Find the value of a in the following :
	$\frac{6}{3\sqrt{2}-2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$
	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(b) 0
Ans 2	(b) 2
Ans 3	(d) either rational or irrational
Ans 4	(a) 9√2
Ans 5	(a) 1
Ans6	(d) Non-terminating non-recurring
Ans7	(a) 1.6
Ans8	(b) $\sqrt{5} + 3$
Ans9	(a) $\frac{25}{7}$
Ans10	(c)5√5

	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
1	(i) (d) no value of n
	(ii) (c) for all n > 1
	(iii) (d) both (a) and (b)
	(iv) (a) always true
	(v) (d) 8
2	(i) NO
	(ii) YES
	(iii) NO
	(iv) YES
	(v) NO
3.	(i) b
	(ii) a
	(iii) b
	(iv) a
	(v) b
4.	(i) c
	(ii) a
	(iii) b
	(iv) c
	(v) d
5.	(i) b
	(ii) b
	(iii) c
	(iv) b
	(v) a

	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
1	True
2	False
3	0.36
4	a -2, b -1, c -3
5	$6+\sqrt{35}$
6	False
7	Irrational
8	$\frac{1}{8}$
9	True
10	False
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
1.	Yes, 'ab' is necessarily an irrational. For example, let a = 2 (a rational number) and b = $\sqrt{2}$ (an irrational number) If possible let ab = $2\sqrt{2}$ is a rational number. Now, $\frac{ab}{a} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ is a rational number. [\because The quotient of two non-zero rational number is a rational] But this contradicts the fact that $\sqrt{2}$ is an irrational number. Thus, our supposition is wrong. Hence, ab is an irrational number.
2	Here,
	$(\sqrt{5} + \sqrt{2})^2 = (\sqrt{5})^2 + 2\sqrt{5}\sqrt{2} + (\sqrt{2})^2$
	$=5+2\sqrt{10+2}=7+\sqrt{10}$
3	Let x =1.8181(i) 100x = 181.8181(ii) [multiplying eqn. (i) by 100] 99x = 180 [subtracting (i) from (ii)] $x = \frac{180}{99}$ Hence, $1.8181 = \frac{180}{99} = \frac{20}{11}$
4	$X = \frac{1}{\sqrt{5}-2}$

	$=\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$
	$=\frac{\sqrt{5}+2}{5-4} = \sqrt{5} + 2$
	$\therefore x - 2 = \sqrt{5}$
	Squaring both sides, we have
	$x^2 - 4x + 4 = 5$
	$x^2 - 4x - 1 = 0 \dots (i)$
	Now, $x^3 - 3^2 - 5x + 3 = (x^2 - 4x - 1)(x + 1) + 4$
	= 0 (x + 1) + 4 = 4 [using (i)]
5	We have $2^{x-7} \times 5^{x-4} = 1250$ $\Rightarrow 2^{x-7} \times 5^{x-4} = 2 \times 5 \times 5 \times 5 \times 5$ $\Rightarrow 2^{x-7} \times 5^{x-4} = 2^1 \times 5^4$ Equating the powers of 2 and 5 from both sides, we have $\Rightarrow x - 7 = 1$ and $x - 4 = 4$ $\Rightarrow x = 8$ and $x = 8$ Hence, $x = 8$ is the required value.
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	$3\sqrt{2} \times 5\sqrt{3} = 3 \times 5 \times \sqrt{2} \times \sqrt{3} = 15\sqrt{6}$
8	-2 -1 0 1 A P 3
9	Assume that $x = 0.666$
	Then, $10x = 6.666$
	10x = 6 + x
	9x = 0 $x = 2/3$

10	Assume that $x = 0.001001$
	Then, $1000x = 1.001001$
	1000x = 1 + x
	999x = 1
	x = 1/999
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
1	Presentation of $\sqrt{5.6}$ on number line:
	Mark the distance 5.6 units from a fixed points A on a given line to obtain a
	point B such that AB=5.6 units . From B , mark a distance of 1 unit and mark the
	new points as C . Find the mid-point of AC and mark the points as O . Draw a
	semicircle with centre O and radius OC . Draw a line perpendicular to AC pagging through B and intersecting the comisinals at D . Then BD $\sqrt{\Gamma}$
	to AC passing unrough B and intersecting the semicircle at D. Then $BD = \sqrt{5.6}$. Now, draw an arc with centre B and radius BD, which intersects the number
	line in E.
	Thus, E represent $\sqrt{5.6}$
	$A \xrightarrow{V5.6} B \xrightarrow{C} E$
2	$(i)64^{1/2} = (8 \times 8)^{1/2}$
	$=(8^2)^{\frac{1}{2}}$
	$= 8^{1} [::2 \times 1/2 = 2/2 = 1]$
	= 8
	$(ii)32^{1/5} = (2^5)^{1/5}$
	$= (2^5)^{\frac{1}{5}}$

	$= 2^{1} [::5 \times 1/5 = 1]$
	= 2
	$(iii)(125)^{1/3} = (5 \times 5 \times 5)^{1/3}$
	$= (5^3)^{\frac{1}{3}}$
	$=5^{1}(3 \times 1/3 = 3/3 = 1)$
	= 5
3	Yes.
	$(3 + \sqrt{2})$ and $(3 - \sqrt{2})$ are two irrational numbers.
	$(3 + \sqrt{2}) (3 - \sqrt{2}) = 6$, a rational number.
	$(3 + \sqrt{2})(3 - \sqrt{2}) = 7$, a rational number.
	So, we have two irrational numbers whose sum and product both are rationals.
4	$(3\sqrt{5} - 5\sqrt{2})(4\sqrt{5} + 3\sqrt{2}) = 3\sqrt{5}(4\sqrt{5}) + 3\sqrt{5}(3\sqrt{2}) - 5\sqrt{2}(4\sqrt{5}) - 5\sqrt{2}(3\sqrt{2})$ = 12(5) + 9\sqrt{5}(\sqrt{2}) - 20\sqrt{5}(\sqrt{2}) - 15(2) = 60 + 9\sqrt{10} - 20\sqrt{10} - 30 = 60 - 30 + 9\sqrt{10} - 20\sqrt{10} = 30 - 11\sqrt{10} Therefore, (3\sqrt{5} - 5\sqrt{2})(4\sqrt{5} + 3\sqrt{2}) = 30 - 11\sqrt{10}
5	Given, $a = 5 + 2\sqrt{6}$
	Also, $b = 1/a$
	We have to find the value of a^2+b^2 .
	Now, $b = 1/(5+2\sqrt{6})$
	$b = 1/(5+2\sqrt{6}) \times (5-2\sqrt{6})/(5-2\sqrt{6})$
	We know $(a - b)(a + b) = a^2 - b^2$
	$(5+2\sqrt{6})(5-2\sqrt{6}) = (5)^2 - (2\sqrt{6})^2$
	= 25 - 4(6)
	= 25 - 24
	= 1

	So, $1/(5+2\sqrt{6}) \times (5-2\sqrt{6})/(5-2\sqrt{6}) = (5-2\sqrt{6})/(1)$
	$b = (5-2\sqrt{6})$
	$a^2 + b^2 = (5 + 2\sqrt{6})^2 + (5 - 2\sqrt{6})^2$
	By using algebraic identity,
	$(a + b)^2 = a^2 + 2ab + b^2$
	$(5+2\sqrt{6})^2 = (5)^2 + 2(5)(2\sqrt{6}) + (2\sqrt{6})^2$
	$= 25 + 20\sqrt{6} + 4(6)$
	$= 25 + 24 + 20\sqrt{6}$
	$= 49 + 20\sqrt{6}$
	By using algebraic identity,
	$(a - b)^2 = a^2 + 2ab + b^2$
	$(5-2\sqrt{6})^2 = (5)^2 - 2(5)(2\sqrt{6}) + (2\sqrt{6})^2$
	$= 25 - 20\sqrt{6} + 4(6)$
	= 25 + 24 - 20√6
	= 49 - 20√6
	Now, $a^2+b^2 = 49 + 20\sqrt{6} + 49 - 20\sqrt{6}$
	= 49 + 49
	= 98
	Therefore, $a^2+b^2 = 98$
6	$\frac{4}{(3\sqrt{3}-2\sqrt{2})} + \frac{3}{(3\sqrt{3}+2\sqrt{2})} + \frac{2}{(3\sqrt{3}+2\sqrt{2})} $
	(3 (3 (3 (3 (2 (2 (2 (3 (3 (2 (2 (2 (2 (3 (3 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2
	now,
	={12\sqrt{3+8\sqrt{2+9\sqrt{3-6\sqrt{2}}/(27-8)}}
	$=(21\sqrt{3}+2\sqrt{2})/(19)$
	now, put $\sqrt{3} = 1.732$ and $\sqrt{2} = 1.414$
	$=(21 \times 1.732 + 2 \times 1.414)/19$
	=(30.372+ 2.020)/19
	=2.06
7	(i) Yes, both are correct as natural number is the set of whole positive
	integers.

	(ii) Natural number: A natural number is the number that is used for counting, i.e. starting from 1 onwards. They are the whole positive integers. Integers: It is the whole number that can be positive, negative or zero. $Z = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Rational number: Any number that can be written in the form is called rational number, where <i>p</i> and <i>q</i> are integers and $q \neq 0$. Irrational number: A number that cannot be written in the form , where <i>p</i> and <i>q</i> are integers and $q \neq 0$. (iii) Values depicted are: • Environment friendly • Cooperation
8	(i) Total number of coins = 3^4 Price of coin A =Rs. 2^7 each Total price of coin A = Rs. $3^4 \times 2^7$ Price of coin B = Rs. 3^5 each Total price of coin B = Rs. $3^5 \times 3^4$ Since $2^7 < 3^5$, Price of coin A < Price of coin B Hence, finally they bought the coin A and total price paid to shopkeeper is = Rs. $3^4 \times 2^7$ = Rs.81 × 128 = Rs.10,368 (ii) Number of coins each friend received = $= 3^{4-2} = 3^2 = 9$ (iii) Values depicted are: • Proper use of mathematical knowledge.
9	True.
	Let us take $x = \sqrt[4]{2}$
	Now, $x^2 = (\sqrt[4]{2})^2 = \sqrt{2}$, an irrational number.
	$x^4 = (\sqrt[4]{2})^4 = 2$, a rational number.
	So, we have a number x such that x^2 is irrational but x^4 is rational.
10	$\frac{6}{3\sqrt{2}-2\sqrt{3}} = \frac{6}{3\sqrt{2}-2\sqrt{3}} \times \frac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}$ $= \frac{6 \times (3\sqrt{2}+2\sqrt{3})}{6\sqrt{2}+2\sqrt{3}}$
	$=\frac{6 X (3 \sqrt{2} + 2 \sqrt{3})}{6}$
	$=(3\sqrt{2}+2\sqrt{3})$

CHAPTER 02 : POLYNOMIALS

	COMPETENCY BASED QUESTIONS				
Q1	Factors of $\sqrt{2}x^2 - x - 10\sqrt{2}$ are (a) $(\sqrt{2}x - 5)(x + 2\sqrt{2})$ (b) $(\sqrt{2}x + 5)(x + 2\sqrt{2})$ (c) $(\sqrt{2}x + 5)(x - 2\sqrt{2})$ (d) $(\sqrt{2}x - 5)(x - 2\sqrt{2})$				
Q2	The value of $(5)^3 + (7)^3 + (-12)^3$ is				
	(a)1260 (b) -1260 (c) 420 (d)0				
Q3	When $p(x) = 5x^4 - 4x^3 + 16x - 83$ is divided by $(x - 2)$, the				
	(a) 0 (b) 3 (c) -6 (d) -3				
Q4	If $a + b = 7$, $ab = 6$ then the value of $a^3 + b^3$ will be				
	(a)117 (b) 217 (c) 469 (d) 61				
05	Eactors of $343a^3 - 125b^3$ are				
	(a) $(7a + 5b)(49a^2 + 35ab + 25b^2)$				
	(b) $(7a - 5b)(49a^2 - 35ab - 25b^2)$				
	(c) $(7a - 5b)(7a^2 + 35ab + 5b^2)$				
	(d) $(7a - 5b)(49a^2 + 35ab + 25b^2)$				
Q 6	Out of the following, the quadratic polynomial is				
	(a) $5x^2 - x^3 + 14$ (b) $3x - 2$ (c) $3x^2 - 2x + 1$ (d) $x^2 + \frac{1}{x^2} + 2$				
Q 7	The expansion of $(4x - 3y - 5z)^2$				
	(a) $16x^2 + 9y^2 + 25z^2 - 24xy + 30yz - 40xz$ (b) $16x^2 + 9y^2 + 25z^2$				
	(c) $16x^2 - 9y^2 - 25z^2 - 24xy + 30yz - 40xz$ (d) all correct				
Q 8	If $x + \frac{1}{x} = 12$ then find $x^2 + \frac{1}{x^2}$				
0.9	(a)144 (b)24 (c) 36 (d) 142				
	(a) $\sqrt{5}r + 9$ (b) $\sqrt{2}r^2 + \sqrt{5}r + \sqrt{3}$ (c) $2\sqrt{r} + 7r^2$ (d) $\sqrt{3}r^3 + 10r^2$				
010	Product of $(2a + 7)(2a - 7)$ is				
z	(a) $2a^2 - 7$ (b) $2a^2 - 49$ (c) $2a^2 + 49$ (d) $4a^2 - 49$				

supporter of education. All 60 students of class IX celebrated the day with full zeal and enthusiasm. It was a day of delight for the teachers to see the talents of their students who had taken part and had put in their heart and soul to put up a wonderful programme for their teachers. They gifted a photo of Dr. Sarvepalli Radhakrishnan, with the beautiful wooden frame given in the following picture. The frame is in the shape of square with sides of frame is x cm and sides of photo is 15 cm. All the four corners have four small squares. See the picture and give the following answers.

	1.What is the area of (a) x	of whole photo fraction $(b) 4x$	ime ir (c)	terms of x 2x	(d) x ²
	2. Find the area of c (a) $x^2 - (15)^2$	only frame. (b) $x^2 + 15^2$	(c)	$(x - 15)^2$	(d) (<i>x</i> – 15)
	3. Find the area of a (a) $x^2 - (15)^2$	(b) $\frac{x^2 + 15^2}{2}$	rner s (c)	equare. $\frac{(x-15)^2}{4}$	(d) $\frac{(x-15)^2}{2}$
	4. If $x = 20 cm$, what (a) 150cm ²	t will be the area (b) 225cm ²	of wh (c)	ole photo frame 400cm ²	? (d) 25cm ²
	5. What kind of poly (a) Linear	nomial does the (b) Quadratic	area ((c)	of frame represe Cubic	ent? (d)monomial
(iv)	Raga Ram and Ravi replies were given b	were writing the by them for the qu	test o Jestio	on polynomials. ns given below:	Following Could you
	help them to decide	the correct answ	er.		
	1.What is the degree (a) Raga's reply: De of x is 2	e of polynomial 🤉 egree of given pol	x ² + 6: ynom	x - 2 ial is 2 as highe	st exponent
	(b) Ram's reply: De (c)Ravi's reply: Deg terms in a polynomi	gree of given poly ree of given poly al.	ynom nomia	ial is 1 as coeffic al is 3 as there a	tient of x is 1 re three

	 2. Identify the type of polynomial (a) Raga- Linear polynomial (b) Ram - Quadratic polynomial (c) Ravi - Cubic polynomial
	3.Name the polynomial has degree zero (a) Raga- Zero polynomial (b) Ram - Linear polynomial (c) Ravi - Constant polynomial
	4.Identify the type of polynomial which is a binomial and having
	(a) Raga: $x^7 + x^8$ (b) Ram: $7x + 2$ (c) Ravi: $x^7 + 2x - 2$ (d) None
	5.The Degree of polynomial $p(x) = 0$ is (a) Raga- 0 (b) Ram - 1 (c) Ravi – does not exist
(v)	Rakesh, Raj and Ashka are completing their math homework given by
	the teacher. Following questions are given to the. Do help them to
	verify their answers
	1) Give example of quadratic polynomial.
	Raj wrote $p(x) = (x - 4)(x - 2)$. Rakesh wrote $p(x) = (x^2 - 4)$ and Ashka
	has written $8x^2$
	(a) only Rakesh is correct
	(b) Both Raj and Rakesh are correct
	(c) Only Ashka is correct
	(d) All are correct
	2) Write an example of a polynomial having one variable of degree 3
	having 3 terms
	Rakesh's answer: $2x^3 - x + 7$
	Raj's answer: $2x^3 - y^3 + 6$
	Ashka's answer: $\sqrt{3}x^3 + 5$
	(a) only Rakesh is correct
	(b) Both Raj and Rakesh are correct
	(c) Only Ashka is correct
	(d) All are correct

	3) Write an example of a polynomial having one variable of degree 31
	Rakesh's answer: a^{31}
	Raj's answer: $x^{31} + 6$
	Ashka's answer: $31x^3 - 31x$
	(a) only Rakesh is correct
	(b) Both Raj and Rakesh are correct
	(c) Only Ashka is correct
	(d) All are correct
	4) Factorise: $x^3 - 64$
	Rakesh's answer: $(x - 2)(x^2 + 4x + 16)$
	Raj's answer: $(x - 4)^3$
	Ashka's answer: $(x - 4)(x^2 + 4x + 16)$
	(a) only Rakesh is correct
	(b) Both Raj and Rakesh are correct
	(c) Only Ashka is correct
	(d) All are correct
	5) Expand: $(2x + 3)^3$
	Rakesh's answer: $8x^3 + 27$
	Raj's answer: $4x^3 + 18x + 9$
	Ashka's answer: $8x^3 + 36x^2 + 54x + 27$
	(a) only Pakash is correct
	(d) Only Rakesh is correct
	(c) Only Ashka is correct
	(d) All are correct
(iv)	OBJECTIVE TYPE
1	Degree of polynomial $n(r) = \sqrt{5}$ is
2	What is the degree of polynomial $(x) = 0.2$
2	For the regree of polynomial $(x) = 0$:
3	Factorisation of $x^2 - 216y^2 + 18x^2y + 108xy^2$ is $x - 6y^2$. Frue/False
4	Match the columns:

	General form of Polynomial	Degree of		
	Cubic Polynomial	1		
	Quadratic Polynomial	3		
	Linear Polynomial	no		
	Constant Polynomial	0		
	Zero Polynomial	4		
		2		
5	Correct the statement if it is false: Deg	ree of zero polyno	mial is zero. 3	3
6	Polynomial $p(x) = 5x - 6$ has infinite z	eroes. True/False	2	2
7	Justify the statement if false: A binomi	al can have at least	two terms. 1	1
8	Classify the following polynomials as	polynomials in one	variable, two	
	variables etc.		(0
	(i) $x^2 + x + 1$ (ii) $y^3 - 52$	У	(0
	(iii) $xy + yz + zx$ (iv) $x^2 - 2x$	$y + y^2 + 1$		
9	Write the coefficient of x^2 in the given	n expression: (x - 1) (3x - 4) N	10
10	0 and 2 are the zeroes of $t^2 - 2t$. true	/False		
	SHORT ANSWER TYPE QUESTIONS	S		
Q 1	If $a + b = 15$, $ab = 14$ then find a^2	$+ b^2$		
Q 1 Q 2	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$	$+ b^2$		
Q 1 Q 2 Q 3	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$	$+ b^2$		
Q 1 Q 2 Q 3 Q 4	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$	+ b ²		
Q 1 Q 2 Q 3 Q 4 Q 5	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 3x)^2$	$(+ b^2)$		
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 3y)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y$	$(+ b^{2})$ $(- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$		
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 1)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remainder $x^2 + \frac{1}{x^2}(x^2 + 1)^2$	$(+ b^{2})$ $(- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ hinder, 2 - x(y) - 2y	1	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 - x^2)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remain $p(x) = 4x^3 - 12x^2 + 14x^2$	$+ b^{2}$ $- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ hinder, $- 3, g(x) = 2x - \frac{1}{2}$ divisible by $x + \frac{3}{2}$	- 1	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 8	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 1)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remand $p(x) = 4x^3 - 12x^2 + 14x^2$ For what value of m is $x^3 - 2mx^2 + 16$ If $a + b + a = 0$ and $ab + ba + ab = 0$	$+ b^{2}$ $- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ $\frac{1}{x^{2}} - 3y + 5\sqrt{3}$	- 1 ?	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 1)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remand $p(x) = 4x^3 - 12x^2 + 14x^2$ For what value of m is $x^3 - 2mx^2 + 16^2$ If $a + b + c = 9$ and $ab + bc + ca = 10^{-2}$	$+ b^{2}$ $- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ inder, $- 3, g(x) = 2x - \frac{1}{2}$ divisible by $x + 2$ 26, find $a^{2} + b^{2} + \frac{1}{2}$	- 1 ? c ² .	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 1)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remand $p(x) = 4x^3 - 12x^2 + 14x^2$ For what value of m is $x^3 - 2mx^2 + 16^2$ If $a + b + c = 9$ and $ab + bc + ca = 10^2$ Give possible expressions for the lengen whose area is given by $4a^2 + 4a - 3$.	$+ b^{2}$ $- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ $y^{2} - 3\sqrt{3}$ $y^{2} $	$\frac{-1}{c^2}$.	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 1)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remand $p(x) = 4x^3 - 12x^2 + 14x^2$ For what value of m is $x^3 - 2mx^2 + 16^2$ If $a + b + c = 9$ and $ab + bc + ca = 10^2$ Give possible expressions for the lengen whose area is given by $4a^2 + 4a - 3$. LONG ANSWER TYPE QUESTIONS	$+ b^{2}$ $- \frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ inder, $- 3, g(x) = 2x - \frac{1}{2}$ divisible by $x + 2$ 26, find $a^{2} + b^{2} + \frac{1}{2}$ gth and breadth of	$\frac{1}{c^2}$ the rectangle	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 Q 1	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + 1)^2$ Find the value of $p(-2\sqrt{3})$ if $p(y) = \sqrt{3}y^2$ By Remainder Theorem find the remand $p(x) = 4x^3 - 12x^2 + 14x^2$ For what value of m is $x^3 - 2mx^2 + 16^2$ If $a + b + c = 9$ and $ab + bc + ca = 16^2$ Give possible expressions for the length whose area is given by $4a^2 + 4a - 3$. LONG ANSWER TYPE QUESTIONS Factorise: $x^3 - 216y^3 + 18x^2y + 108xy^2$	$+ b^{2}$ $-\frac{1}{x^{2}})$ $y^{2} - 3y + 5\sqrt{3}$ hinder, $-3, g(x) = 2x - \frac{1}{2}$ divisible by $x + 2$ 26, find $a^{2} + b^{2} + \frac{1}{2}$ by the and breadth of	$\frac{-1}{c^2}$ the rectangle	
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 Q 1 Q 1 Q 2	If $a + b = 15$, $ab = 14$ then find a^2 Expand $(a - 2b + 3c)^2$ Expand $(3a - 4c)^3$ Find the product of $(x^2 + 3y + 7)(x - 2)^2$ Factorise using identities: $x^2 + \frac{1}{x^2}(x^2 + \frac{1}{x^2})(x^2 + $	+ b^2) $-\frac{1}{x^2}$) $y^2 - 3y + 5\sqrt{3}$ inder, $-3, g(x) = 2x - \frac{1}{2}$ divisible by $x + 2$ 26, find $a^2 + b^2 + \frac{1}{2}$ gth and breadth of find the value of + $(-12)^3$	$\frac{-1}{c^2}$ the rectangle	

Q 4	Find k if $x^3 + 6x^2 + 11x + 6 = k(x + 1)$							
Q 5	Without finding the cubes, factorise $(x - y)^3 + (y - z)^3 + (z - x)^3$							
Q 6	If $p(x) = x^2 - 4x + 3$, evaluate : $p(2) - p(-1) + p\left(\frac{-1}{2}\right)$							
Q 7	If $x + y = 12$ and $xy = 27$, find the value of $x^3 + y^3$							
Q 8	If $(x - 2)$ is a factor of polynomial $p(x) = x^4 - 2x^3 + 3x^2 - ax + 3a - 7$ then find the value of a .							
Q 9	Simplify: $(2x - 5y)^3 - (2x + 5y)^3$							
Q 10	Multiply: $x^2 + 4y^2 + z^2 + 2xy + xz - 2yz$ by $(-z + x - 2y)$							

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(a) $(\sqrt{2}x - 5)(x + 2\sqrt{2})$
Ans2	(b) -1260
Ans3	(d) -3
Ans4	(b) 217
Ans5	(d) $(7a - 5b)(49a^2 + 35ab + 25b^2)$
Ans6	(c) $3x^2 - 2x + 1$
Ans7	(a) $16x^2 + 9y^2 + 25z^2 - 24xy + 30yz - 40xz$
Ans8	(d) 142
Ans9	(c) $2\sqrt{x} + 7x^2$
Ans1 0	(d) $4a^2 - 49$
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
1	1. (c) $2x^3 + 3x^2 - 9x$ 2. (a) $2x^2 + 3x - 9$ 3. (b) Quadratic
	4. (d) Cubic 5. (b) 77cm, 43 cm
2	1. (d) $(12 + 2x)(5 + 2x)$ 2. (c) $4x^2 + 34x + 60$ 3.(c) $4x^2 - 34x$
	4. (c) 78 m ² 5. (c) two
3	1.(d) x^2 2.(a) $x^2 - (15)^2$ 3. $\frac{(x-15)^2}{4}$ 4.(c) 400cm ² 5.(b) Quadratic
4	1. (a) Raga's reply: Degree of given polynomial is 2 as highest exponent of x is 2 2. (b) Ram - Quadratic polynomial
	3. (c) Ravi - Constant polynomial 4. (d) None 5. (c) Ravi – does not exist
5	 (d) All are correct 2. (a) only Rakesh is correct (b) Both Raj and Rakesh are correct 4. (c) Only Ashka is correct (c) Only Ashka is correct
1	Objective Type Degree of polynomial $w(w) = \sqrt{r}$ is Zero
- -	Degree of polynomial $p(x) = \sqrt{5}$ is <u>Zero</u>
2	
3	Faise
4	Match the columns:

	General form of Polynomial	answers									
	Cubic Polynomial	3	-								
	Quadratic Polynomial	2	_								
	Linear Polynomial	1									
	Constant Polynomial	0									
	Zero Polynomial NO										
5	false: Degree of zero polynomial doe	es not exist.									
6	False. it has only one zero.										
7	false: A binomial can have at least ex	actly two terms.									
8	Classify the following polynomials as polynomials in one variable, two variables etc. (i) & (ii) one variable										
9	3										
10	yes										
	SHORT ANSWER TYPE QUESTIONS										
1	$a^2 + b^2 = 197$										
2	$(a - 2b + 3c)^2 = a^2 + 4b^2 + 9c^2 - 4ab - 12bc + 6ac$										
3	$(3a-4c)^3 = 27a^3 - 1$	$-08a^2c + 144ac^2 -$	- 64 <i>c</i> ³								
4	the product of $(x^2 + 3y + 7)(x - 2) =$	$x^3 - 2x^2 + 3xy -$	6y + 7x - 14								
1											
5	$(x^2 + \frac{1}{x^2})(x^2 - \frac{1}{x^2}) = x^4 - \frac{1}{x^4}$										
5	$(x^{2} + \frac{1}{x^{2}})(x^{2} - \frac{1}{x^{2}}) = x^{4} - \frac{1}{x^{4}}$ $23\sqrt{3}$										
5 6 7	$(x^{2} + \frac{1}{x^{2}})(x^{2} - \frac{1}{x^{2}}) = x^{4} - \frac{1}{x^{4}}$ $23\sqrt{3}$ $\frac{1}{2}$										
5 6 7 8	$(x^{2} + \frac{1}{x^{2}})(x^{2} - \frac{1}{x^{2}}) = x^{4} - \frac{1}{x^{4}}$ 23 $\sqrt{3}$ 1/2 For what value of <i>m</i> is $x^{3} - 2mx^{2} + 1$ $m = 1$	6 divisible by x +	2 ?								
5 6 7 8 9	$(x^{2} + \frac{1}{x^{2}})(x^{2} - \frac{1}{x^{2}}) = x^{4} - \frac{1}{x^{4}}$ 23 $\sqrt{3}$ ¹ / ₂ For what value of <i>m</i> is $x^{3} - 2mx^{2} + 1$ <i>m</i> = 1 If <i>a</i> + <i>b</i> + <i>c</i> = 9 and <i>ab</i> + <i>bc</i> + <i>ca</i> =	6 divisible by $x + = 26$, find $a^2 + b^2$	2? + c^2 .								
5 6 7 8 9	$(x^{2} + \frac{1}{x^{2}})(x^{2} - \frac{1}{x^{2}}) = x^{4} - \frac{1}{x^{4}}$ 23 $\sqrt{3}$ ¹ / ₂ For what value of <i>m</i> is $x^{3} - 2mx^{2} + 1$ <i>m</i> = 1 If $a + b + c = 9$ and $ab + bc + ca = a^{2}$ $a^{2} + b^{2} + c^{2} = 624$	6 divisible by $x + 26$, find $a^2 + b^2$	$2?$ + c^2 .								

	LONG ANSWER TYPE QUESTIONS
1	Factorise: $x^3 - 216y^3 + 18x^2y + 108xy^2$
	$= (x - 2y)^3$
2	Without actually calculating the cube, find the value of $(2)^2 + (2)$
	$(5)^3 + (7)^3 + (-12)^3 = -1260$
3	(x+1)(x+3)(x-5)
4	$k = x^2 + 5x + 6$
5	Without finding the cubes, factorise $(x - y)^3 + (y - z)^3 + (z - x)^3$
	As $x - y + y - z + z - x = 0$ hence
	$(x - y)^{3} + (y - z)^{3} + (z - x)^{3} = 3(x - y)(y - z)(z - x)$
6	If $p(x) = x^2 - 4x + 3$, evaluate : $p(2) - p(-1) + p\left(\frac{-1}{2}\right)$
	$p(2) = -1$, $p(-1) = 8$, $p\left(\frac{-1}{2}\right) = \frac{21}{4}$
	$n(2) - n(-1) + n\left(\frac{-1}{2}\right) = \frac{49}{2}$
	p(-) p(-) p(-) p(-) q q q q q q q q q
/	If $x + y = 12$ and $xy = 27$, find the value of $x^3 + y^3 = 432$
8	If $(x - 2)$ is a factor of polynomial $p(x) = x^4 - 2x^3 + 3x^2 - ax + 3a - 7$
	then find the value of a . $a = -5$
9	$(2x - 5y)^3 - (2x + 5y)^3 = -120x^3y - 250y^3$
10	$(-z + x - 2y)(x^2 + 4y^2 + z^2 + 2xy + xz - 2yz)$
	$= (x - 2y - z)(x^{2} + 4y^{2} + z^{2} + 2xy + xz - 2yz)$
	$= x^3 - 8y^3 - z^3 + 6xyz$

	COMPETENCY BASED QUESTIONS
Q1	Absicssa of a point is positive in :
	a) I and II quadrants b) I and IV quadrants c) I quadrant only d) II quadrant only
Q2	Mirror image of the point (9,-8) in Y-axis is:
	a) (-9,-8) b) (9,8) c) (-9,8) d) (-8,9)
Q3	Point (0,4) lies :
	a) In I quadrant b) On x-axis c) On y-axis d) In IV quadrant
Q4	Which graph is parallel to x-axis?
	a) Y=x+1 b) Y=2 c) X=3 d) X=2y
Q 5	The point of intersection of horizontal and vertical lines determining the position of a point in a Cartesian plane is called:
	a) Origin b) X-axis c) Y-axis d) Quadrants
Q 6	The perpendicular distance of a point $P(5,8)$ from the y-axis is:
	a) 5 b) 8 c) 3 d) 13
Q 7	If $(x+2,4) = (5,y-2)$, then coordinates (x,y) are:
	a) (7,12) b) (6,3) c) (3,6) d) (2,1)

Q 8	The number of parts the coordinates axes divides the plane is:
	a) Two parts
	b) Four parts
	c) Six parts
0.0	d) Eight parts Ordinate of all the points in the x-axis is:
Q9	
	a) 0
	b) 1
	C) -I d) Any natural number
Q10	The equation of y-axis is:
	a) X=0
	c) $X = y = 0$
	d) X=constant
Q 11	Which of the following statements is incorrect?
	a) A line segment has definite length.
	b) Three lines are concurrent if and only if they have a common
	point.
	c) I wo lines drawn in a plane always intersect at a point.
	point and parallel to a given line.
Q 12	Two planes intersect each other to form a:
	a) Plane
	b) Point
	c) Straight line
0.12	d) Angle
Q IS	The number of line segments determined by three connear points is.
	a) Two
	b) Three
	d) Four
Q 14	The number of interwoven isosceles triangles in Sriyantra (in the
	Atharvaveda) is:
	a) 7
	b) 8
	c) 9
0.15	d) 10 The total number of propositions in Euclid's famous treatics "The
Q 12	Flements" are:
	a) 13
	b) 55
	c) 460
	3, 100

Q 16	Proved statements based on deductive reasoning, by using postulates
	and axioms are known as:
	a) A statement only b) A proposition only
	c) A theorem only
	d) Both proposition and theorem
Q 1/	Which of these statements do not satisfy Euclid's axiom?
	 a) Things which are equal to the same thing are equal to one another.
	b) If equals are added to equals, the wholes are equal.
	 c) If equals are subtracted from equals, the remainders are equal. d) The whole is lesser than the part
Q 18	The first known proof that 'the circle is bisected by its diameter' was
	given by:
	a) Pythagoras
	b) Thales
	c) Euclid
	d) Hypatia
Q 19	For every line '/' and a point P not lying on it, the number of lines that
	passes through P and parallel to '/' are:
	a) 1
	b) 2
	c) 3
	d) No line
Q 20	Which of the following is an axiom?
	a) Theorems
	b) Definitions
	c) The universal truth in all branches of Mathematics.
	a) Universal truth specific to geometry.
	CASE STODIES/ SOURCE DASED INTEGRATED QUESTIONS
Q 11	There is a square park ABCD in the middle of Saket colony in Delhi. Four children Deepak, Ashok,Arjun and Deepa went to play with their balls. The colour of the ball of Ashok,Deepak,Arjun and Deepa are red, blue,yellow and green respectively. All four children roll their ball from the centre point Q in the direction of XOX_X'OX_X'OX' and XOX'.
	balls stopped as shown in the figure.

							Y							
	A		Dee	pak's	ball	5			-			в		
		(γ^{-}			4				Asho	ok's b	all		
						3								
						2						1		
						1	O(0.	0)						
	X	-5	-4	-3	-2	-1	1	2	3	4	5	×		
	à					-2						1		
						- 3						1		
			()		-			-0						
			Alju						Deep	a 31				
	С						VI.					D		
							T							
	Ansv	ver t	he fo	ollowi	ng qı	uestic	ons:							
(i)	Wha	t are	the	coor	dinat	es of	the t	oall o	f Ash	iok?				
	a) b))(4,)(3,	3) 4)											
	c) d) (4,	4) 3)											
(ii)	Wha	t are	the	coor	dinat	es of	the t	oall o	f Dee	epa?				
	a) (2,	-3)											
	D C)(3,)(2,	2) 3)											
(iii)	d) Wha	<u>) (2,</u> t the	2) i lie >	KOX'	is ca	lled?								
	a) Y-a	ixis											
	b) Oro	dinat	е										
	d)) ^-c) orig	gin											
(iv)	Wha	t the	poir	nt O i	s cal	led?								
	a) b) Y-a) Oro	ixis dinat	е										
	C) C) X-a	axis nin											
		, 011												
	1													

(v)	What is the ordinate of the ball of Arjun?							
	a) -3							
	b) 3							
	c) 4 d) 2							
Q 12	Rohit was putting up one of his paintings in his living room. Before this							
	Rohit had put a grid on the wall where each unit measured equal to a							
	foot. The upper left corner of the frame is at point $C(1,8)$ and the							
	upper right corner at $D(7,8)$. The bottom left corner is at $A(1,2)$ and							
	8 C(1,8) D(7,8)							
	5							
	4							
	3							
	2 A B B (7.2)							
	1 (1)=/							
	O(0,0) 1 2 3 4 5 6 7 8 9 X							
(1)	what is the width of the painting plus frame?							
	a) 6 feet							
	b) 9 feet c) 8 feet							
	d) 5 feet							
(ii)	What is the length of the painting plus frame?							
	a) 6 feet							
	b) 9 feet							
	d) 5 feet							
(iii)	Which sides of the painting are parallel to x-axis?							
	a) Diagonals AD and BC							
	b) AB and CD							
	c) AC and BD d) No one							
(iv)	Which sides of the painting is parallel to y-axis?							
	a) Diagonals AD and BC							
	b) AB and CD							
	c) AC and BD							
	a) No one							
(v)	Point A,B,C and D lie in which quadrant?							
-------	--							
	a) II b) III c) IV d) I							
Q 13	Map is used to describe spatial relationships of specific features that the map aims to represent. Maps are drawn to a scale. Directions are taken at right angles, with North-South (y-axis) perpendicular to East- West (x-axis). South and west directions are taken as negative. So,the map gets divide into Cartesian plane. Sumit drew ampa in Cartesian plane. Observe the given graph and answer the following questions:							
	Camp Site Site Landing Jetty Site Stre Stre Stre Stre Stre Stre Stre Cafe Store Store Store Store Swimming Pool Swimming Pool Swimming Pool Swimming Pool Swimming Pool Swimming Pool Swimming Pool Swimming Pool Shop							
(i)	What is the coordinate of Café?							
	a) (3,2) b) (-2,-3) c) (2,3) d) (2,-3)							
(ii)	What is the distance of Camp site from y-axis?							
	a) 4 units b) 5 units c) 9 units d) 1 unit							
(iii)	Which of the following place(s) is (are) in the third quadrant?							
	a) Swimming pool b) Hotel c) Tennis court d) All of the above							

(iv)	What are the coordinates of School?
	a) (5,0) b) (-5,0) c) (0,5) d) (0,-5)
(v)	What is the distance of Beach shop from x-axis?
	a) 5 units b) 4 units c) 2 units d) 6 units
Q 14	DPS school provides free education to girl students from weaker sections. The local body of a town want to open a DPS school in the town for which a rectangular plot ABCD as shown in the figure is very suitable. But this plot belongs to SohanLal. He agrees toexchange it with triangular plot PQR as shown below.
	$X^{+} \xrightarrow{-2 - 1 - 1}^{Y} \xrightarrow{10}^{+} \xrightarrow{P} \xrightarrow{P} \xrightarrow{m} \xrightarrow{R} \xrightarrow{R} \xrightarrow{Y}$
(i)	Write the coordinates of point C?
	a) (9,8) b) (8,9) c) (7,8) d) (8,7)
(i)	Write the coordinates of point A?
	a) (6,3) b) (3,6) c) (5,3) d) (3,5)

(ii)	Write the coordinates of point Q?
	a) (4,5) b) (3,6) c) (6,4) d) (4,6)
(iii)	Find the area(in sq units) of rectangle ABCD.
	a) 15 b) 10 c) 8 d) 12
(iv)	Find the area(in sq units) of triangle PQR.
	a) 4 b) 8 c) 6 d) 10
Q 15	Students of class IX are on visit of SansadBhawan. Teacher assign them the activity to observe and take some pictures to analyses the seating arrangement between various MP and Speaker based on coordinate geometry. The staff tour guide explained various facts related to Math's of SansadBhawan to the students, students were surprised when teacher asked them you need to apply coordinate geometry on the seating arrangement of MP's and Speaker.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(i)	What are the coordinates of position F?
	a) (3,4) b) (4,3) c) (-3,4) d) (-4,3)
(ii)	What are the coordinates of position D?
	a) (3,2) b) (-3,-2) c) (-3,2) d) (3,-2)
(iii)	Which point i will get after taking 4 steps in the positive x-axis and later 2 steps in positive y-axis.
	a) B b) E c) A d) C
(iv)	In which quadrant, the point C lie?
	a) IV b) II c) III d) I
(v)	Find the perpendicular distance of the point E from the x-axis.
	a) 13 units b) 10 units c) 3 units d) 11 units
Q 16	A school organized an educational trip to a museum. Almost all the students of class IX went to the trip with their mathematics teacher. They saw many pictures of the Mathematicians and read about their

	contributions in the field of mathematics. After visiting the museum, teacher asked them the following questions:
(i)	It is known that if $x+y=10$ then $x+y+z=10+z$. Euclid's axiom that illustrates this statement is:
	a) First axiom b) Second axiom c) Third axiom d) Fourth axiom
(ii)	In how many chapters the book written by Euclid is divided?
	a) 10 b) 20 c) 13 d) 23
(iii)	Euclid stated that all right angles are equal to each other in the form of:
	a) An axiom b) A definition c) A postulate d) A proof
(iv)	Which of the following needs a proof:
	a) Theorem b) Axiom c) Definition d) Postulate
(v)	What is the name of book, which was written by Euclid?
	a) Book b) Elements c) Plane d) Sulbasutras
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 27	x-coordinate is positive in I and III quadrant.(True/False)
Q 28	The ordinate of the point Q(2,3) is 2.(True/False)
Q 29	The point (0,6) lies on axis.
Q 30	X – coordinate of a point is also known as
Q 31	The figure obtained by plotting the points (2,3), (-2,3), (-2,-3), (2,-3) is a
Q 32	What is the vertical number line in the coordinate plane called?

Q 33	What are the coordinates of the Origin?
Q 34	The axes intersect at a point called
Q 35	If a point (x,y) lies above horizontal axis, then y is always
Q 36	The point (-3,-4) lies in quadrant.
Q 37	A solid has dimensions.
Q 38	The line drawn from the centre of the circle to any point on its circumference is called
Q 39	There are number of Euclid's Postulates.
Q 40	The things which are double of the same thing are
Q 41	A point has dimension.
Q 42	Euclidean geometry is only valid for curved surfaces.(True/False)
Q 43	Only one line can pass through a given point.(True/False)
Q 44	Two distinct intersecting lines cannot be parallel to the same line.(True/False)
Q 45	The length of the circle means of the circle.
Q 46	In how many chapters Euclid divided his famous treaties "The Elements"?
	SHORT ANSWER TYPE QUESTIONS
Q 47	Which of the following points lie on y-axis?
	A(1,1), B(1,0), C(0,1), D(0,0), E(0,-1), F(-1,0), G(0,5), H(-7,0), I(3,3).
Q 48	Without plotting the points indicate the quadrant in which they lie, if:
	 i) Ordinate is -5 and abscissa is 3. ii) abscissa is -5 and ordinate is -3. iii) abscissa is -5 and ordinate is 3. iv) Ordinate is 5 and abscissa is 3.
Q 49	What will be reflections of D(-2, -3) in x-axis and y-axis?
Q 50	In which quadrant or axis each of the following points lie? a) (-3,5) b) (4,-1) c) (2,0) d) (2,2) e) (-3,-6).

Q 51	Take a rectangle ABCD with A(-6,4), B(-5,2), C(-3,3), D(-,4). Find its mirror image with respect to x-axis.
Q 52	Take a quadrilateral ABCD with A(-5,-4), B(-6,2), C(-2,2), D(-3,4). Find its mirror image with respect to Y-axis.
Q 53	Find the coordinates of the point
	 i) Which lies on x and y axes both. ii) Whose ordinate is -4 and lies on y-axis. iii) Whose abscissa is 5 and lies on x-axis.
Q 54	A point lies on x-axis at a distance of 9 units from y-axis. What are its coordinates? What will be the coordinates of a point, if it lies on y-axis at a distance of -9 units from x-axis?
Q 55	If a point R lies between two points P and Q such that $PR = QR$, then prove that $PR = \frac{1}{2} PQ$.
Q 56	Two salesmen make equal sales during the month of June. In July, each salesman doubles his sale of the month of June. Compare their sales in July. State which axiom you use here. Also, give two more axioms other than the axiom used in the above situation.
Q 57	If lines AB, AC, AD and AE are parallel to a line I, then show that the points A, B, C, D and E are collinear.
Q 58	If P and Q are the centres of two intersecting circles, then prove that $PQ = QR = PR$.
	LONG ANSWER TYPE QUESTIONS
Q 59	In rectangle OPQR point O is the origin, $OP = 9$ units along positive x- axis and PQ = 5 units. Find the coordinates P, Q and R. Also, find the area of the rectangle.
Q 60	In the given figure, ABC is an equilateral triangle. The coordinates of vertices B and C are (3,0) and (-3,0), respectively. Find the coordinates of its vertex A. Also, find its area.

Q 66	In the figure given below:
	 i) If AB = BC, then M is the mid-point of AB and N is the mid-point of BC. Show that AM = NC. ii) If BM = BN, then M is the mid-point of AB and N is the mid-point of BC. Show that AB = BC.
Q 67	In given figure, we have $\angle ABC = \angle ACB$ and $\angle 3 = \angle 4$. Show that BD = DC.
Q 68	Rehman and Prakash contributed equal amount towards Prime Minister Relief Fund. Prakash and Rahul also contributed equal amount towards Prime Minister Relief Fund. If Rahul contributed Rs. 500, then how much Rehman contributed? Which Euclid axiom helped in reaching the correct answer?

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(b) I and IV quadrants
Ans 2	(a)(-9,-8)
Ans 3	(c) on y-axis
Ans 4	(b) y=2
Ans 5	(a)origin
	(a)5
	(c) (3,6)
	(b) four parts
	(a)0
Ans10	(a)x=0
Ans 11	c) two lines drawn in a plane always intersect at a point.
Ans 12	c) straight line
Ans 13	b) three
Ans 14	c) 9
Ans 15	d)465
Ans 16	d)both proposition and theorem
Ans 17	d)The whole is lesser than the part
Ans 18	b) Thales
Ans 19	a)1
Ans 20	c) The universal truth in all branches of Mathematics.

	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Ans 21	i) b) (3,4) ii) a) (2,-3) iii) c) x-axis iv) d) origin v) -3
Ans 22	 i) a) 6 feet ii) a) 6 feet iii) b) AB and CD iv) c) AC and BD v) d) I
Ans 23	 i) c)(2,3) ii) b) 5 units iii) d) all of the above iv) c)(0,5) v) b) 4 units
Ans 24	 i) b) (8,9) ii) b) (3,6) iii) c) (6,4) iv) a) 15 sq units v) b) 8 units
Ans 25	 i) d) (-4,3) ii) b) (-3,-2) iii) c) A iv) a) IV v) c) 3 units
Ans 26	 i) b) second axiom ii) c) 13 iii) c) A postulates iv) a) Theorem v) b) Elements
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Ans 27	False
Ans 28	False
Ans 29	y-axis
Ans 30	Abscissa

Ans	Rectangle
31	
Ans	v-axis
32	
Ans 33	O(0,0)
Ans 34	Origin
Ans 35	positive
Ans 36	Third
Ans 37	3
Ans 38	Radius
Ans 39	Five
Ans 40	Equal
Ans 41	Zero
Ans 42	False
Ans 43	False
Ans 44	True
Ans 45	Circumference
Ans 46	13 chapters

	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans	C(0,1), D(0,0), E(0,-1), G(0,5)
47	
Ans	i) IV ii) III
48	iii) II
	iv) I
Ans	On x-axis (-2,3)
49	On y-axis (2,-3)
Ans50	a) II
	c) X – axis
	d) I
Ans51	A(-6,-4), B(-6,-2), C(-2,-2), D(-2,-4)
Ans52	A(5,-4), B(6,2), C(2,2), D(3,4).
Ans53	i) $(0,0)$
	iii) (5,0)
Ans54	When the point lies on x axis at a distance of 9 units from y axis then
	the coordinate of this point is $(9,0)$. When the point lies on y axis at a distance of 0 units from x axis then the coordinate of this point is $(0, 0)$.
	9).
Ans	R is the mid-point of PQ
55	
	2PR = RQ
	(2PR)/2 = PQ/2(dividing by2 on both sides)
	$PR = \frac{1}{2} PQ$
Ans	Let the sale of both the salesmen in June be " x'' .
56	In July, each salesman doubles his sales of June.
	Hence, In July,
	Sales of first salesmen = $2x$
	And, sales of second salesman = $2x$.
	According to Euclid's axiom 6, things that are double of the same things are equal to one another.
	Therefore, in July their sales are again equal.
	Other axioms are:

	Axiom 5: The whole is greater than the part.
	Axiom 7: Things which are halves of the same things are equal to one another.
Ans 57	In the given question, we have been given that the lines AB, AC, AD, and AE are parallel to line I. As we know that if two or more lines are parallel to a given line then all the lines are parallel to each other. AB, AC, AD, and AE are also parallel to each other having point A as common to each line. Now, we also know that there is only one line that can be drawn parallel to the given line from a point not on the line. All the points A, B, C, D, and E will lie on one line as shown below.
Ans	In the given figure,
58	PR = PQ (radii of the same circle)(i)
	And QP = QR (radii of the same circle)(ii)
	From Eqs (i) and (ii), PR = QR (by axiom 1)(iii)
	From Eqs (i), (ii) and (iii),
	PQ = QR = PR
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans	In rectangle OPQR, point O is the origin and $OP = 9$ units.
59	Therefore, we get $O(0,0)$ and $P(9,0)$
	Also, given that $PQ = 5$ units.
	Therefore, we get $Q(9,5)$ and $R(0,5)$
	Area of rectangle = $9 \times 5 = 45$ sq units.
Ans 60	BC = 3+3 = 6 units
	Length of altitude OA = $\sqrt{3}/2 \times BC = \sqrt{3}/2 \times 6 = 3\sqrt{3}$
	Therefore, coordinate of A are $(0,3\sqrt{3})$

	Area of $\triangle ABC = \frac{1}{2} \times BC \times AO = \frac{1}{2} \times 6 \times 3\sqrt{3} = 9\sqrt{3}$ sq units
Ans	Given, $(-2,9) = (1 + x, y^2)$ and $y > 0$
61	On comparing both coordinates, we get
	$1+x = -2$ and $y^2 = 9$
	x = -3 and $y = 3$
	now, $P(y,x) = P(3,-3)$ IV quadrant
	Q(2, x) = Q(2, -3)IV quadrant
	$R(x^{2}, y - 1) = R(9,2) I quadrant$
	S(2x, -3y) = S(-6, -9) III quadrant
Ans 62	$B(-3,6) \xrightarrow{7} A(0,6)$ $x' \xrightarrow{C(-3,0)} 1 \xrightarrow{1} (0,0)$ $x' \xrightarrow{-2} -2$
Ans	AC perpendicularly bisect BC
63	So, BO = DO = $\frac{1}{2}$ BD = 4 cm
	Also, AO = CO = $\frac{1}{2}$ AC = 8 cm
	O is origin. Both B and D lies on y-axis so, x- coordinate = 0
	Therefore, B(0,4) and D(0,-4)
	Both A and C lies on x-axis so, y- coordinate = 0
	Therefore, A(-8,0) and C(8,0)
Ans 64	 i) Six points : A,B,C,D,E,F. ii) Five line segments : EG, FH, EF, GH, MN. iii) Four collinear points : M, E, G, B. iv) Four lines : AB, CD, PQ, RS.

Ans 65	True, according to Euclid's fifth postulate : If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles
Ans 66	Given : $AB = BC$ (i) i) M is mid-point of AB. $AM = MB = \frac{1}{2} AB$ Also, N is mid-point of BC. $BN = NC = \frac{1}{2} BC$ Multiplying both sides by $\frac{1}{2}$ in eq (i), $\frac{1}{2} AB = \frac{1}{2} BC$ (Euclid's axiom 7) AM = NC
	Given : $BM = BN$ (i) ii) M is mid-point of AB. $AM = BM = \frac{1}{2} AB$ 2AM = 2BM = AB Also, N is mid-point of BC. $BN = NC = \frac{1}{2} BC$ 2BN = 2NC = BC Multiplying both sides by 2 in eq (i), 2BM = 2BN (Euclid's axiom 6)
	AB = BC
Ans 67	Given, $\angle ABC = \angle ACB$ (i) and $\angle 4 = \angle 3$ (ii) According to Eulid's axiom, if equals are subtracted from equals, then remainders are also equal. On subtracting Eq. (ii) from Eq. (i), we get $\angle ABC - \angle 4 = \angle ACB - \angle 3$ $\angle 1 = \angle 2$ Now, in ABDC, $\angle 1 = \angle 2$
	DC =BD [sides opposite to equal angles are equal]
	BD = DC.
Ans	Given, Rehman and Prakash contributed equal amount.
68	Also, Prakash and Rahul contributed equal amount.
	It is given that Rahul contributes Rs.500
	Therefore, Rehman also contributed Rs.500 (By axiom 1)

CHAPTER : 04 LINEAR EQUATIONS IN TWO VARIABLES

	COMPETENCY BASED QUESTIONS
Q1	The linear equation has2x- 5y=7 has (a) a unique solution
	(b) two solutions
	(c) no solution
	(d) infinitely many solutions
Q2	Age of a father is 7 years more than 3 times the present age of his son. The above statement can be expressed in a linear equation as (a) $x -3y -7 = 0$
	(b) $x+3 y + 7 = 0$
	(c) x + 3 y- 7=0
	(d) x-3 y + 7=0
Q3	The geometric representation of $x = -2$ meets the x -axis at (a) (2, 0)
	(b) (-2 ,0)
	(c) (0, 2)
	(d) (0,-2)
Q4	A solution of the equation $2x + 5y - 3 = 0$ is
	(a) (5, - 2)
	(b) (- 5 ,2)
	(c) (-1,1)
	(d) (1,-1)
Q 5	The value of k , if x=2 and y = -1 , is a solution of the equation $2x + 3y = k$ is
	(a) 6
	(b) 7
	(c) 5
	(d) 1

Q 6	The linear equation $3x = 2$ y when expressed in the form $ax+by+c = 0$, then a, b, c , , are respectively
	(a) 3, 2, 0
	(b) 3, 2, 1
	(c) 3, -2, 0
	(d) 3, -2, 1
Q 7	If the point (3, 4) lies on the graph of the equation 3 y= ax +7 , the value of a is
	(a) 5/3
	(b) 3/5
	(c) 1
	(d) 2/ 5
Q 8	The graph of line $x + y = 7$ intersect the X-axis at
	(a) (7,0)
	(b) (0,7)
	(c) (-7,0)
	(d) (0,-7)
Q 9	The graph of y + 2 = 0 is a line (a) making an intercept -2 on the x-axis (b) making an intercept -2 on the y-axis (c) parallel to the x-axis at a distance of 2 units below the x-axis (d) parallel to the y-axis at a distance of 2 units to the left of y-axis
Q10	Which of the following is not a linear equation in two variables? (a) ax $+$ by = c (b) ax ² + by = c (c) 2x + 3y = 5 (d) 3x + 2y = 6
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q 1	On his birthday, Manoj planned that this time he celebrates his birthday in a small orphanage centre. He bought apples to give to children and adults working there. Manoj donated 2 apples to
	each children and 3 apples to each adult working there along with Birthday cake. He distributed 60 apples

(i)	Write a linear equation in two variables for the above situation in standard form
	(a) $2x - 3y = 60$
	(b) $2x + 3y = 60$
	(c) $3x + 2y = 60$
	(d) 3x - 2y =60
(ii)	How many solutions are there for the linear equation representing the above situation?
	(a) One
	(b) Two
	(c) Infinitely many
	(d) Four
(iii)	How many children are there in the orphanage if there are 10 working adults?
	(a) 15
	(b) 10
	(c)30
	(d) 20
(iv)	How many adults are working there in the orphanage if there are 12 children?
	(a) 36
	(b) 15
	(c) 30
	(d) 12

(v)	A solution of the above equation in two variables is (a) (10,15)
	(b) (12,12)
	(c) (12,0)
	(d) (15,12)
Q 2	In the below given layout, the design and measurements has been made such that area of two bedrooms and Kitchen together is 75 sq.
	$ x \longleftrightarrow x \longleftrightarrow y \longleftrightarrow y \longleftrightarrow y$
	5 m Bedroom 1 Bath room Kitchen
	2 m
	5 m Bedroom 2
	m.
(i)	The area of kitchen and two bedrooms are respectively equal to:
	(a) 5x, 5y
	(b) 5y, 10x
	(c) 5x, 10y
	(d) 10x, 5y
(ii)	The area of the rectangular layout is:
	(a) 75 sq. m
	(b) 180 sq.m
	(c) 150 sq. m
	(d) 54 sq. m
(iii)	The pair of linear equation in two variables formed from the information given in layout are:
	(a) $x + y = 13$, $x + y = 9$
	(b) $2x + y = 13, x + y = 9$

	(c) $x + y = 13$, $2x + y = 15$
	(d) None of the above
(iv)	Find the length of the outer boundary of the layout
	(a) 27m
	(b) 15m
	(c) 50m
	(d) 54 m
(v)	The mathematical concept applied in solving the above problem is:
	(a) Statistics
	(b) Coordinates geometry
	(c) Linear equations
	(d) Probability
Q 3	Sanjay bought 5 notebooks and 2 pens for Rs. 120. He told to guess the cost of each notebook and pen to his friends Mohan and Anil. Sanjay has given the clue that both the costs are integers and divisible by 5 such that the cost of a notebook is greater than that of a pen.
	Now, Mohan and Anil tried to guess.
	Mohan said that price of each notebook could be Rs. 18. Then five notebooks would cost Rs.90, the two pens would cost Rs.30 and each pen could be for Rs. 15.
	Anil felt that Rs. 18 for one notebook was too little. It should be at least Rs. 20. Then the price of each pen would also be Rs.10.
	Based on the above situation, answer the following questions:

(i)	Write a linear equation in two variables for this situation
(ii)	A solution of the above equation in two variables is (a) 10,50
	(b)20,10
	(c)30,20
	(d)20,25
(iii)	Check whether the answers of Mohan and Anil are correct.
(iv)	Find the cost of a notebook and a pen
(v)	If Sanjay purchased 8 notebooks and 4 pens, how much money he has to pay to the shopkeeper?
	(a) Rs. 150
	(b) Rs. 200
	(c) Rs. 250
	(d) Rs. 300
Q 4	Aditya purchased two types of chocolates A and B at the rate of Rs. x and Rs. y respectively. The total amount spent is Rs. 12. After reaching home, he forms a linear equation in two variables for two types of chocolates. He prepares a table and a graph of the linear equation as given below:
	Based on the above situation and graph, answer the following questions:

	L
(i)	Which of the following linear equation in two variables is correct?
	(a) $2x + y = 12$
	(b) $3x + 2y = 12$
	(c) $x + 2y = 12$
	(d) $2x + 3y = 12$
(ii)	How many Chocolates of types A and B purchased
	(a) A=3 ,B=2
	(b) A=2, B=3
	(c) A=2,B=2
	(d) A=3,B=3
(iii)	If Aditya purchased 4 chocolates of type A and 5 Chocolates of type B.
()	then find the total amount.
	(a)22
	(a)22 (b) 23
	(a)22 (b) 23 (c) 25

(iv)	How many Chocolates A and B can be purchased from an amount of Rs. 36
	(a) 9,6 (b) 6,9 (c) 4,9 (d) 9,4
(v)	How many solutions are there for the linear equation representing the above situation?
	(a) One
	(b) Two
	(c) Infinitely many
	(d) Four
Q 5	In Hyderabad, a small colony of five Blocks Apartments is there and in each Block, 40 flats are there. The colony has a Resident Welfare Association consisting of executive members from each block. They decided to develop flower beds in the park of the colony and then plant different flower plants in the beds. The difference of three times the money spent on one flower bed and two times the money spent on one flower plants was Rs. 10000. The total number of flower beds develops is 10 and the number of flower plants planted is 100.
	Based on the above situation, answer the following questions
(i)	Write a linear equation in two variables for the above situation (a) $3x - 2y = 10000$
	(b) $3x+2y = 10000$
	(c) $2x + 3y = 10000$
	(d) 2x -3y =10000

(ii)	A solution of the above equation is (a) (5000,4000)
	(b) (4000,1000)
	(c) (2000,2000)
	(d) (4000 ,2000)
(iii)	How muchmoney spent by the Resident Welfare Association? (a) 120000
	(b)140000
	(c) 150000
	(d) 160000
(iv)	How much money has to be spent if total number of flower beds develops are 15 and the number of flower plants planted is 150?
(v)	What value is indicated in this situation ?
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	The equation of a line passing through origin is of the form
Q 2	The graph of every linear equation in two variables is a
Q 3	The graph of the linear equation $x+2y=7$ passes through the point (0,7) (Write True/ False)
Q 4	For the graph of the linear equation $ax +by+c=0$ to pass through the origin which of the three a,b and c necessarily zero ?
Q 5	Find one solution of 2x-3y-12=0
Q 6	Give the equations of two lines passing through (2,14)How many more such lines are there ?
Q 7	Total number of legs in a herd of goats and hens is 40 .Represent this situation in the form of a linear equation in two variables .
Q 8	Express $5x=-8y$ in the form of $ax+by+c=0$
Q 9	Find the point on x axis from where graph of linear equation $x - 5y = 3$ will pass

Q 10	Thegraphgivenbelowrepresentsthelinearequation. Write the equation
	SHORT ANSWER TYPE QUESTIONS
Q 1	If the point (2,-7) lies on the line $4x+my=22$ then what will be the value of m ?
Q 2	Draw the graph of the equation $y = mx + c$ for $m = 3$ and $c = -1$ (a straight line in Cartesian plane). Read from the graph the value of y when $x = 2$.
Q 3	Find a if linear equation $3x-ay = 6$ has one solution as $(4,3)$
Q 4	In a one day international cricket match, Raina and Dhoni together scored 198 runs. Express the statement as a linear equation in two variables.
Q 5	Find the value of k for which $x = 0$, $y = 8$ is a solution of $3x - 6y = k$.
Q 6	In some countries temperature is measured in Fahrenheit, whereas in countries like India it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius : $F = (95)C + 32^{\circ}$ If the temperature is – 40°C, then what is the temperature in Fahrenheit
Q 7	Write the equation of a line which is parallel to x-axis and is at a distance of 2 units from the origin
Q 8	Give equation of two lines on same plane which are intersecting at the point $(2, 3)$
Q 9	Find four different solutions 0f the equation $x+2y = 6$
Q 10	If $\pi x + 3y = 25$, write y in terms of x and also, find the two solutions of this equation.
	LONG ANSWER TYPE QUESTIONS

Q 1	A fraction becomes ¹ / ₄ when 2 is subtracted from the numerator and 3 is added to the denominator .Represent this situation as a linear equation in two variables. Also find two solutions for this .
Q 2	Cost of 5 kg apples and 2 kg oranges is Rs. 330. Let the cost of 1 kg apples be Rs. x and that of 1 kg is Rs. y. Write the given data in the form of linear equation in two variables. Also , represent it graphically
Q 3	The parking charge for vehicles in super Delhi Metro is Rs 20 for first two hrs and Rs. 10 for subsequent hr. Assume total parking time to be x hrs. (where $x \ge 2$) and total parking charge as y. Write the linear equation for above relation and draw graph. Find the parking Charges for 5 hrs from Graph
Q 4	The perimeter of a rectangle is 80 m. If the length of the field is decreased by 2 m and breadth increased by 2 m, the area is increased by 36 sq. km. find the length and breadth of rectangle
Q 5	Yamini and Fatima, two students of Class IX of a school, together contributed 100 towards the Prime Minister's Relief Fund to help the
	earthquake victims. Write a linear equation which satisfies this data. (You may take their contributions as x and y). Draw the graph of the
	same.
Q 6	The taxi fare in a city is as follows: For the first kilometer, the fare is $\sqrt{8}$ and for the subsequent distance it is $\sqrt{5}$ per km. Taking the distance
	covered as x km and total fare as \overline{xy} , write a linear equation for this
	information, and draw its graph.
Q 7	In countries like USA and Canada, temperature is measured in Fahrenheit, whereas in countries like India, it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius:
	F=(9/5)C+32 (i) Draw the graph of the linear equation above using Celsius for x-axis and Fahrenheit for y-axis
Q 8	Draw the graph for the linear equation $x-y = 2$
Q 9	A and B are friends. A is elder to B by 5 years. B's sister C is half the age of B while A's father D is 8 years older than twice the age of B. If the present age of D is 48 years, find the present ages of A, B and C.
Q 10	Find the value of k, if $(1, -1)$ is a solution of the equation $3x - ky = 8$. Also, find the coordinates of another point lying on its graph
Q 11	Give the geometric representations of $y = 3$ as an equation (i) in one variable (ii) in two variables

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(d)
Ans 2	(a)
Ans 3	(b)
Ans 4	(c)
Ans 5	(d)
Ans 6	(c)
Ans 7	(a)
Ans 8	(a)
Ans 9	(c)
Ans10	(b)

	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	QUESTIONS
Q1	(i)b (ii) c (iii) a (iv) d (v)b
Q2	(i)b (ii)b (iii)d (iv)d (v) c
Q3	(i)5x+2y=120 (ii) b (iii)Mohan is wrong, Anil is right (iv)cost of one note book= Rs20, cost of pen= Rs10 (v) b
Q4	(i)b (ii) b (iii) a (iv) a (v) c
Q5	(i)a (ii) b(iii) b (iv) Amount = Rs. 4000 x 15 + Rs. 1000 x 150 = Rs. 190000
	(v) Awareness amongst citizens for protection of environment and making pollution free air
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q1	y=mx
Q2	Straight line
Q3	false
Q4	a (0) +b(0) +c=0 means c=0
Q5	3y=2x-12, when y=0, x=6 therefore solution is (6,0)
Q6	x+y=16,7x-y=0
Q7	
	No .of legs of x goats =4x No of legs of y hens =2y Therefore $4x+2y = 40$ or $2x+y=20$
Q8	5x+8y +c=0
Q9	x-5y=3 when y=0 , x- $5(0) = 3$ therefore point = (3,0)
Q10	The given equation is $x + y = 0$, <i>i.e.</i> , $y = -x$
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Q1	4(2) + m(-7) = 22 , $-7m = 14therefore m= -2$

ſ

٦

Q2	5
Q3	3x-ay = 6 then $3x4 - ax3 = 612-3a = 6 therefore a=2$
Q4	Let runs scored by Raina be x and runs scored by Dhoni be y. According to statement of the question, we have x + y = 198 x + y - 198 = 0
Q5	Since $x = 0$ and $y = 8$ is a solution of given equation 3x - 6y = k 3(0) - 6(8) = k $\Rightarrow k = -48$
Q6	Given linear equation is $F = (9/5)C + 32^{\circ}$ Put C = -40°, we have $F = (9/5)(-40^{\circ}) + 32^{\circ}$ $F = -72^{\circ} + 32^{\circ}$ $F = -40^{\circ}$
Q7	Here, required line is parallel to x-axis and at a distance of 2 units from the origin. \therefore Its equation is y + 2 = 0 or $y - 2 = 0$
Q8	Since there are infinite lines passing through the point (2, 3). Let, first equation is $x + y = 5$ and second equation is $2x + 3y = 13$
Q9	Solutions are (2,2) (0,3) (6,0) (4,1)

Q10	Given equation is $\pi x + 3y = 25$
	$\therefore \qquad y = \frac{25 - \pi x}{2}$
	When $x = 0$ then $y = \frac{25}{25}$
	when $x = 0$, then $y = \frac{3}{25 - \pi}$
	When $x = 1$, then $y = \frac{1}{3}$.
	Hence, the two solutions are $x = 0$, $y = \frac{23}{3}$ and $x = 1$, $y = \frac{23 - \pi}{3}$.
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Q1	Let the fraction is $\frac{x}{y}$
	$\frac{x-2}{y+3} = \frac{1}{4}$
	4(x-2)=y+3
	4x-8 = y+3
	4x-y-11 = 0
	Y = 4x-11 , when $x = 3$, $y = 1$
	when $x = 4$, $y = 5$
	solutions are (3,1) (4, 5)
Q2	(0,165) 140 120 100 80 60 40 20 (66,0) 100 120 140 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 00 80 100 120 140 -20 -40 -60 -80 -100 -80 -100
	5x + 2y = 330
Q3	y = 20 + 10(x-2) y= 10x

Angle ABC is denoted by $\angle ABC$

The rays (BA and BC) making an angle are called the arms of $\angle ABC$. The end point (B) is called the vertex of $\angle ABC$.

3. Types of Angles: There are different types of angles such as acute angle, right angle, obtuse angle, straight angle and reflex angle.(i) Acute angle: An acute angle is an angle which is less than 90°.

(ii) **Right angle:** A right angle is an angle which is equal to 90°. Right angle : $y = 90^{\circ}$

(iii) **Obtuse angle:** An obtuse angle is an angle which is more than 90° and less than 180°.

Obtuse angle : $90^{\circ} < z < 180^{\circ}$

(iv) **Straight angle:** A straight angle is an angle which is equal to 180°.

Straight angle : $s = 180^{\circ}$

(v) **Reflex angle:** A reflex angle is an angle, which is more than 180° and less than 360°.

Reflex angle : $180^{\circ} < t < 360^{\circ}$

4. **Complementary Angles:** Two angles whose sum is 90° are called complementary angles.

5. **Supplementary Angles:** Two angles whose sum is 180° are called supplementary angles.

6. **Adjacent Angles:** Two angles are adjacent if they have a common vertex, a common arm and their non-common arms are on different sides of the common arm.

m
m ABD and m
m DBC are the adjacent angles. Ray BD is their common arm and point B is their common vertex. Ray BA and ray BC are noncommon arms.

Note: $\angle ABC = \angle ABD + \angle DBC$

7. **Vertically Opposite Angles:** The vertically opposite angles formed when two lines intersect each other at a point.

Two lines AB and CD intersect each other at point O, then, there are two pairs of vertically opposite angles.

One pair is $\angle AOD$ and $\angle BOC$ and another pair is $\angle AOC$ and $\angle BOD$.

8. Intersecting Lines and Non-intersecting Lines

Lines PQ and RS are intersecting lines because they are intersecting each other at O.

Lines AB and CD are non-intersecting (parallel) lines.

Note: The lengths of the common perpendicular at different points on these parallel lines is the same. This equal length is called the distance between two parallel lines.

9. Pairs of Angles

Linear Pair of Angles: When the sum of two adjacent angles is 180°, then they are called a linear pair of angles.

(i) If a ray stands on a line, then the sum of two adjacent angles so formed is 180°.

(ii) If the sum of two adjacent angles is 180°, then a ray stands on a

	COMPETENCY BASED QUESTIONS
Q.1)	From the given figure, find the value of y when $x=30^{0}$
	™ .R
	$2x^{\circ}$ 5y°
	Q O P
	a) 25 ⁰
	b) 24 ⁰
	c) 23 ⁰
	d) 22 ⁰
Q.2)	From the figure given, if $\angle POR$ and $\angle QOR$ form a linear pair and
	$a-b=40^{0}$, what are the respective values of a and b?
	RK
	b Ca
	POQ
	a) 100 ⁰ ,80 ⁰
	b) 110 ⁰ ,70 ⁰
	c) 120 ⁰ ,60 ⁰
	d) 130 ⁰ ,50 ⁰
Q.3)	Two parallel lines intersect each other at:
	a) One point
	b) Two points
	c) Three points
	d) None
Q.4)	The part of line with one end point is called as.
	a) Line
	b) Line segment
	c) None
	d) ray

Q.5)	If three or more than three points lie on the same line these points are
	called as
	a) Line segment
	h) Linear points
	c) Collinear points
	d) None of these
0.6)	The end point from which two distinct rays originates to form the angle
Q.0)	is called as
	a) point
	b) vertex
	c) Collinear points
	d) None of these
Q.7)	The angle X is said to be obtuse when it's measure is
	a) Equal to 90°
	b) Less than 90°
	c) greater than 90° but less than 180°
	d) None of these
Q.8)	If X is the reflex angle, then it's measure lies between
	a) 0° to 90°
	b) 90° to 180°
	c) 180° to 270°
	d) 180° to 360°
Q.9)	Find the value of x, y and z in fig
	110
	x z
	y \
	a) x=90 [°] , y=110 [°] , z=80 [°]

	b) $x=70^{\circ}$, $y=100^{\circ}$, $z=80^{\circ}$
	c) $x=70^{\circ}$, $y=110^{\circ}$, $z=80^{\circ}$
	d) x=70 ⁰ , y=110 ⁰ , z=70 ⁰
Q.10)	Two angles whose sum is 90 ⁰ are called
	a) acute angle
	b) right angle
	c) supplementary angle
	d) complementary angle
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q.1)	There are two equinoxes every year in March (19 to 21) and
	September (21 to 24), when the Sun shines directly on the
	September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal.
	September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as
	September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as follows-
	September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as follows-
	September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as follows- 1. Early morning the sun is raising in the horizon "Zero angle".
	 September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as follows- 1. Early morning the sun is raising in the horizon "Zero angle". 2. Mid-morning the sun is getting higher an "Acute angle".
	 September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as follows- 1. Early morning the sun is raising in the horizon "Zero angle". 2. Mid-morning the sun is getting higher an "Acute angle". 3. Noon the sun is at the zenith directly overhead "Right angle".
	 September (21 to 24), when the Sun shines directly on the equator, and the length of the night and day are nearly equal. The same day a person is observing the position of the sun as follows- 1. Early morning the sun is raising in the horizon "Zero angle". 2. Mid-morning the sun is getting higher an "Acute angle". 3. Noon the sun is at the zenith directly overhead "Right angle". 4. Afternoon the sun is setting lower an "Obtuse angle".

	Using the above Idea answer the following question
(i)	If $\angle 3 = 45^{\circ}$ and $\angle 4 = 30^{\circ}$ then $\angle 5 = $
	a) 15°
	b) 65°
	c) 0°
	d) 180 ⁰
(ii)	If $\angle 3 = 45^{\circ}$ and $\angle 4 = 30^{\circ}$, what is supplement of $\angle 3$?
	a) 130°
	b) 180°
	c) 145°
	d) 135°
(iii)	At noon the sun is at the zenith directly overhead, which angle is
	formed?
	a) Acute angle
	b) Obtuse angle
	c) Right angle
	d) Straight angle
(iv)	If $\angle 3 = 45^{\circ}$ and $\angle 4 = 30^{\circ}$ what is supplement of $\angle 5$?
	a) 135°

	b) 165°
	c) 145°
	d) 155°
(v)	In which month does two equinoxes come every year?
	a) April & September
	b) March & August
	c) March & September
	d) None of these
Q.2)	A farmer has a circular garden as shown in the picture above. He has a different type of tree, plants and flower plants in his garden.
	In the garden, there are two mango trees A and B at a distance of AB=10m.Similarly has two Ashoka trees at the same distance of 10m as shown at C and D. AB subtends $\angle AOB=120^{\circ}$ at the center O, The perpendicular distance of AC from center is 5m the radius of the circle is 13m.
(i)	What is the measure of $\angle OCD$?
	a) 60°
	b) 120°
	c) 30°
	d) 100°

(ii)	What is the angle subtended by CD at the Centre O?
	a) 60°
	b) 120°
	c) 180°
	d) 100°
(iii)	What is the value of $\angle OAB?$
	a) 30°
	b) 120°
	c) 60°
	d) 100°
(iv)	What is the value of $\angle ODC$?
	a) 60°
	b) 120°
	c) 130°
	d) 30°
(v)	What is the distance between mango tree A and ashoka tree C?
	a) 12
	b) 24
	c) 36
	d) 48
Q.3)	In Gurugram city, an under pass road is constructed in a tunnel shape
	whose cross section was in the form a triangle. In the figure AB is the
	roof of the under pass and CD is the ground level. The line AB and CD
	are parallel to each other i.e. AB CD. The triangle PQR is the face of
	the cross section of the under pass. Also the angle \angle APQ measures 50°
	and angle ∠PRD measures 127°.

	$A \qquad P \qquad B \\ 50^{\circ} \qquad \qquad$
(i)	What is the value of x?
	a) 50°
	b) 120°
	c) 130°
	d) 30°
(ii)	What is the measure of the angle $\angle PRQ$?
	a) 61°
	b) 53°
	c) 30°
	d) 30°
(iii)	What is the value of y?
	a) 60°
	b) 12°
	c) 130°
	d) 77°
(iv)	What is the measure of $\angle BPR$?
	a) 60°
	b) 53°
	c) 10°
	d) 30°
(v)	What is the relation between the angles $\angle BPR$ and $\angle PRD$?
	a) They are alternate interior angles.
	b) They are corresponding angles.

	c) They are consecutive interior angles.
	d) They are equal angles.
0.4)	Two parallel roads PO and RS are at the center of the city. It was
2.1)	decided to put two huge lamp posts at point X and Y and a statue of
	Mahatma Gandhi to be placed at point M with lots of palm trees to be
	planted along the line AB which is parallel to both PQ and RS. The area
	around M is to be decorated with flowering plants and greenery. The
	angle $\angle PXM$ is of 50° and angle $\angle MYS$ is of 120°.
	$ \begin{array}{c} P \\ 50^{\circ} \\ M \\ A \\ R \\ P \\ S \\ Q \\ Q \\ R \\ S \\ P \\ S \\ Q \\ Q \\ S \\ P \\ S \\ Q \\ Q \\ S \\ P \\ P \\ S \\ P \\ P$
(i)	What is the measure of ∠XMB?
	a) 60°
	b) 45°
	c) 80°
	d) 50°
(ii)	What is the measure of the angle \angle YMB?
	a) 50°
	b) 80°
	c) 60°
	d) 75°
(iii)	What is the measure of the reflex angle $\angle XMY$?
	a) 190°
	b) 220°
	c) 250°
	d) 300°
(iv)	d) What is ratio between the angles $\angle XMB$ and $\angle YMB$?
	a) 5:6
	b) 2:3

	c) 5:7
	d) 3:5
(v)	The pair of angles $\angle PXM$ and $\angle BMX$ are known as:
	a) Consecutive interior angles
	b) Corresponding angles
	c) Alternative interior angles
	d) Reflexive angles
0.5)	Our math teacher knows yoga. She asked Nitya to show yoga postures.
2.27	She made marks on angles. She showed acute, obtuse and right angle
	through yoga postures.
(i)	The exterior angle of a triangle is equal to the
	a) sum of the two interior opposite angles.
	b) sum of the three interior angles.
	c) difference of two interior angles.
	d) opposite of the interior angle.
(ii)	The value of m in the figure is
	m° 60°

	a) 94°
	b) 214°
	c) 84°
	d) 26°
(;;;)	The value of y in the figure is
(11)	
	a) 6°
	b) 9°
	c) 7°
	d) 4°
(iv)	The value of 'y' in the figure is
	3(y - 15)° 58° 44°
	a) 39°
	b) 41°
	c) 45°
	d) 43°
(v)	Two gates consist of vertical posts, horizontal struts and diagonal
	beams. The angle 'a' from the figure is:

	a) 140°
	b) 40°
	c) 120°
	d) 50°
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
0.1)	An angle is 18^0 less than its complementary angle. The measure of this
2)	angle is
	Line AD and CD intersect at 0. If (AOC) (2), (AOC) and
Q.2)	Line AB and CD intersect at 0. If $\angle AOC = (3x - 10^{\circ})$ and
	$\angle BOD = (20^{0}-2x)$, then the value of x is
Q.3)	Bisectors of the adjacent angles forming a linear pair form a right
	angle. (True / false)
Q.4)	In the figure, angle a is
	$P - \frac{A}{40^{\circ}} Q$
	$R - 30^{\circ} B S$

Q.5)	If angle with measure x and y form a complementary pair, then angles
	$(x + 47^{0})$, $(y + 43^{0})$ will form a supplementary pair. (True / false)
Q.6)	Lines which are parallel to the same lines are to each
	other.
Q.7)	The value of x if AOB is a straight line, is
	$x \xrightarrow{x \to x} B$
Q.8)	Three points will be collinear only when they lie on a line. (True / false)
Q.9)	If two lines intersect each other, then the angles are
	equal.
Q.10)	If the sum of two adjacent angles is 180 ⁰ , then the non-common arms
	of the angles are in a straight line. (True / false)
	SHORT ANSWER TYPE QUESTIONS
Q.1)	Supplement of angle is one fourth of itself. What is the measure of the
	angle?
Q.2)	If the supplement of an angle is three times its complement, then what
	will be the angel?
Q.3)	If AB II CD, what is the value of x?
	B D
	x 5r
	A TR C
0.4)	Find the value of x
(,	
	X

Q.5)	In \triangle ABC, $\angle A$: $\angle B$: $\angle C = 2 : 3 : 5$, then find the value of angle B.
Q.6)	Calculate the value of x.
	104° x 125°
Q.7)	In Fig., POQ is a line. Ray OR is perpendicular to line PQ. OS is another
	$\downarrow Prove that$ $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$
Q.8)	In the given below fig, rays OA, OB, OC, OP and OE have the common
	end point O. Show that
	$\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}.$

Q.9)	In Fig., lines PQ and RS intersect each other at point O.
	If \angle POR: \angle ROQ = 5 : 7, find all the angles.
	S P R
Q.10)	In Fig., if PQ ST, \angle PQR = 110° and \angle RST = 130°, find \angle QRS.
	$P = Q \qquad S \qquad T \qquad T$
	LONG ANSWER TYPE QUESTIONS
Q.1)	In Fig., ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of \angle POS and \angle SOQ, respectively. If \angle POS = x, find \angle ROT.
	R ST T T P O Q
Q.2)	If one of the four angles formed by two intersecting lines is a right angle, then show that each of the four angles is a right angle.
Q.3)	In the below fig, lines AB and CD are parallel and P is any point as shown in the figure. Show that $\angle ABP + \angle CDP = \angle DPB$.

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans. 1)	$2x+5y=180^{0}$
	$\Rightarrow 2(30) + 5y=180$
	$\Rightarrow y = 24^{\circ}$
	So Ans is (b)
Ans. 2)	b+a=180 ⁰ (1) (Linear pair)
	a-b=40 ⁰ (2)
	by solving both equations
	$\Rightarrow a=110^{0},$
	b=70 ⁰
	So Ans is (b)
Ans. 3)	Ans is (d), None
Ans. 4)	Ans is (d), ray
Ans. 5)	Ans is (c), Collinear points
Ans. 6)	Ans is (b), vertex
Ans. 7)	Ans is (c), greater than 90° but less than 180
Ans. 8)	Ans is (c), 180 [°] to 270 [°]
Ans. 9)	Ans is (d), $x=70^{\circ}, y=110^{\circ}, z=70^{\circ}$
Ans. 10)	Ans is (d), complementary angle
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	QUESTIONS
ANS. 1)	
(i)	$\angle 3 + \angle 4 + \angle 5 = 90^{\circ}$
	$45^0 + 30^0 + \angle 5 = 90^0$
	$\angle 5 = 15^{0}$
	Ans. (a)
(ii)	135°
	Ans. (d)
(iii)	Right angle
	Ans. (c)
(iv)	165°
	Ans. (b)
(v)	Ans. (c)

ANS. 2)	
(i)	$\angle OCD = \angle ODC$, as $OC = OD$
	$= \ge \angle OCD + \angle ODC + \angle COD = 180^{\circ}$
	=> 2∠OCD + 120° = 180°
	=> ∠OCD = 30°
	Ans. (c)
(ii)	120°
	Ans. (b)
(iii)	$\angle OCD = \angle ODC$ as $OC = OD$
	$= \ge \angle OCD + \angle ODC + \angle COD = 180^{\circ}$
	=> 2∠OCD + 120° = 180°
	=> ∠OCD = 30°
	∠ODC = 30°
	Similarly ∠OAB = 30°
	Ans. (a)
(iv)	$\angle OCD = \angle ODC$ as $OC = OD$
	$= \ge \angle OCD + \angle ODC + \angle COD = 180^{\circ}$
	=> 2∠OCD + 120° = 180°
	=> ∠OCD = 30°
	∠ODC = 30°
	Ans. (d)
(v)	Distance between A & C
	$= 2 (\sqrt{13^2 - 5^2})$
	= 2(12)
	= 24 m
	Ans. (b)
ANS. 3)	
(i)	$\angle PQD = \angle APQ$
	$\angle PQD = 50^{\circ}$
	Ans. (a)
(ii)	∠ PRQ + 127° = 180°
	∠ PRQ = 53°
	Ans. (b)

(iii)	$\angle PRD = \angle APR$
	$127^{\circ} = 50^{\circ} + y$
	y= 77°
	Ans. (d)
(iv)	50°+ y + ∠ BPR = 180°
	50°+ 77° + ∠ BPR = 180°
	∠ BPR = 53°
	Ans. (b)
(v)	Ans. (c)
ANS. 4)	
(i)	$\angle PXM = \angle XMB = 50^{\circ}$
	Ans. (d)
(ii)	$\angle RYM + \angle MYS = 180^{\circ}$
	∠RYM = 180°- 120°=60°
	$\angle RYM = \angle YMB = 60^{\circ}$
	Ans. (C)
(iii)	$\angle XMY = \angle XMB + \angle YMB = 50^{\circ} + 60^{\circ} = 110^{\circ}$
	So reflex angle of $\angle XMY = 360^{\circ}-110^{\circ}= 250^{\circ}$
	Ans. (C)
(iv)	∠XMB : ∠YMB = 50 : 60 = 5:6
	Ans. (a)
(v)	Ans. (c)
ANS. 5)	
(i)	e) sum of the two interior opposite angles.
(ii)	we know that,
	• Exterior angle of a Δ is equal to sum of two opposite interior
	angles.
	so,
	$m^{\circ} + 60^{\circ} = 154^{\circ}$
	m° = 154° - 60°
	m° = 94°
	so Ans. is (a)
(iii)	$40^{\circ} + 4x^{\circ} + 22^{\circ} = 90^{\circ}$

	$4x^{\circ} = 90^{\circ} - 40^{\circ} - 22^{\circ} = 28^{\circ}$
	x = 7°
	so Ans. is (c)
(iv)	$3 (y - 15)^{\circ} + 44^{\circ} + 58^{\circ} = 180^{\circ}$
	3 (y - 15)° = 78°
	$3 y - 45^{\circ} = 78^{\circ}$
	y= 41°
	so Ans. is (b)
(v)	Ans. is (a)
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
ANS.1)	(a) 36 ⁰
	Let the angle be x .
	its complement = $x + 18^{\circ}$
	Now, $x + x + 18^0 = 90^0$
	$2x = 90^{\circ} - 18^{\circ}$
	$2x = 72^{0}$
	$x = 36^{0}$
ANS.2)	Since vertically opposite angles are always equal
	$(3x - 10^{0}) = (20^{0} - 2x)$
	$3x + 2x = 20^0 + 10^0$
	$5x = 30^{0}$
	$\mathbf{x} = 6^0$
ANS.3)	True
ANS.4)	$\angle PAO = \angle AOC = 40$
	$\angle RPD = \angle BOC = 30$
	$\angle a = 360^{\circ} - 70^{\circ} - = 290^{\circ}$
ANS.5)	True
ANS.6)	parallel
ANS.7)	$\angle 1 = x$ [Vertically opposite angles]
	Since, AOB is a straight line
	$x + x + x = 180^{0}$
	$3x = 180^{0}$
	$x = 60^{0}$

ANS.8)	True
ANS.9)	Vertically opposite.
ANS.10)	True
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
ANS.1)	Let the angle be x
	its supplement $\frac{1}{4}$ of x $=\frac{1}{4}$ x
	$x + \frac{1}{4}x = 180^{0}$
	$x = 144^{0}$
ANS.2)	Let the angle be x.
	Complement of $x = 90^{\circ} - x$
	Supplement of $x = 180^{\circ} - x$
	Given that, $180^{\circ} - x = 3 (90^{\circ} - x)$
	$180^{\circ} - x = 270^{\circ} - 3x$
	$2x = 270^{0} - 180^{0}$
	$x = 45^{0}$
ANS.3)	Since AB II CD
	$x + 2x + x + 5x = 180^{\circ}$ [Co-interior angles]
	$9x = 180^{0}$
	$x = 20^{0}$
ANS.4)	$x + (180^{\circ} - 130^{\circ}) + (180^{\circ} - 125^{\circ}) = 180^{\circ}$
	[Angle sum property of a triangle]
	$x + 50^0 + 55^0 = 180^0$
	$x = 75^{0}$
ANS.5)	∠A: ∠B : ∠C = 2 : 3 : 5
	$\angle A = 2x$, $\angle B = 3x$, $\angle C = 5x$
	$\angle A + \angle B + \angle C = 2x + 3x + 5x = 10x$
	$10x = 180^{0}$
	[Angle sum property of a triangle]
	$x = 18^{0}$
	$\angle B = 3 \times 18c = 54^{\circ}$
ANS.6)	From the figure
	$104^{\circ} + 90^{\circ} + 25^{\circ} + x = 360^{\circ}$ [Complete Angle]

	$x = 360^{\circ} - 219$
	$x = 141^{0}$
ANS.7)	$\angle POR = \angle QOR = 90^{\circ}$ (Perpendicular)
	Now, ∠POR=90°
	∠POS + ∠ROS=90°=∠QOR
	∠POS + ∠ROS=∠QOR
	On adding $\angle ROS$ both sides,
	$\angle POS + \angle ROS + \angle ROS = \angle QOR + \angle ROS$
	∠POS+ 2∠ROS= ∠QOS
	[∠QOS=∠QOR+∠ROS]
	2∠ROS= ∠QOS - ∠POS
	$\angle ROS = \frac{1}{2} [\angle QOS - \angle POS]$
	Hence, ∠ROS= ½[∠QOS - ∠POS]
ANS.8)	Given that Rays OA, OB, OD and OE have the common end point O.
	A ray of opposite to OA is drawn
	Since \angle AOB and \angle BOF form a linear pair
	$\angle AOB + \angle BOF = 180^{\circ}$
	$\angle AOB + \angle BOC + \angle COF = 180^{\circ}$ (1)
	Also \angle AOE, \angle EOF form a linear pairs
	\angle AOE + \angle EOF = 180°
	$\angle AOE + \angle DOF + \angle DOE = 180^{\circ}$ (2)
	By adding (1) and (2) equations we get
	$\angle AOB + \angle BOC + \angle COF + \angle AOE + \angle DOF + \angle DOE = 360^{\circ}$
	$\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$
	Hence proved.
ANS.9)	Given : $\angle POR : \angle ROQ = 5 : 7$
	Let $\angle POR = 5x \& \angle ROQ = 7x$
	By Linear pair axiom,
	$\angle POR + \angle ROQ = 180^{\circ}$
	$5x + 7x = 180^{\circ}$
	$12x = 180^{\circ}$
	x = 180/12
	$x = 15^{\circ}$

	so,
	$\angle POR = 5x = 5 \times 15 = 75^{\circ}$
	$\angle ROQ = 7x = 7 \times 15 = 105^{\circ}$
	then,
	$\angle POR = \angle QOS = 75^{\circ}$ (vertically opposite angles)
	\angle ROQ = \angle POS = 105° (vertically opposite angles)
ANS.10)	$PQR+QRX = 180^{\circ}$
	Or, QRX = 180°-110°
	$QRX = 70^{\circ}$
	Similarly,
	$RST + SRY = 180^{\circ}$
	Or, SRY = 180°- 130°
	SRY = 50°
	Now, for the linear pairs on the line XY-
	$QRX+QRS+SRY = 180^{\circ}$
	Putting their respective values, we get,
	$QRS = 180^{\circ} - 70^{\circ} - 50^{\circ}$
	Hence, $QRS = 60^{\circ}$
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
ANS.1)	Ray OS stands on the line POQ.
	Therefore, $\angle POS + \angle SOQ = 180^{\circ}$
	But, $\angle POS = x$
	Therefore, $x + \angle SOQ = 180^{\circ}$
	So, \angle SOQ = 180° - x
	Now, ray OR bisects \angle POS, therefore,
	$\angle ROS = 1 / 2 \times \angle POS = x/2$
	\angle SOT = 1 / 2 × \angle SOQ = 1 / 2 × (180° - x) = 90° - x/2
	Now, $\angle ROT = \angle ROS + \angle SOT = x/2 + 90^{\circ} - x/2 = 90^{\circ}$
ANS.2)	Given Two lines AB and CD intersect each other at O.
	$\angle AOC=90^{\circ}$
	To prove: $\angle AOD = \angle BOC = \angle BOD = 90^{\circ}$

	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$
	Proof: ·· AB and CD intersect each other at O
	∴∠AOC=∠BOD and ∠BOC=∠AOD
	(Vertically opposite angles)
	But $\angle AOC = 90^{\circ}$
	$\angle BOD=90^{0}$
	$\therefore \angle AOC + \angle BOC = 180^{\circ}$ (Linear pair)
	\Rightarrow 90 ⁰ + \angle BOC=180 ⁰
	$\angle BOC=90^{0}$
	$\angle AOD = \angle BOC = 90^{\circ}$
	$\angle AOD = \angle BOC = \angle BOD = 90^{\circ}$
ANS.3)	AB II CD
	Let, EF be the parallel line to AB and CD which passes through P.
	A B
	$\angle ABP = \angle BPF$
	alternate angles are equal
	$\angle CDP = \angle DPF$
	$\angle ABP + \angle CDP = \angle BPF + \angle DPF$
	$\angle ABP + \angle CDP = \angle DPB$
	Hence, proved
ANS.4)	$\angle AOC + \angle COB + \angle BOP = 270^{\circ}$
	To find:
	$\angle AOC, \angle COB, \angle BOD$ and $\angle BOA$

	70
	l°
	Ve B
	Here,
	$\angle AOC + \angle COB + \angle BOD + \angle AOD = 360^{\circ}$ (Complete angle)
	270° + ∠AOD = 360°
	∠AOD = 360° - 270° = 90°
	Now,
	∠AOD + ∠BOD = 180° (Linear pair)
	90° + ∠BOD = 180°
	Therefore,
	∠BOD = 90°
	$\angle AOD = \angle BOC = 90^{\circ}$ (Vertically opposite angle)
	$\angle BOD = \angle AOC = 90^{\circ}$ (Vertically opposite angle)
ANS.5)	Given
	OF bisects ∠BOD
	∠BOF = 35°
	∠BOC = ?
	∠AOD = ?
	$\angle BOD = 2 \angle BOF = 70^{\circ}$ (Therefore, OF bisects $\angle BOD$)
	$\angle BOD = \angle AOC = 70^{\circ}$ (Vertically opposite angle)
	Now, $\angle BOC + \angle AOC = 180^{\circ}$
	∠BOC + 70° = 180°
	∠BOC = 110°
	So, $\angle AOD = \angle BOC = 110^{\circ}$ (Vertically opposite angle)
ANS.6)	Given that,
	Ray OS stand on a line POQ
	Ray OR and OT are angle bisector of $\angle POS$ and $\angle SOQ$ respectively.
	∠POS = x
	$\angle POS + \angle QOS = 180^{\circ}$ (Linear pair)
	$\angle QOS = 180^{\circ} - x$

$\angle ROS = \frac{1}{2} \angle POS$ (Given)
$= \frac{1}{2} \times$
$\angle ROS = x/2$
Similarly,
∠TOS = (90° - x/2)
Therefore, $\angle ROT = \angle ROS + \angle ROT$
$= x/2 + 90^{\circ} - x/2 x2$
= 90°
Therefore, $\angle ROT = 90^{\circ}$
In Fig., you need to produce any of the rays OP, OQ, OR or OS
backwards to a point.
Let us produce ray OQ backwards to a point T so that TOQ is a line
(see Fig.).
Now, ray OP stands on line TOQ. Therefore, \angle TOP + \angle POQ = 180°(1) (Linear pair axiom) Similarly, ray OS stands on line TOQ. Therefore, \angle TOS + \angle SOQ = 180°(2) But \angle SOQ = \angle SOR + \angle QOR So, (2) becomes \angle TOS + \angle SOR + \angle QOR = 180°(3) Now, adding (1) and (3), you get \angle TOP + \angle POQ + \angle TOS + \angle SOR + \angle QOR = 360°(4) But \angle TOP + \angle TOS = \angle POS Therefore, (4) becomes

ANS.8)	To Prove: $\angle ABP + \angle BPD + \angle CDP = 360^{\circ}$
	Proof:
	Construction: Through P draw a line PM I AB or CD.
	A B
	P
	M
	C D
	Since, AB PM and AB CD
	Therefore,
	AB II PM
	$\angle ABP + \angle BPM = 180^{\circ} \dots (1)$
	CD II PM
	$\angle MPD + \angle CDP = 180^{\circ} \dots (2)$
	Adding eq. (1) and (2), we get
	$\angle ABP + (\angle BPM + \angle MPD) + \angle CDP = 360^{\circ}$
	$\angle ABP + \angle BPD + \angle CDP = 360^{\circ}$
	Hence proved.
ANS.9)	Given :
	$\angle AOC$ and $\angle BOC$ form a linear pair.
	If $a - 2b = 30^{\circ}$.
	$\angle AOC = a \text{ and } \angle BOC = b$
	Therefore, $a + b = 180^{\circ}$ (i)
	(a – 2b) = 30°(ii)
	On subtracting equation (2) from (1), we get :
	$a + b - (a - 2b) = 180^{\circ} - 30^{\circ}$
	$a + b - a + 2b = 180^{\circ} - 30^{\circ}$
	$3b = 150^{\circ}$
	$b = 150^{\circ}/3$
	$b = 50^{\circ}$
	Since, $(a - 2b) = 30^{\circ}$
	On putting the value of $b = 50^{\circ}$

$a - 2(50) = 30^{\circ}$
$a - 100^{\circ} = 30^{\circ}$
$a = 100^{\circ} + 30^{\circ}$
a = 130°
Hence, the values of a and b are 130° and 50° .
Lines AB and CD intersect at O.
$\angle AOC + \angle BOE = 70^{\circ}$ (Given)(1)
∠BOD = 40° (Given)(2)
Since, $\angle AOC = \angle BOD$ (Vertically opposite angles)
Therefore, $\angle AOC = 40^{\circ}$ [From (2)]
and $40^{\circ} + \angle BOE = 70^{\circ}$ [From (1)]
$\Rightarrow \angle BOE = 70^{\circ} - 40^{\circ} = 30^{\circ}$
Also, $\angle AOC + \angle BOE + \angle COE = 180^{\circ}$ (: AOB is a straight line)
70° + ∠COE = 180° [From (1)]
$\Rightarrow \angle COE = 180^{\circ} - 70^{\circ} = 110^{\circ}$
Now, reflex $\angle COE = 360^{\circ} - 110^{\circ} = 250^{\circ}$
Hence, $\angle BOE = 30^{\circ}$ and reflex $\angle COE = 250^{\circ}$

CHAPTER 06: TRIANGLES

Q 5	Two sides of a triangle are of length 5 cm and 1.5 cm. The length of the third side of the triangle cannot be:
	a) 3.6 cm
	b) 4.1 cm
	c) 3.8 cm
	d) 6.9 cm
Q 6	In $\triangle ABC$, $\angle C = \angle A$ and $BC = 4$ cm and $AC = 5$ cm, then find length of AB. (a) 5 cm (b) 3 cm (c) 4 cm (d) 2.5 cm
Q 7	It is given that $\triangle ABC \cong \triangle FDE$ and $AB = 5 \text{ cm}$, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then which of the following is true? (a) DF = 5 cm, $\angle F = 60^{\circ}$ (b) DF = 5 cm, $\angle E = 60^{\circ}$ (c) DE = 5 cm, $\angle E = 60^{\circ}$ (d) DE = 5 cm, $\angle D = 40^{\circ}$
	$ \begin{array}{c c} B \\ 5cm \\ 40^{\circ} \\ A \\ 80^{\circ} \\ C \\ C \\ F \\ 80^{\circ} \\ E \\ Congruent triangles \end{array} $
Q 8	In triangles ABC and PQR, AB = AC, $\angle C = \angle P$ and $\angle B = \angle Q$. The two triangles are:
	a) Isosceles but not congruent
	b) Isosceles and congruent
	c) Congruent but not isosceles
	d) Neither congruent nor isosceles

Q 9	In a triangle ABC, $\angle B = 35^{\circ}$ and $\angle C = 60^{\circ}$, then
	a) ∠A = 80°
	b) ∠A = 85°
	c) ∠A = 120°
	d) ∠A = 145°
Q10	If in ΔPQR , PQ = PR then:
	a) $\angle P = \angle R$
	b) $\angle P = \angle Q$
	c) $\angle Q = \angle R$
	d) None of these
	CASE STUDY/ SOURCE BASED INTEGRATED QUESTIONS
Q 1	One Sunday morning, Amita decided to have bread-pakodas in breakfast. For preparation, she divided a rectangular bread diagonally into two parts. She served bread-pakodas in a plate of diameter 20cm. On arrival of some guests, she cut the bread-pakoda from the middle as shown in the figure. She served these small bread-pakodas in a plate ofradius 8cm. Everybody enjoyed bread-pakodas with tea.
	A 7 cm B & cm P P P P P P P P P P P P P P P P P P
(i)	After cutting rectangular bread diagonally, which type of triangular bread is obtained?
	(c) Isosceles (d) Irregular
(ii)	The line-segment that divided the bread-pakoda from the middle is called. (a)Diagonal (b)AItitude
-------	--
	(c) Base (d) Median
(iii)	What is the smallest diameter of the circular plate in which the piece of bread-pakoda can be serve?
	a) $\sqrt{110}$ cm (b) $\sqrt{111}$ cm (c) $\sqrt{112}$ cm (d) $\sqrt{113}$ cm
(iv)	Which of the following is true based on the images?
	(a)MQ=QN (b) $\Delta ABD \cong \Delta CDB$
	(c) $PM+PN=MN$ (d) $\Delta PQM \cong \Delta PQN$
(v)	Name the largest angle in the bread-pakoda.
	(a) QMP (b) QNP (c)NPM (d) MPQ
Q 2	Ritesh opened the door at an angle of 43° to enter the class. In the recess, he came out of the class by opening the door at an angle of 72°. After the recess, he again opened the door at 43° and entered the class. The door length is 80cm.
	Fig 1 Fig 2 Fig 2 Fig 3 Fig 3 Fi
(i)	The type of the triangle formed by opening the door is
	(a) Equilateral (b) Isosceles
	(c) Scalene (d) Irregular
(ii)	Which of the following triangles are congruent?
	(b) \triangle PQR and \triangle ABC (b) \triangle PQR and \triangle ZYX (c) \triangle ABC and \triangle XYZ (d) \triangle ACB and \triangle XYZ
(iii)	What is the congruency criteria for these two triangles?
	(c) SSS (b)ASA
(iv)	In figure 2, which is the largest side?

	(a) BC	(b)AB	(c)AC	(d)AII sides are equal
Q 3	Dinesh has a regu wants to fill the h	ular hexagonal shaped nexagonal shaped plot	plot in a corner of v by equilateral trian	village Ramgarh. Each side of the hexagonal plot is 10 m. He gles shaped tiles.
(i)	How many hexagonal	equilateral tri plot?	angles of sid	de 10 m are there in the
	A. 2			
	B. 4			
	C. 6			
	D. 8			
(ii)	What is the	e area of the h	iexagonal sh	naped plot?
	A. 100√3	m ²		
	B. 150√3 n	n ²		
	C. 200√3 n	n ²		
	D. 250√3 r	n ²		
(iii)	If each side is the area	e of equilatera of each tile?	l triangular	shaped tile is 2 m, then what
	(a) $\sqrt{2}$	(b) √3	(C) $\sqrt{4}$	(d) √5

(iv)	What is the number of equilateral triangular tiles of side 2 m that is required to fill the hexagonal plot?
	A. 150
	В. 200
	C. 250
	D. 300
Q 4	There is a river is in a village. The villagers want to measure its breadth without crossing the river as force of water's current is very high. Aniket a student of class IX of their village came and told "I can measure the breadth of the river without crossing it." He came on the bank of river at a point A and imagines a point B just opposite on the other bank. He moved to C and then D such that C is the equidistant from A and D. Then he moves to E such that A, C and E are the on the same line.
	A B 7cm 25cm E
(i)	Is $\triangle ABC$ and $\triangle EDC$ congruent?
(ii)	What congruence criteria she uses to find the breadth of the river?
	A. SAS
	B. ASA
	C. SSS
	D. RHS
(iii)	What is the length of DE?
	A. 5 metres
	B. 7 metres
	C. 24 metres
	D. 30 metres.
(iv)	If BC = 7 m and CE = 25 m, find the breadth of the river.
	A. 18 metres

	B. 20 metres
	C. 22 metres
	D. 24 metres.
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	In \triangle ABC, AB=AC and \angle B=40°. Find \angle C.
Q 2	Write correct symbolic form of congruency if $AB=QR$, $BC=PR$ and $CA=PQ$.
Q 3	Theis the largest side of a right-angled triangle.
Q 4	What does 'R' stands for in RHS congruence?
Q 5	Choose the correct answer
	If two sides and the included angle of one triangle are equal to two sides and the included angle of the other triangle, then the two triangles are congruent (SAS, ASS, SSS)
Q 6	Choose the correct answer
	If two angles and the included side of one triangle are equal to two angles and the included side of the other triangle, then the two triangles are congruent (ASA, ASS, SSS).
Q 7	Two circles are congruent if theirare same.
Q 8	State true/false
	Two angles opposite to the two equal sides of an isosceles triangle are also equal.
Q 9	State true/false
	If there are two right-angled triangles then they will be congruent if their hypotenuse and any one side are equal.
Q 10	State true/false
	If the two angles and a side of one triangle is respectively equal to the two angles and a side of another triangle, then they are called congruent triangles.
	SHORT ANSWER TYPE QUESTIONS
Q 1.	In a huge park people are concentrated at three points (see the given figure)

	A •
	B•
	*c
	A: where there are different slides and swings for children,
	B: near which a man-made lake is situated,
	C: which is near to a large parking and exit.
	Where should an ice-cream parlour be set up so that maximum number of persons can approach it?
Q 2.	ABC is an isosceles triangle with AB = AC. Drawn AP \perp BC to show that \angle B = \angle C.
Q 3	ABC and DBC are two isosceles triangles on the same base BC (see the given figure). Show that $\angle ABD = \angle ACD$.
Q 4	AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.
Q 5	ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given figure). Show that these altitudes are equal.

	A B B H M C Q H N R
Q 4	In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see the given figure). Show that:
	(i) $\Delta AMC \cong \Delta BMD$
	(ii) ∠DBC is a right angle.
	(iii) $\Delta DBC \cong \Delta ACB$
Q 5	\triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that \angle BCD is a right angle.
	A C
Q 6	Show that the angles of an equilateral triangle are 60° each.
Q 7	BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
Q 8	If AB = AC, CH = CB and HK BC and \angle CAX=137
	H H B C

	1) Calculate the angle of $\angle ACB$.
	2) Calculate the angle of∠ CHK.
	3) Calculate the angle $\angle AHK$.
	4) Sum of ∠CBH and ∠AHK
Q 9	From the adjoining figure ABD. Angle $ABC = x$ and angle $CAD = y$.
	AC = BC, AC = AD
	A. Find the value of x.
	B. Find the value of y.
	C. Find∠ ADC.
	D. Find∠ BAD.
	SOLUTIONS TO COMPETENCY BASED QUESTIONS
	1. b 2. b 3. c 4. b 5. d 6. c 7. b 8. a 9. b 10. c

SOLUTIONS TO case study TYPE QUESTIONS
CS-1
ANSWERS
1. Scalene 2. (a) diagonal 3. (d) $\sqrt{113}$ 4. b) $\Delta ABD \cong \Delta CDB$ 5. a) IP
CS-2
ANSWERS
i)b) Isosceles ii)b) ΔPQR and ΔZYX iii) c) SAS
iv) (a) BC
CS-3
i) C
ii) B
iii) Root 3
iv) A
CS-4
i) Correct explanation
ii) b
iii)c
iv)d
SOLUTIONS of Objective TYPE QUESTIONS
 40° ABC -QRP Hypotenuse Right angle
5. SAS 6. ASA 7. Radii 8. True

	9. True 10. True
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
1.	A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set up at the circumcentre O of Δ ABC.
	B X
	In this situation, maximum number of persons can approach it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.
2	In ΔAPB and ΔAPC ,
	$\angle APB = \angle APC$ (Each 90°)
	AB =AC (Given)
	AP = AP (Common)
	∴ ΔAPB \cong ΔAPC (Using RHS congruence rule)
	$\Rightarrow \angle B = \angle C$ (By using CPCT)
3	Let us join AD.
	In ΔABD and ΔACD ,
	AB = AC (Given)
	BD = CD (Given)
	AD = AD (Common side)
	∴ ΔABD \cong ΔACD (By SSS congruence rule)
	$\Rightarrow \angle ABD = \angle ACD$ (By CPCT)

4	In ΔBOC and ΔAOD ,
	$\angle BOC = \angle AOD$ (Vertically opposite angles)
	$\angle CBO = \angle DAO$ (Each 90°)
	BC = AD (Given)
	\therefore ΔBOC \cong ΔAOD (AAS congruence rule)
	\therefore BO = AO (By CPCT)
	\Rightarrow CD bisects AB.
5	In ΔAEB and ΔAFC ,
	$\angle AEB$ and $\angle AFC$ (Each 90°)
	∠A = ∠A (Common angle)
	AB = AC (Given)
	\therefore ΔAEB \cong ΔAFC (By AAS congruence rule)
	\Rightarrow BE = CF (By CPCT)
6	Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.
6	Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.
6	Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together. $\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
7.	Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together. $\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

	$\angle M = \angle Q$
	$\angle N = \angle R$
	So,
	$\angle L = \angle P = 105^{\circ}$
	$\angle M = \angle Q = 45^{\circ}$
	$\angle M + \angle N + \angle L = 180^{\circ}$ (Sum of three angles of a triangle is 180°)
	$45^{\circ} + 105^{\circ} + \angle N = 180^{\circ}$
	∠N = 180°- 45° + 105°
	$\angle N = 30^{\circ}$
	$\angle N = \angle R = 30^{\circ}$
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
1.	Let us consider a right-angled triangle ABC, right-angled at B.
	In ΔABC,
	$\angle A + \angle B + \angle C = 180^{\circ}$ (Angle sum property of a triangle)
	$\angle A + 90^{\circ} + \angle C = 180^{\circ}$
	$\angle A + \angle C = 90^{\circ}$
	Hence, the other two angles have to be acute (i.e., less than 90°).
	∴ ∠B is the largest angle in $\triangle ABC$.
	$\Rightarrow \angle B > \angle A \text{ and } \angle B > \angle C$
	\Rightarrow AC > BC and AC > AB
	[In any triangle, the side opposite to the larger (greater) angle is longer.]
	Therefore, AC is the largest side in $\triangle ABC$.
	However, AC is the hypotenuse of Δ ABC. Therefore, hypotenuse is the longest side in a right-angled triangle.

3.	(i) In $\triangle ABC$, AM is the median to BC.
	$\therefore BM = \frac{1}{2}BC$
	In ΔPQR , PN is the median to QR.
	$\frac{1}{2}$
	$\therefore QN = 2 QR$
	However, $BC = QR$
	$\therefore \frac{1}{2} BC = \frac{1}{2} QR$
	\Rightarrow BM = QN (1)
	In ΔABM and ΔPQN ,
	AB = PQ (Given)
	BM = QN [From equation (1)]
	AM = PN (Given)
	$\therefore \Delta ABM \cong \Delta PQN$ (SSS congruence rule)
	$\angle ABM = \angle PQN$ (By CPCT)
	$\angle ABC = \angle PQR \dots (2)$
	(ii) In ΔABC and ΔPQR ,
	AB = PQ (Given)
	$\angle ABC = \angle PQR$ [From equation (2)]
	BC = QR (Given)
	$\Rightarrow \Delta ABC \cong \Delta PQR$ (By SAS congruence rule)
4.	(i) In ΔAMC and ΔBMD ,
	AM = BM (M is the mid-point of AB)
	$\angle AMC = \angle BMD$ (Vertically opposite angles)
	CM = DM (Given)
	$\therefore \Delta AMC \cong \Delta BMD$ (By SAS congruence rule)

	\therefore AC = BD (By CPCT)
	And, $\angle ACM = \angle BDM$ (By CPCT)
	(ii) ∠ACM = ∠BDM
	However, $\angle ACM$ and $\angle BDM$ are alternate interior angles.
	Since alternate angles are equal,
	It can be said that DB AC
	$\Rightarrow \angle DBC + \angle ACB = 180^{\circ}$ (Co-interior angles)
	⇒ ∠DBC + 90° = 180°
	$\Rightarrow \angle DBC = 90^{\circ}$
	(iii) In ΔDBC and ΔACB ,
	DB = AC (Already proved)
	$\angle DBC = \angle ACB$ (Each 90°)
	BC = CB (Common)
	∴ ΔDBC \cong ΔACB (SAS congruence rule)
5	AB = AC (Given)
	$\Rightarrow \angle ACB = \angle ABC$ (Angles opposite to equal sides of a triangle are also equal)
	In ΔACD,
	AC = AD
	\Rightarrow ∠ADC = ∠ACD (Angles opposite to equal sides of a triangle are also equal)
	In ΔBCD,
	$\angle ABC + \angle BCD + \angle ADC = 180^{\circ}$ (Angle sum property of a triangle)
	$\Rightarrow \angle ACB + \angle ACB + \angle ACD + \angle ACD = 180^{\circ}$
	$\Rightarrow 2(\angle ACB + \angle ACD) = 180^{\circ}$
	⇒ 2(∠BCD) = 180°

	$\Rightarrow \angle BCD = 90^{\circ}$
6	consider that ABC is an equilateral triangle.
	Therefore, $AB = BC = AC$
	AB = AC
	$\Rightarrow \angle C = \angle B$ (Angles opposite to equal sides of a triangle are equal)
	Also,
	AC = BC
	$\Rightarrow \angle B = \angle A$ (Angles opposite to equal sides of a triangle are equal)
	Therefore, we obtain
	$\angle A = \angle B = \angle C$
	In ΔABC,
	$\angle A + \angle B + \angle C = 180^{\circ}$
	$\Rightarrow \angle A + \angle A + \angle A = 180^{\circ}$
	$\Rightarrow 3 \angle A = 180^{\circ}$
	$\Rightarrow \angle A = 60^{\circ}$
	$\Rightarrow \angle A = \angle B = \angle C = 60^{\circ}$
7	B C
	In ΔBEC and ΔCFB ,
	$\angle BEC = \angle CFB$ (Each 90°)
	BC = CB (Common)
	BE = CF (Given)
	\therefore ΔBEC \cong ΔCFB (By RHS congruency)
	$\Rightarrow \angle BCE = \angle CBF$ (By CPCT)

	\therefore AB = AC (Sides opposite to equal angles of a triangle are equal)
	Hence, ΔABC is isosceles.
8.	$1.1 \angle ABC = \angle ACB (AB = AC)$
	$\angle CAX = 2 \angle ABC, \angle ACB = 68.5$
	1.2 ∠CHK = 180 - 137= 43
	1.3) AHK = 68.5
	1.4) ∠CBH + ∠AHK= 68.50 +68.50 = 137
9.	$1 \angle ACD = 2x = \angle ADC$
	98 = x + 2x, x = 98/3
	2. $y = 180 - 2x - 2x = 180 - 4x = 180 - 398/3 = 148/3$
	3. 196/3
	4. 82 ⁰

KEY POINTS

1.<u>Quadrilateral</u>: It is a closed figure bounded by four line segments.

• A quadrilateral has four sides, four angles and four vertices.

(i) Two pairs of opposite sides e.g. AB & CD, AD & BC.

(ii) Two pairs of opposite angles e.g. $\angle A \otimes \angle C$, $\angle B \otimes \angle D$.

(iii) Four pairs of adjacent sides, AB & BC, BC & CD, CD & AD, AD & AB.

(iv) Line segment joining the opposite vertices are called diagonals.

e.g. AC & BD.

• The sum of angles of a quadrilateral is 360°.

2. Types of Quadrilateral:

Parallelogram: A quadrilateral in which both pairs of opposite sides are parallel is called a parallelogram. In a parallelogram,

- A diagonal divides it into two congruent triangles.
- Opposite sides are equal.
- Opposite angles are equal.
- Diagonals bisect each other.

Rectangle: A parallelogram whose one of the angles is a right angle is called a rectangle.

	consecutive sides of a rectangle is a
	a) Square b) rhombus c) parallelogram d)
	trapezium
Q 8	In quadrilateral ABCD, AP and BP are bisectors of $\angle A$ and $\angle B$
	respectively, then the value of x is
	B 60°
	С
	a) 60° b) 85° c) 95° d) 100°
Q 9	Points D, E are the mid-points of sides AB and AC of ΔABC . If the
	length of the line segment $DE= 6.5$ cm, then the length of side BC
	is equal to
	a) 6.5 cm b) 26 cm c) 13 cm d) 5.5 cm
Q 10	A diagonal of a rectangle is inclined to one side of the rectangle at
	25°. The acute angle between the diagonals ($\angle AOD$) is _
	C
	0
	A 250 B
	a) 55° b) 50° c) 40° d) 25°
Q 11	ABCD is a rhombus such that $\angle ACB = 40^\circ$. Then $\angle ADB$ is
	a) 40° b)45° c)50° d) 60°
	B
Q 12	The line segment joining the mid-points of the two sides of a
	triangle is parallel to the third side and of it.

	a) Half b) one-third c) one-fourth d) equal
Q 13	If the diagonals of a quadrilateral bisect each other at right angles,
	then the quadrilateral is a
	a) Trapezium b) rhombus c) parallelogram d)
	rectangle
Q 14	Two angles of a quadrilateral are 50° and 80° and other two angles
	are in the ratio 8:15, then the remaining two angles are
	a) 50°,130° b) 80°, 150° c) 70°, 160° d) 60°, 170°
Q 15	Δ PQR is formed by joining the mid-points of sides BC, CA and AC
	respectively. If ΔABC is an equilateral triangle with side 12 cm,
	then the length of PQ is
	a) 6 cm b) 12 cm c) 3 cm d) 16 cm
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
I	QUADRILATERAL BY PAPER FOLDING
	The Maths teacher gave students some coloured papers in the
	shape of a quadrilateral. She asked them to make a parallelogram
	from the quadrilateral ABCD using paper folding. She made the
	following parallelogram.
	A B B
(i)	How can a parallelogram be formed by using paper folding?
	a) Joining the sides of quadrilateral.
	b) Joining the mid-points of the sides of quadrilateral.
	c) Joining the various guadrilaterals.
	d) None of these.
(ii)	Which of the following is true?

	a) $PQ = AC$ b) $PQ = \frac{1}{2} AC$ c) $3PQ = AC$ d) $PQ = 2RS$
(iii)	Why paper folding method is adopted by the teacher?
(iv)	Which of the following is the correct combination?
	a) PS=AC b) QR=AC c) PS=QR d) PS=RS
(v)	Explain the geometrical principle underlying the activity and
	justify.
II	MOHAN'S WHEAT FARM
	A farmer Mohan have a field ABCD. Field ABCD is in the shape of a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. The farmer wants to crop wheat in area PQRS and mustard crop in rest of the region.
(i)	Which shape is formed by the region of wheat crop?
(ii)	Find the diagonal AC if the side of rhombus field 12m and diagonal BD is 20m?
(iii)	The farmer wants to fence the field with the wire, and then what is the length of wire required if side of rhombus is 12 m?
(iv)	Find all the three angles of the field if the corner angle A is 70°
(v)	If the side of the rhombus field is 20 m, then what length of

	fencing wire is required for two complete round of the field?
	ACTIVITY WITH STICKS
III	During Maths Lab activity, teacher gives four sticks of length 6 cm,
	6 cm, 4 cm and 4 cm to teach different types of quadrilaterals.
	Square Rectangle Sides Vertices Sides Vertices Equilateral Triangle Rhombus Sides Vertices Sides Vertices
(i)	A student formed a rectangle with these sticks. What is the length of the diagonal of the rectangle formed?
	a) $6\sqrt{13}$ b) $3\sqrt{13}$ c) $\sqrt{13}$ d) $2\sqrt{13}$
(ii)	Which quadrilaterals can be formed with these sticks?
	a) Kite, rectangle, rhombus
	b) Parallelogram, rectangle, trapezium
	d) Square, rectangle, kite
(iii)	How many types of quadrilaterals are possible with this sticks?
	a > 1 $b > 2$ $c > 3$ $d > 4$
(IV)	Which statement is true?
	 a) Opposite sides of a parallelogram are equal. b) A kits is a parallelogram
	 c) Diagonals of a parallelogram bisect each other
	d) A trapezium is a parallelogram.
(v)	A diagonal of a parallelogram divides it into two triangles.

	Now, Ramesh selected four boys such as P, Q, R and S and placed
	in the mid-points of the rope paths
	After making this arrangement, they started playing throw ball in the order from P to Q; Q to R; R to S and finally from S to P.
	On the basis of this arrangement, Ramesh asks the following questions to the other boys:
(i)	Which geometrical shape is generated by PQRS?(a) Square(b) Rhombus(c) Rectangle(d)Parallelogram
(ii)	Justify the shape generated by PQRS with a geometrical principle.
(iii)	What shape is expected by the join of PQRS if ABCD forms a rhombus?
(iv)	If $PQ = 10$ m, what is the distance between the two poles A & C?
(v)	If AC = 30 m, find RS?
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	State whether the following statement is true or false?

a)	Every rhombus is a square. ()
b)	Every square is a rectangle. ()
c)	The bisectors of any two consecutive angles of parallelogram
	intersect at right angles. ()
d)	The angles of a rhombus are bisected by the diagonals. ()
e)	In a parallelogram, the sum of any two consecutive angles is
	180°.()
Q 2	Fill in the blanks:
a)	If the diagonals of a parallelogram are equal, then it is a
	·
b)	If the diagonals of a rhombus are equal, then it is a
c)	If ABCD is a parallelogram with adjacent angles A and B equal to
	each other, then the parallelogram is a
d)	If the diagonals of a rhombus are 18 cm and 24 cm, then the side
	of the rhombus is
e)	The diagonals of a parallelogram each other.
Q 3	Match the two columns.
	Column I Column II
i)	The diagonals of a rectangle are of a) parallelogram
ii)	The diagonals of a parallelogram b) rhombus
iii)	Each square is a c) is parallel to the third
	side
iv)	Every rectangle is a d) equal length
v)	Line joining midpoints of two sides of triangle e) bisect each
	other
Q 4	ABCD is a parallelogram. If $\angle A = 65^{\circ}$, then find ($\angle B + \angle D$).

Q 5	In a quadrilateral ABCD, $\angle A + \angle D = 180^{\circ}$. What special name
	can be given to this quadrilateral?
Q 6	In figure, ABCD and AEFG are two parallelograms. If $\angle C = 60^{\circ}$,
	determine $\angle F$.
Q 7	Can all the angles of a quadrilateral be acute angles? Give reason
	for your answer.
Q 8	In $\triangle ABC$, $AB=5$ cm, $BC=8$ cm and $CA=7$ cm. if D and E are
	respectively the mid-points of AB and BC, determine the length of
	DE.
Q 9	In a parallelogram PQRS, $\angle P = 110^{\circ}$, $\angle Q = 2y+10^{\circ}$ and
	$\angle R = 5x+10^{\circ}$. Find the values of x and y.
Q 10	In a rhombus PQRS, diagonals PR and QS meet each other at O. If
	$\angle PRQ = 50^{\circ}$, find $\angle PSQ$.
	SHORT ANSWER TYPE QUESTIONS
Q 1	In the given figure, ABCD is a rhombus, $OA = 4$ cm and $OD = 3$ cm.
	find the perimeter of the rhombus.
	A C B
Q 2	In the given figure, ABCD is a parallelogram. Find the measure of the angles x and y.

Q 10	Points P and Q have been taken on opposite sides of AB and CD of
	a parallelogram ABCD such that $AP = CQ$. (see fig.) Show that AC
	and PQ bisect each other at O.
	A P B
	LONG ANSWER TYPE QUESTIONS
Q 1	In the given figure, ABCD is a parallelogram. Two points P and Q
	are taken on diagonal BD such that DP=BQ. Show that:
	i) $\triangle APD \cong \triangle CBQ$ iii) $\triangle AQB \cong \triangle CPD$
	ii) $AP = CQ$ iv) $AQ = CP$
	B
Q 2	In $\triangle ABC$ and $\triangle DEF$, $AB=DE$, $AB \parallel DE$, $BC=EF$ and $BC \parallel EF$.
	Vertices A, B and C are joined to vertices D, E and F respectively. (See fig.)
	Show that (i) quadrilateral ABED is a parallelogram.
	ii)quadrilateral BEFC is a parallelogram.
	iii) AD \parallel CF and AD = CF.
	iv) Quadrilateral ACFD is a parallelogram.
	v) AC = DF
	vi) $\Delta ABC \cong \Delta DEF$

	$\mathbf{B} \xrightarrow{\mathbf{A}} \mathbf{C} \xrightarrow{\mathbf{D}} \mathbf{F}$
0.3	Show that bisectors of angles of a parallelogram form a rectangle.
	A P Q R Q B C R Q B C
Q 4	Prove that the figure formed by joining the mid-points of the pairs
	of adjacent sides of a quadrilateral is a parallelogram.
Q 5	If ABCD is a rhombus, show that $AC^2 + BD^2 = 4 AB^2$.
Q 6	A diagonal of a parallelogram bisects one of its angles. Show that
	it is a rhombus.
Q 7	ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well $\angle C$.
	Show that (i) ABCD is a square (ii) diagonal BD bisects $\angle B$ as well
	as $\angle D$.
Q 8	A square is inscribed in an isosceles right triangle so that the
	square and the triangle have one angle common. Show that the
	vertex of the square opposite the vertex of the common angle
	bisects the hypotenuse.

Q 9	In the figure, PQRS is a parallelogram in which A and B are mid-
	points of sides QR and PS respectively. PA and RB intersect
	diagonal QS at D and C respectively. If QS= 12 cm, then find the
	length of CD.
	S R
	B D A
0.10	APCD is a wherehve and D. O. D. and C. ave the wid reints of
Q IU	ABCD is a rhombus and P, Q, R and S are the mid-points of
	AB, BC, CD and AD respectively. Show that quadrilateral PQRS is a
	rectangle.

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	a) 90°
Ans 2	b) 45°
Ans 3	c) 105°
Ans 4	a) Diagonals are equal and bisect each other at right angles.
Ans 5	d) Parallelogram
Ans 6	b) 100° [3x- 40° + 2x+20°=180°, 5x-20°=180°, x=100°]
Ans 7	c) Rhombus
Ans 8	c) 95° $[\angle A + \angle B = 360^{\circ} - (130^{\circ} + 60^{\circ}) = 170^{\circ}$ (angle sum prop.)
	½ (∠A+∠B) +x =180°, x=95°]
Ans 9	c)13 cm [BC= 2 x DE = 2 x 6.5 = 13]
Ans 10	a) 50° [AC=BD \therefore OA=OB $\Rightarrow \angle OAB = \angle OBA = 25^{\circ}$,
	$\angle AOB = 130^{\circ},$
	∠ <i>AOD</i> = 180°- 130° = 50°
Ans 11	© 50° [In ∆BOC, ∠ <i>CBO</i> = 180°- (90°+ 40°) = 50°
	$\angle CBO = \angle ADB = 50^{\circ}($ Alt. in. $\angle s)$
Ans 12	a) Half
Ans 13	b) Rhombus
Ans 14	b) 80°, 150° [50°+80°+8x+15x= 360°, x= 10]
Ans 15	a) 6 cm [by mid-point Thm. PQ= ½ AB, PQ=QR=RP =6]

	SOLUTIONS TO CASE STUDIES/ SOURCE BASED
	INTEGRATED QUESTIONS
Ans I	(b) Joining the mid-points of the sides of quadrilateral.
(i)	
ii)	(b) $PQ = \frac{1}{2} AC$
iii)	It is an easy, effective and accurate method. Activity based
	learning of students.
iv)	(c) PS=QR
V)	Principle of Mid-point theorem is used.
Ans II	(i) Rectangle
ii)	BC=12 m, OB=10m (diagonals bisect), $OC^2 = 12^2 - 10^2$,
	$OC = \sqrt{144 - 100}$
	OC= $2\sqrt{11}$, AC= $2x \ 2\sqrt{11} = 4\sqrt{11}$
iii)	$4 \times 12 = 48 \text{ m}$
iv)	$\angle A = \angle C = 70^{\circ}$ (opp. $\angle s$ are equal), $\angle C + \angle D = 180^{\circ}$ (adj. angles
	supplementary), $\angle B = \angle D = 180^{\circ} - 70^{\circ} = 110^{\circ}$
V)	20 x 4 = 80m, for two rounds, 80 x 2 = 160 m
Ans III	(i) d)2 $\sqrt{13}$ [6 ² + 4 ² = 52, diagonal = $\sqrt{52}$ = 2 $\sqrt{13}$]
(ii)	(c) Kite, rectangle, Parallelogram
iii)	(c) 3
iv)	a) Opposite sides of a parallelogram are equal.
v)	b) Congruent
Ans	
IV (i)	Trapezium

ii)	$\frac{AH}{AF} = \frac{BC}{BE} = \frac{1}{3}$ [Three parallel lines making equal intercepts on any
	transversal will make equal intercepts on other transversal also]
iii)	$\frac{AH}{HF} = \frac{BC}{CE} = \frac{5}{20} = \frac{1}{4}.$
iv)	\angle AHC = \angle GFE = 70° (corresponding angles).
v)	12+18 = 30 cm
Ans	(d) parallelogram
V (i)	
ii)	ABCD is a quadrilateral. Therefore, line joining the mid-points of
	the sides of a quadrilateral forms a parallelogram. (using midpoint
	theorem and joining diagonals)
iii)	Rectangle
iv)	AC= $2 \times PQ= 2 \times 10 = 20 \text{ m}$ (by mid-point theorem)
v)	$RS = \frac{1}{2} AC = \frac{1}{2} 30 = 15m$
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN
	MCQs)
Ans 1	a) False b) True c) True d) True e) True
Ans 2	a) Rectangle b) square c) rectangle d) 15 cm e) bisect
	dy Rectangle by square cy rectangle dy 15 cm cy bisect
Ans 3	$i) \rightarrow d$ $ii) \rightarrow e$ $iii) \rightarrow b$ $iv) \rightarrow a$ $v) \rightarrow c$
Ans 3 Ans 4	i) → dii) → eiii) → biv) → av) → cAdj angles are supplementary. \angle B= 180° - 65°, \angle B= \angle D=
Ans 3 Ans 4	i) → dii) → eiii) → biv) → av) → cAdj angles are supplementary \angle B= 180° - 65°, \angle B= \angle D=115° (::Opp angles of parallelogram are equal) \angle B
Ans 3 Ans 4	i) → dii) → eiii) → biv) → av) → cAdj angles are supplementary.∴ \angle B= 180° - 65°, \angle B= \angle D=115° (∵Opp angles of parallelogram are equal) \angle B+ \angle D=115°+115°= 230°
Ans 3 Ans 4 Ans 5	i) → dii) → eiii) → biv) → av) → cAdj angles are supplementary.∴ $\angle B = 180^{\circ} - 65^{\circ}, \angle B = \angle D =$ 115° (∵Opp angles of parallelogram are equal)∠ B $+∠D=115^{\circ}+115^{\circ}= 230^{\circ}$ $\angle A+∠D= 180^{\circ}$. But these are co-interior angles⇒AB CD.
Ans 3 Ans 4 Ans 5	i) → dii) → eiii) → biv) → av) → cAdj angles are supplementary.∴ $\angle B = 180^\circ - 65^\circ$, $\angle B = \angle D =$ 115° (∵Opp angles of parallelogram are equal)∠ B $+∠D=115^\circ+115^\circ=230^\circ$ $\angle A+∠D=$ 180°. But these are co-interior angles⇒AB CD.Since one pair of opp. side is equal, it is a trapezium.
Ans 7	No, because sum of all the angles will be less than 360°.
--------	--
Ans 8	DE AC and DE = $\frac{1}{2}$ AC (mid-point theorem) DE = $\frac{1}{2}$ AC,DE= $\frac{1}{2}$
	7= 3.5 cm
Ans 9	$\angle P = \angle R$ (opp. angles of gm), 110° = 5x+10°, x = 20°
	110°+ 2y + 10°= 180° (adj. angles are supple) , y=30°
Ans 10	$\angle PRQ = \angle RPS$ (alt. angles), $\angle POS = 90^{\circ}$ (diagonals bisect)
	$\angle POS + \angle SPO + \angle PSO = 180^{\circ}, 90^{\circ} + 50^{\circ} + \angle PSQ = 180^{\circ}, \angle PSQ$
	=40°
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
Ans 1	4^2 + 3^2 = AB ² , AB= $\sqrt{16+9} = \sqrt{25} = 5$ cm
	Perimeter = $4 \times 5 = 20 \text{ cm}$
Ans 2	Y=40° (alt. angles). In ΔABD, $80^{\circ} + 40^{\circ} + x = 180^{\circ}$, x= 60°
Ans 3	In quadrilateral AFCE, $60^{\circ} + 90^{\circ} + 90^{\circ} + \angle C = 360^{\circ}$,
	$\angle C = 360^{\circ}-240^{\circ}=120^{\circ}$. $\angle C = \angle A = 120^{\circ}Also$, $\angle B = \angle D = \frac{120^{\circ}}{2} =$
	60°
Ans 4	$\angle A + \angle D = 180^{\circ}$ (co-interior angles), $\angle D = 180^{\circ} - 45^{\circ} = 135^{\circ}$
	$\angle B + \angle C = 180^{\circ}$ (co-interior angles), $\angle C = 180^{\circ} - 45^{\circ} = 135^{\circ}$
Ans 5	x+75°= 180°(co-int angles), x=180°-75° = 105°
	$\angle x = \angle y = 105^{\circ}$ (alternate int. angles)
Ans 6	Construction: Draw DK BF.
	In Δ ADK, E is the mid pt of AD & EF DK. \therefore F is the mid pt of AK
	1
	In Δ BCF, D is the mid pt of BC & DK \parallel BF. \therefore K is the mid pt of CF

	-2
	From 1 & 2, AF=FK=CK, Also, AC=AF+FK+CK, AC=3AF, AF=1/3 AC.
Ans 7	Given, $\angle BAE = \angle EAD1$ $\angle EAD = \angle EFB2$ (alt int $\angle s$)
	From 1 & 2, $\angle BAE = \angle EFB \implies$ BF=AB, BC+CF=AB,
	6 + CF = 10, CF = 4CM
Ans 8	$\angle CDE = \angle EDA$ (given)1, $\angle CDE = \angle AED$ (Alt. $\angle s$)
	From 1 & 2, $\angle EDA = \angle AED$. : $AD = AE3$
	In ABCD, AD=BC4, \Rightarrow AE=BC5, Also AE= BE6
	From 5 & 6, BE = BC.
Ans 9	$\angle A + \angle B = 180^{\circ}$ (co-int angles), $\frac{1}{2} \angle A + \frac{1}{2} \angle B = 90^{\circ}$
	$\angle PAB + \angle PBA = 90^{\circ}$. By angle sum, $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$
	$90^{\circ} + \angle APB = 180^{\circ}, \ \angle APB = 90^{\circ}$
Ans 10	In $\triangle AOP$. $\triangle COQ$, $AP = CQ$ (given). $\angle OAP = \angle OCQ$ (Alt. angles)
	$\angle AOP = \angle QOC$ (V.O.A), $\triangle AOP \cong \triangle COQ$ By AAS cong. rule.
	\therefore OA=OC & OP=OQ.
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
Ans 1	In $\triangle APD$ and $\triangle CBQ$, $DP=BQ$, $\angle ADP=\angle CBQ$ (Alt. $\angle s$), $AD=BC$ (Opp sides of $\ gm$) $\therefore \triangle APD \cong \triangle CBQ$ by SAS. $\therefore AP=CQ$ (cpct)
	Similarly, $\triangle AQB \cong \triangle CPD :: AQ=CP$ Hence APCQ is a $ gm $
Ans 2	In quadrilateral ABED, AB=DE and AB DE, \therefore ABED is a $\ gm$ 1
	In quadrilateral BEFC, BC=EF and BC EF, \therefore BEFC is a gm2
	From 1 & 2, AD=CF & AD ∥ CF. ∴ ACFD is a ∥gm.

	AC=DF. In \triangle ABC and \triangle DEF, AB=DE, BC=EF, CA=FD.
	\therefore By SSS, ΔABC \cong ΔDEF.
Ans 3	In $\triangle ADS$, $\angle ADS + \angle DAS = \frac{1}{2} \angle D + \frac{1}{2} \angle A = \frac{1}{2} (\angle D + \angle A) = \frac{1}{2}$
	180°=90°
	Also, $\angle ADS + \angle DAS + \angle ASD = 180^{\circ}$, $90^{\circ} + \angle ASD = 180^{\circ}$
	$\Rightarrow \angle ASD = 90^{\circ} \text{ Thus } \angle ASD = \angle PSR = 90^{\circ} \text{ (VOA)}$
	Similarly, \angle SRQ = \angle RQP = \angle QPS=90° \therefore PQRS is a rectangle.
Ans 4	
	Construction: Join BD.
	In Δ BCD, G and F are the mid pts of CD and BC respectively.
	∴ GF BD & GF= ½ BD 1
	In $\triangle ABD$, E and H are the mid pts of AB and AD respectively.
	∴ EH BD & EH= ½ BD 2
	From 1 & 2, EH GF & EH= GF. ∴ EFGH is a gm
Ans 5	Diagonals of a rhombus bisect each other at rt. angles. $\therefore OA = \frac{1}{2} AC, OB = \frac{1}{2} BD$

Ans 9	PS=QR (opp sides of $\parallel gm$) , PB=AR (: $\frac{1}{2}$ PS= $\frac{1}{2}$ QR)
	∴ PARB is a ∥gm, ∴ PA ∥ BR
	\because B is mid pt of PS and BR \parallel PA \therefore C is the mid pt of SD.
	\therefore SC = CD. \therefore D is mid pt of QC \therefore QD=CD
	Thus, SC=CD=QP. QS=12 cm \therefore CD= $\frac{1}{3}$ QS= $\frac{1}{3}$ x 12 = 4 cm
Ans 10	s p p q
	In $\triangle ABC$, P is the mid pt of AB and Q is the mid pt of BC.
	\therefore PQ AC and PQ = $\frac{1}{2}$ AC1
	In ΔADC , R is the mid pt of CD and S is the mid pt of AD.
	\therefore SR AC and SR = $\frac{1}{2}$ AC2
	From 1 & 2 PQRS is a gm.
	Now AB=BC (sides of rhombus) \therefore 1/2 AB= 1/2 BC \implies PB=BQ
	In $\triangle PBQ$, $PB = BQ \therefore \angle QPB = \angle PQB$
	Now in $\triangle APS$ and $\triangle CQR$, $AP=CQ$, $AS=CR$, $PS=QR \therefore \triangle APS \cong \triangle CQR$
	by SSS. $\therefore \angle APS = \angle CQR$ cpct
	Now $\angle APS + \angle SPQ + \angle BPQ = 180^{\circ}$
	And \angle CQR + \angle PQR + \angle PQB = 180°
	$\angle APS + \angle SPQ + \angle BPQ = \angle CQR + \angle PQR + \angle PQB$
	But $\angle APS = \angle CQR$ and $\angle BPQ = \angle PQB \therefore \angle SPQ = \angle PQR$
	\angle SPQ+ \angle PQR= 180°, \angle SPQ+ \angle SPQ = 180° \therefore \angle SPQ = 90°
	PQRS is a \parallel gm with one angle 90°. \therefore PQRS is a rectangle.

	• It two chords of a circle are equal, then their corresponding, arcs are congruent and conversely, if two arcs are congruent, then
	their corresponding chords are equal.
	• Congruent arcs of a circle subtend equal angles at the centre.
	• The angle subtended by an arc at the centre is double the angle
	subtended by it any point on the remaining part of the circle.
	Angle in the same segment of a circle is equal.
	• The sum of either pair of opposite angles of a cyclic quadrilateral
	is 180° and vice-versa.
	The angle in a semi-circle is a right angle.
	If two chords of a circle are equal, then their corresponding arcs
	(minor, major or semi-circle) are congruent and vice-versa.
	COMPETENCY BASED QUESTIONS
Q1	AD is a diameter of a circle and AB is a chord. If $AD = 34$ cm, $AB =$
	30 cm, the distance of AB from the Centre of the circle is:
0.0	(a) 1 / cm (b) 15 cm (c) 4 cm (d) 8 cm
Q2	AB = 12 cm, $BC = 16$ cm and AB is perpendicular to BC , then the
	radius of the circle passing through the points A, B and C is:
Q3	ABCD is a cyclic quadrilateral such that AB is a diameter of the circle
	circumscribing it and $\angle ADC = 140^{\circ}$, then $\angle BAC$ is equal to:
<u> </u>	(a) 80° (b) 50° (c) 40° (d) 30°
Q4	In Figure, if $\angle OAB = 40^{\circ}$, then $\angle ACB$ is equal to:
	(a) 80° (b) 50° (c) 40° (d) 30°
	C
	40°
	AB
Q 5	The radius of a circle is 13 cm and the length of one of its chords is
	10 cm. The distance of the chord from the centre is
	(a) 6 cm (b) 8 cm (c) 10 cm (d) 12 cm
Q 6	AD is diameter of a circle and AB is a chord. If $AD = 50$ cm, $AB = 48$
	cm, then the distance of AB from the centre of the circle is:
	(a) 6 cm (b) 8 cm (c) 5 cm (d) 7 cm
Q 7	In a circle, O is a centre of a circle, A, B and C are the points on a
	circle, such that $\angle ABC = 20^\circ$, then $\angle AOC$ is equal to:
	(a) 10° (b) 20° (c) 30° (d) 40°
Q 8	A chord is at a distance of 8 cm from the centre of a circle of radius
-	17 cm. The length of the chord is:
	(a) 25 cm (b) 12.5 cm (c) 30 cm (d) 9 cm
Q 9	The radius of a circle which has a 6 cm long chord, 4 cm away from
	the centre of the circle is:
	(a) 9 cm (b) 8 cm (c) 10 cm (d) 5 cm
L	

Q10	In the given figure, O is the centre of the circle.
	$\angle AOB = \angle COD = 55$ ° and CD = 5.5 cm, then AB is equal to (a) 9 cm (b) 8 cm (c) 10 cm (d) 5.5 cm
	$A \underbrace{\begin{array}{c} 0\\ 55^{\circ} \\ B \end{array}}_{C} D$
0.1	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
QI	by standing on a circle of radius 5 metre. Reshma throws a ball to Salma, Salma to Mandeep and Mandeep to Reshma. The distance between Resham to Mandeep is 6 metre and Reshma to salma is 8 metre. If O is the centre of the circle then answer the following questions.
(i)	Diameter of the circle: (a) 6 m (b) 8 m (c) 10 m (d) 12 m
(ii)	Measure of ∠ MRS: (a) 180° (b) 90° (c) 100° (d) 80°
(iii)	Area of Triangle RMS: (a)10 m ² (b)20 m ² (c)24 m ² (d) 40 m ²
(iv)	Length of longest chord of a circle : (a)6 m (b) 8 m (c) 10 m (d) 12 m
(v)	What is the distance between Mandeep and Salma? (a) 6 m (b) 8 m (c) 10 m (d) 12 m
Q 2	As class IX teacher entered in the class, she told students to do some practice in a circle chapter. She draws two line segment AB and BC so that $AB = 8 \text{ cm}$, $BC = 6 \text{ cm}$ and draw a circle through the three points A, B and C.
	A B cm P B 6 cm Q C
	 Dilip drew AB and BC as per the figure. He drew perpendicular OP and OQ to the line segment AB and BC respectively.

(i)	What you called the line segment AC?
	(a) Arc (b) Diameter (c) Radius (d) Chord
(::)	What is the measure of ADC2
(11)	what is the measure of \angle ABC?
	(a)60° (b) 90° (c)45° (d 75°
()	
(111)	what do you call the region enclosed by minor arc AB and Chord AB?
	(a) Arc (b)Sector (c)Major segment (d)Minor segment
$(:, \cdot)$	What do you call the region enclosed by major are AD and should AD2
(17)	(a) Are (b) Sector (c) Major segment (d) Miner segment
(\cdot, \cdot)	(d) Arc (D) Sector (C) Major segment (d) Minor segment
(v)	what is the radius of the circle? (a) $4 \text{ cm}(b) 2 \text{ cm}(c) 7 \text{ cm}(d) F \text{ cm}(c)$
0.2	There was a singular park in Defense colony at Delhi. For fensing
QS	There was a circular park in Delence colony at Delni. For lencing
	purpose Poles A, B, C and D were installed at the circumference of the
	park. Ram tied wires from A to B, B to C and C to D and D to A. He
	managed to measure the $\angle A = 100^{\circ}$ and $\angle D = 80^{\circ}$. The point O is at
	the centre of the park.now answer the following questions:
	C
	O B
	$D \otimes 80$
(i)	What is the value of <i>CABC2</i>
(1)	(a) 80° (b) 100° (c) 90° (d) 70°
(ii)	What is the value of $\langle BCD2 \rangle$
(1)	(a) 80° (b) 100° (c) 90° (d) 70°
(iii)	What is the special type of quadrilateral ABCD?
(11)	(a) Square (b)Rectangle (C)Cyclic quadrilateral(d) Tranezium
(iv)	What is the property of cyclic guadrilateral?
	(a) Opposite angles are supplementary
	(b) Adjacent angles are equal
	(C) Opposite angles are equal
	(D) Adjacent angles are complementary
(v)	What do you call the region enclosed by the radii OB, OC and the
	minor arc BC?
	(a)Segment (b)Arc (c)Chord (d) Sector
Q 4	Government of India is working regularly for the growth of
~ ·	handicapped persons. For this, three STD booths situated at A. B. C

	as shown in the figure, which are operated by handicapped persons. These three booths are equidistant from each other as shown in the figure.
(i)	Which type of Δ ABC in the given figure? (a) Equilateral triangle(b) Isosceles triangle (c) Right angled triangle
(ii)	Measure of $\angle ABC$ is (a) 45° (b) 60° (c) 30° (d) 90°
(iii)	if $AB = 6$ m, the value of BC+CA is (a) 10 (b) 12 (c) 14 (d) 16
(iv)	Measure of $\angle BOC$ is (a) 90° (b) 100° (c) 120° (d.) 50°
(v)	Value of $\angle OBC + \angle OCB$ is (a) 60° (b) 30° (c) 45° (d) 90°
Q 5	A farmer has a circular garden as shown in the picture below. He has a different type of trees, plants and flower plants in his garden. In the garden, there are two mango trees A and B at a distance of AB = 10 m. Similarly, he has two Ashoka trees at the same distance of 10 m as shown at C and D. AB subtends $\angle AOB = 120^\circ$ at the centre O. The perpendicular distance of AC from centre is 5 m. The radius of the circle is 13 m.
(i)	What is the value of ∠AOB? (a) 60° (b) 120° (c) 100° (d) 80°
(ii)	What is the distance between mango tree A and ashoka tree C? (a) 12 cm (b) 24 cm (c) 13 cm(d) 15 cm

(iii)	What is the value of ∠OAB?
	(a) 60° (b) 120° (c) 30° (d) 90°
(iv)	What is the value of ∠COD?
	(a) 60° (b) 120° (c) 30° (d) 90°
(v)	What is the value of ∠ODC?
	(a) 90° (b) 120° (c) 60° (d) 30°
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
	Write True or False and justify your answer in each of the following:
Q 1	Two chords AB and CD of a circle are each at distances 4 cm from the centre. Then $AB = CD$.
Q 2	Two chords AB and AC of a circle with centre O are on the opposite sides of OA. Then $\angle OAB = \angle OAC$.
Q 3	If AOB is a diameter of a circle and C is a point on the circle, then AC^2 + BC^2 = AB^2 .
	FILL IN THE BLANKS
Q 4	Two congruent circles with centres O and O' intersect at two points A and B. Then $\angle AOB = _$
Q 5	A circle of radius 3 cm can be drawn through two points A, B.The maximum possible length of $AB = $
Q 6	Segment of a circle is the region between an arc and of the circle.
Q 7	In Figure, if $\angle ABC = 20^{\circ}$, then find the $\angle AOC$.
Q 8	In Figure, if AOB is a diameter of the circle and AC = BC, then find the \angle CAB.
Q 9	AB is a chord of a circle with radius `r'. If P is any point on the circle such that \angle APB is a right angle, then find AB.
Q 10	What is the measure of the angle subtended by a semi-circle at centre?

	SHORT ANSWER TYPE QUESTIONS
Q 1	Prove that Equal chords of a circle subtend equal angles at the centre.
Q 2	If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.
Q 3	A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
Q 4	In Figure, $\angle ABC = 69^{\circ}$, $\angle ACB = 31^{\circ}$, find $\angle BDC$.
	B 69° 31° C
Q 5	In Figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that \angle BEC = 130° and \angle ECD = 20°. Find \angle BAC.
	B B C C
Q 6	In the given figure, O is the centre of the circle with chords AP and BP being produced to R and Q respectively. If \angle QPR = 35°, find the measure of \angle AOB.

Q 7	In the figure, PQRS is a cyclic quadrilateral. Find the value of x.
	S 50° 35° P
Q 8	Prove that a cyclic parallelogram is a rectangle.
Q 9	Two circles intersect at two points A and B. AD and AC are diameters to the two circles (see Figure). Prove that B lies on the line segment DC.
Q 10	If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see Figure).

	LONG ANSWER TYPE QUESTIONS
Q 1	Prove that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Q 2	ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If \angle DBC = 55° and \angle BAC = 45°, find \angle BCD.
Q 3	\triangle ABC and \triangle ADC are two right triangles with common hypotenuse AC. Prove that \angle CAD = \angle CBD.
Q 4	ABCD is a parallelogram. The circle through A, B and C intersects CD (produce if necessary) at E. Prove that $AE = AD$.
Q 5	If a circle touches the side BC of a triangle ABC at P and extended sides AB and AC at Q and R, respectively, prove that $AQ = 1/2$ (BC + CA + AB)
Q 6	\angle PQR = 100°, where P, Q and R are points on a circle with centre O. Find \angle OPR.
	P O R
Q 7	Show that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
	$ \begin{array}{c} $

Q 8	ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If \angle DBC = 70°, \angle BAC is 30°, find \angle BCD. Further, if AB = BC, find \angle ECD.
Q 9	If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle
Q 10	If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(C) $17^2 - 15^2 = 8^2, 8 \div 2 = 4$ cm
Ans2	(C) $12^2 + 16^2 = 20^2, 20 \div 2 = 10$ cm
Ans3	(B) $\angle ABC = 180^{\circ} - 140^{\circ}, \angle BAC + 90^{\circ} + 40^{\circ} = 180^{\circ}, \angle BAC = 50^{\circ}$
Ans4	(B) ∠ABO=40 °. ∠O=100, ∠C=100÷2=50
Ans5	(D) $13^2 - 5^2 = 12^2$,12cm
Ans6	(D) $25^2 - 24^2 = 7^2$,7cm
Ans7	(A) $\angle AOC = 2 \times 20^{\circ}$, $\angle AOC = 40^{\circ}$
Ans8	(C) $17^2 - 8^2 = 15^2, 15 + 15 = 30$ cm
Ans9	(D) $4^2 + 3^2 = 5^{2},5$ cm
Ans10	(D) $OA = OD$, $OB = OC$, $\angle AOB = \angle COD$, $\triangle AOB = \triangle COD$ (By SAS) AB = CD = 5.5 cm
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
1	(i)c,(ii)b,(iii)c,(iv)c,(v)c
2	b,b,d,c,d
3	b,a,c,a,d
4	A,b,b,c,c
5	B,b,c,a,d
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
1	True
2	True
3	True
4	∠AO′B
5	6 cm
	We know that Angle at the centre of the circle is twice the angle at the <u>circumference</u> subtended by the same arc. $\angle AOC = 2 \angle ABC$ It is given that $\angle ABC = 20^{\circ}$ Substituting the values $\angle AOC = 2 \times 20^{\circ}$ $\angle AOC = 40^{\circ}$ Therefore, $\angle AOC$ is equal to 40°.

8	We know that			
	Diameter subtends a right angle to the circle			
	$\angle BCA = 90^{\circ} \dots (1)$			
	It is given that			
	AC = BC			
	As the angles opposite to equal sides are equal			
	$\angle ABC = \angle CAB \dots (2)$			
	In triangle ABC using the angle sum property			
	$\angle CAB + \angle ABC + \angle BCA = 180^{\circ}$			
	2 From equations (1) and (2) $2 \text{ CAB} + 2 \text{ CAB} + 90^\circ = 180^\circ$			
	$2\angle CAB = 180^{\circ} - 90^{\circ}$			
	2∠CAB = 90 °			
	Dividing both sides by 2			
	$\angle CAB = 45^{\circ}$, Therefore, $\angle CAB$ is equal to 45° .			
9	It is given to us that, $\angle APB = 90^{\circ}$.			
	we know that a right angle is formed inside a circle when a triangle is inscribed inside a semicircle			
	Thus, the chord used to form the right angle has to be the diameter			
	of the circle.			
	Thus, chord AB is the diameter of the circle, that is, it is equal to 2r.			
10	Angle subtended by a diameter/ semicircle on any point of a circle is 90°			
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS			
1	Using equal angles at the centers and the fact that circles are congruent, we prove the statement using Side-Angle-Side (SAS criteria) and corresponding parts of congruent triangles (CPCT).			
	P P R R			
	Draw chords QR and YZ in two congruent circles as shown above. Join the radii PR, PQ, and XY, XZ respectively. Given that chords subtend equal angles at the center. So, \angle QPR = \angle YXZ. We need to prove that chords are equal, that is, QR = YZ Since the circles are congruent, their radii will be equal. PR = PQ = XZ = XY Consider the two triangles \triangle PQR and \triangle XYZ.			
	\angle QPR = \angle YXZ (Chords subtend equal angles at center)			

	PR = XZ (Radii are equal) By SAS criteria, Δ PQR is congruent to Δ XYZ. So, QR = YZ (Corresponding parts of congruent triangles) Hence proved if chords of congruent circles subtend equal angles at their center then the chords are equal.
2	
	Given: AB is the diameter of the circle with centre O.AP and AQ are two intersecting chords of the circle such that \angle PAB = \angle QAB Proof: In \triangle AOL and \triangle AOM \angle OLA = \angle OMB (each 90 •) OA = OA (common line) $\therefore \angle$ OAL = \angle OAM (\angle PAB = \angle QAB) $\therefore \triangle$ AOL $\cong \triangle$ AOM by AAS congruence criterion \Rightarrow OL = OM by CPCT \Rightarrow Chords AP and AQ are equidistant from centre O \Rightarrow AP=AQ (chords which are equidistant from the centre are equal.)
3	
	The chord AB is equal to the radius of the circle. OA and OB are the two radii of the circle. From $\triangle OAB$. AB = OA = OB = radius of the circle. $\triangle OAB$ is an equilateral triangle. $\therefore AOC = 60^{\circ}$ And, ACB = $\frac{1}{2} AOB$ So, ACB = $\frac{1}{2} \times 60^{\circ} = 30^{\circ}$ Now, ACBD is a cyclic quadrilateral, ADB +ACB = 180° (Since they are the opposite angles of a cyclic quadrilateral)

	So, ADB = $180^{\circ}-30^{\circ} = 150^{\circ}$ So, the angle subtended by the chord at a point on the minor arc and also at a point on the major arc is 150° and 30° respectively.
4	Consider the $\triangle ABC$, the sum of all angles will be 180° . $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$ $69^{\circ} + \angle BAC + 31^{\circ} = 180^{\circ}$ $\angle BAC = 180^{\circ} - 100^{\circ}$ $= 80^{\circ}$ We know that angles in the same segment of a <u>circle</u> are equal. So, $\angle BDC = \angle BAC = 80^{\circ}$
5	Consider the straight-line BD. As the line AC intersects with the line BD, the sum of two adjacent angles so formed is 180°. Therefore, $\angle BEC + \angle DEC = 180^{\circ}$ $130^{\circ} + \angle DEC = 180^{\circ}$ $\angle DEC = 180^{\circ} - 130^{\circ} = 50^{\circ}$ Consider the $\triangle DEC$, the sum of all angles will be 180°. $\angle DEC + \angle EDC + \angle ECD = 180^{\circ}$ $50^{\circ} + \angle EDC + 20^{\circ} = 180^{\circ}$ $\angle EDC = 180^{\circ} - 70^{\circ} = 110^{\circ}$ $\therefore \angle BDC = \angle EDC = 110^{\circ}$ We know that angles in the same segment of a <u>circle</u> are equal. $\therefore \angle BAC = \angle BDC = 110^{\circ}$
6	$\angle APB = \angle RPQ = 35^{\circ}$ [vertically opposite angles] Now, $\angle AOB$ and $\angle APB$ are angles subtended by an arc AB at centre and at the remaining part of the circle. $\therefore \angle AOB = 2 \angle APB$ $= 2 \times 35^{\circ}$ $= 70^{\circ}$
7	In $\triangle PRS$, by using angle sum property, we have $\angle PSR + \angle SRP + \angle RPS = 180^{\circ}$ $\angle PSR + 50^{\circ} + 35^{\circ} = 180^{\circ}$ $\angle PSR = 180^{\circ} - 85^{\circ} = 95^{\circ}$ Since PQRS is a cyclic quadrilateral $\therefore \angle PSR + \angle PQR = 180^{\circ}$ [\because opposite angles of a cyclic quadrilateral are supplementary] 95° + x = 180° x = 180° - 95° x = 85°
8	Let ABCD be the cyclic parallelogram. We know that opposite angles of a parallelogram are equal. $\angle A = \angle C$ and $\angle B = \angle D$ (1) We know that the sum of either pair of opposite angles of a cyclic <u>quadrilateral</u> is 180°. $\angle A + \angle C = 180^{\circ}$ $\angle A + \angle A = 180^{\circ}$ (From equation (1)) $2\angle A = 180^{\circ}$

	$\angle A = 90^{\circ}$ We know that if one of the <u>interior angles</u> of a parallelogram is 90°, all the other angles will also be equal to 90°. Since all the angles in the parallelogram are 90°, we can say that parallelogram ABCD is a rectangle.
9	Join AB. \angle ABD = 90° (Angle in a semicircle) \angle ABC = 90° (Angle in a semicircle) So, \angle ABD + \angle ABC = 90° + 90° = 180° Therefore, DBC is a line. That is B lies on the line segment DC.
10	Draw a perpendicular from the center of the circle OM to the line AD. We can see that BC is the chord of the smaller circle, and AD is the chord of the bigger circle. We know that <u>perpendicular</u> drawn from the center of the circle <u>bisects</u> the chord. \therefore BM = MC (1) and, AM = MD (2) Subtracting (2) from (1), we obtain AM - BM = DM - CM \therefore AB = CD
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
1	Given : An arc PQ of a circle subtending angles POQ at the centre O and PAQ at a point A on the remaining part of the circle. To prove :POQ=2PAQ To prove this theorem we consider the arc AB in three different situations, minor arc AB, major arc AB and semi-circle AB.
	Join the line AO extended to B. Proof : $BOQ=OAQ+AQO \dots(1)$ Also, in $\triangle OAQ$.
	Also, in \triangle OAQ, [Radii of a circle] Therefore, $\angle OAQ = \angle OQA$ [Angles opposite to equal sides are equal] $\angle BOQ = 2\angle OAQ$ (2) Similarly, BOP = 2 $\angle OAP$ (3) Adding 2 & 3, we get, $\angle BOP + \angle BOQ = 2(\angle OAP + \angle OAQ)$ $\angle POQ = 2\angle PAQ$ (4)
	For the case 3, where PQ is the major arc, equation 4 is replaced by Reflex angle, \angle POQ=2 \angle PAQ

 $90^{\circ} + \angle BCA + \angle CAB = 180^{\circ}$

 $\angle BCA + \angle CAB = 90^{\circ}....(1)$

Consider ∆ADC,

 \angle CDA + \angle ACD + \angle DAC = 180° (Angle sum property of a triangle)

 $90^{\circ} + \angle ACD + \angle DAC = 180^{\circ}$

 $\angle ACD + \angle DAC = 90^{\circ}....(2)$

Adding Equations (1) and (2), we obtain

 \angle BCA + \angle CAB + \angle ACD + \angle DAC = 180°

 $(\angle BCA + \angle ACD) + (\angle CAB + \angle DAC) = 180^{\circ}$

 $\angle BCD + \angle DAB = 180^{\circ}....(3)$

However, it is given that

 $\angle B + \angle D = 90^{\circ} + 90^{\circ} = 180^{\circ}....(4)$

From Equations (3) and (4), it can be observed that the sum of the measures of opposite angles of quadrilateral ABCD is 180°. Therefore, it is a cyclic quadrilateral.

Since it is a cylclic quadrilateral the below figure can be drawn.

Consider chord CD. \angle CAD and \angle CBD are formed on the same segment CD.

 \angle CAD = \angle CBD (Angles in the same segment are equal)

/	Since ABCD is a cyclic quadrilateral. ∴ ∠A + 2C = 180°(i)
	and $\angle B + \angle D = 180^{\circ}(ii)$ Also, AP, BP, CR and DR are the angle bisectors of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ respectively.
	$\angle 1 = \frac{1}{2} \angle \mathbf{A}, \angle 2 = \frac{1}{2} \angle \mathbf{B}, \angle 3 = \frac{1}{2} \angle \mathbf{C} \text{ and } \angle 4 = \frac{1}{2} \angle \mathbf{D}$
	From (i), we have $\frac{1}{2} \angle A + \frac{1}{2} \angle C = \frac{1}{2} (\angle A + \angle C) = \frac{1}{2} \times 180^{\circ}$ =90° and
	From (ii), $\frac{1}{2} \angle B + \frac{1}{2} \angle D = \frac{1}{2} (\angle B + \angle C) = \frac{1}{2} \times 180^\circ = 90^\circ$
	and $\angle 2 + \angle 4 = 90^{\circ}$
	Now, in $\triangle APB$, by angle sum property of a triangle $\angle 1 + \angle 2 + \angle P = 180^{\circ} \dots$ (iii)
	Again, in \triangle CRD, by angle sum property of a triangle
	Adding (iii) and (iv), we have
	$\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle P + \angle R = 180^{\circ} + 180^{\circ}$
	$2P + 2R = 360^{\circ} - 180^{\circ} = 180^{\circ}$
	i.e., the sum of one pair of the opposite angles of quadrilateral
	POPS is 180°
	PQRS is 180°. Hence, the quadrilateral PQRS is a cyclic quadrilateral.
8	PQRS is 180°. Hence, the quadrilateral PQRS is a cyclic quadrilateral.
8	PQRS is 180°. Hence, the quadrilateral PQRS is a cyclic quadrilateral. $A = \frac{1}{\sqrt{20^2 + 10^2}}$ $A = \frac{1}{\sqrt{20^2 + 10^2}}$ In the triangles, ABD and BCD, \angle CAD = \angle CBD = 70°. (Angles in the same segment are equal)
8	PQRS is 180°. Hence, the quadrilateral PQRS is a cyclic quadrilateral. A C T
8	PQRS is 180°. Hence, the quadrilateral PQRS is a cyclic quadrilateral. $ \begin{array}{c} B \\ $

	Since ABCD is a cyclic <u>quadrilateral</u> , the sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
	$\angle BAD + \angle BCD = 180^{\circ}$
	∠BCD = 180° - 100°
	= 80°
	Thus, ∠BCD = 80°
	Also given $AB = BC$.
	So, $\angle BCA = \angle BAC = 30^{\circ}$ (Base angles of <u>isosceles triangle</u> are equal)
	$\angle ECD = \angle BCD - \angle BCA$
	= 80° - 30°
	= 50°
	Thus, ∠ECD = 50°
9	Let BD be the diameter of the circle, which is also a chord. Then, $\angle BOD = 180^{\circ}$
	Since AC and BD are diameters of the circle
	$\Rightarrow AC = BD$
	We know that the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.
	$\therefore \angle BAD = 1/2 \times \angle BOD = 90^{\circ}$
	Similarly, $\angle BCD = 90^{\circ}$
	Now, considering AC as the diameter of the circle, we get $\angle AOC = 180^{\circ}$
	We know that the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.
	$\angle ABC = 1/2 \times \angle AOC = 90^{\circ}$
	Similarly, ∠ADC = 90°
	Let us now consider the triangles ΔABC and ΔBAD ,

By <u>RHS</u> congruence, $\Delta AMD \cong \Delta BNC$.
Using CPCT, $\angle ADC = \angle BCD(1)$
\angle BAD and \angle ADC are on the same side of <u>transversal</u> AD.
$\angle BAD + \angle ADC = 180^{\circ}$
$\angle BAD + \angle BCD = 180^{\circ}$ [From equation(1)]
This equation proves that the sum of opposite angles is <u>supplementary</u> . Hence, ABCD is a cyclic quadrilateral.

CHAPTER 12 : Heron's Formula

	COMPETENCY BA	SED QUESTIONS		
Q1	An isosceles right t	riangle has an area	8cm ² . The length of i	ts hypotenuse is
	(a) $\sqrt{16} cm$	(b) $\sqrt{48} \ cm$	(c) $\sqrt{32} \ cm$	(d) $\sqrt{24} cm$
Q2	The sides of a trian	gle are 35cm, 54cm	, and 61cm, respecti	vely. The length of its
	longest altitu	ide is		
	(a) 26√5 cm	(b) 28 cm	(c) $10\sqrt{5} \ cm$	(d) 24√5 <i>cm</i>
Q3	The sides of a trian	gle are 56cm, 60cm	. and 52cm. long. Th	e area of the triangle
	is.			
	(a) 4311 cm ²	(b) 4322 cm ²	(c) 2392 cm ²	(d) None of these
Q4	The area of an equ	ilateral triangle is 16	$\sqrt{3}$ m ² . Its perimeter	is
	(a) 24m	(b) 12m	(c) 306 m	(d) 48m
Q 5	The perimeter of a	triangle is 30cm. Its	sides are in the ratio	1:3:2, then its
	smallest side	e is.		
	(a) 15cm	(b) 5cm	(c) 1 cm	(d) 10cm
Q 6	The sides of a tri a a) 15 cm ²	angle are 3 cm, 4 ci b) 12 cm ²	m and 5 cm. Its area c) 9 cm ²	a is: d) 6 cm ²
Q 7	The area of $\triangle ABC$ $B = \frac{2}{4}$	is: A Cm	C	N 0 /5 2
	a) 20 cm ²	b) 10 cm ²	c) 4√5 cm²	d) 2√5 cm²

Q 8	The area of a triangular sign board of sides 5 cm, 12 cm and 13 cm is:
	a) 60 cm^2 b) 30 cm^2 c) 12 cm^2 d) $65/2 \text{ cm}^2$
Q 9	The perimeter of a right triangle is 60 cm and its hypotenuse is 26 cm. The
	other two sides of the triangle are:
	a) 26 cm, 8 cm b) 25 cm, 9 cm c) 24 cm, 10 cm d) 20 cm, 14 cm
Q10	The sides of a triangle are in a ratio of 25:14:12 and its perimeter is 510 m.
	The greatest side of the triangle is:
	CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Q 11	$\mathbf{A}\mathbf{I}$
	In craft class Prince cuts a yellow marble paper in shape of a triangle. The type of triangle is right
	angled triangle. Hence one angle of triangle is 90° . Hypotenuse is 5cm and other is 4cm
(i)	What is the type of triangle?
	A equilateral triangle
	B right angled triangle
	C Isosceles triangle
	D none of these
(ii)	What is the area of triangle in cm ² cm ² ?
	A 6
	B 5
	C 4
	D 3
(iii)	Theorem to find area of right angled triangle is called
	A Alternate angle theorem
	B Verticle angle theorem
	C Pythagoras Theorem
	D none of these

(iv)	In right angled triangle side opposite to 90 ^o 090 ^o is called
	A Right side
	B Left side
	C side one
	D Hypotenuse
(v)	What is the area of triangle in cm ² <i>cm</i> ² if one side is 4cm and other 3cm ?
	A 6
	B 7
	C 8
	D 9
Q 12	
	Director of DAV Public School planned to fix a signal board indicating SCHOOL AHEAD across
	main road. It is an equilateral triangular shaped with side 24 cm. Principal of the school calls the
	monitor Brajesh of class IX and asked the following questions:
(i)	What is the perimeter of board?
	B 82cm
	C 90cm
	D 100cm
(ii)	Find area using Heron's formula.
	A 144\v 5 Cm
	B $150\sqrt{3}$ cm ²
	C $160\sqrt{3}$ cm ²
	D $170\sqrt{3}$ cm ²
(iii)	Sum of all sides is called

	A volume
	B area
	C Perimeter
	D none of these
IV	If all three sides were 20 cm then perimeter will be A 30cm
	B 40cm
	C 50cm
	D 60cm
13	11 M KEEP THE PARK
	15 m
	There is a slide in a park, one of its side wall has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". If the sides of the walls are 15 m, 11 m and 6 m then answer following questions
Ι	Area of wall painted in colour is
	A $20\sqrt{2}$ cm
	B $10\sqrt{2}$ cm ²
	$c 5\sqrt{2} \text{ cm}^2$
	D $20\sqrt{3}$ cm ²
II	Perimeter of triangle is
	B 32m
	C 30m
	D 20m
III	Half perimeter is A 12m
	B 15m
	C 16m
	D 18m

IV	What will be perimeter if sides are 3m, 8m and 6m
	A 22m
	b 25m
	C 25m
	D 17m
V	What will be area if sides are 15m, 10m and 3m A 7.64 sqm
	B 30sq m
	C 40sq m
	D 50sq m
14	Rahul has a field. His field is in shape of triangle. He once decides to measure sides of his land and
I	First side of field measures
	A 120m
	B 130m
	C 140m
	D 150m
II	Second side of field measures
	B 170m
	C 140m
	D 150m
TIT	Third side of field measures
	A 130m
	B 160
	C 250m
	D 150m

IV	Half perimeter s of field is
	A 130m
	B 140m
	C 150m
	D 270m
V	Area of field in m^2 is A 9000
	B 5600
	C 4500
	D 3400
15	
	Raj goes to school and on his way he finds a traftic signal board indicating "SCHOOL AHEAD'. The board is an equilateral triangle with side each side a.
I	Perimeter of equilateral triangle with each side a is
	A 3a
	B $\frac{3}{9}$ a ²
	C $\frac{2}{3}$ a ²
	D $\frac{3}{4}$ a ²
II	If perimeter is 150cm, then how much will each side measure? A 70cm
	B 80cm
	C 50cm
	D 90cm
III	If perimeter is 270cm, then how much will each side measure?
	50cm
	В
	60cm

	C
	80cm
	D
	90cm
IV	unit of area is
	$A Cm^2$
	B Cm ³
	$C cm^4$
	D cm
V	Area of triangle will be
V	Area of triangle
	A 3a
	B $\frac{3}{9}$ a ²
	C $\frac{2}{3}$ a ²
	D $\frac{3}{4}$ a ²
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 16	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m.
Q 16	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$)
Q 16 Q 17	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height
Q 16 Q 17 Q 18	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle?
Q 16 Q 17 Q 18 Q 19	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle?
Q 16 Q 17 Q 18 Q 19 Q 20	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle? An Isosceles triangle, with base a and equal sides b, what will be it's area formula
Q 16 Q 17 Q 18 Q 19 Q 20 Q 21	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle? An Isosceles triangle, with base a and equal sides b, what will be it's area formula Diagonal of a Square =
Q 16 Q 17 Q 18 Q 19 Q 20 Q 21 Q 22	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle? An Isosceles triangle, with base a and equal sides b, what will be it's area formula Diagonal of a Square = Area of a Triangle =
Q 16 Q 17 Q 18 Q 19 Q 20 Q 21 Q 22 Q 23	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle? An Isosceles triangle, with base a and equal sides b, what will be it's area formula Diagonal of a Square = Area of a Triangle = Area of a Parallelogram =
Q 16 Q 17 Q 18 Q 19 Q 20 Q 21 Q 22 Q 23 Q 24	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle? An Isosceles triangle, with base a and equal sides b, what will be it's area formula Diagonal of a Square = Area of a Triangle = Area of a Parallelogram = The area of a Rectangle with length(1) and breadth(b) is ?
Q 16 Q 17 Q 18 Q 19 Q 20 Q 21 Q 22 Q 23 Q 24 Q25	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs) Find the area of a triangular garden whose sides are 40m., 90m and 70m. (use $\sqrt{5} = 2.24$) Area of a triangle = × base × height What is the formula of diagonal of the rectangle? What is the formula of semi-perimeter of a triangle? An Isosceles triangle, with base a and equal sides b, what will be it's area formula Diagonal of a Square = Area of a Triangle = Area of a Parallelogram = The area of a Rectangle with length(l) and breadth(b) is ? The perimeter of a Rectangle with length(l) and breadth(b) is ?

Q27	The area of a Square with side (a) is ?
Q28	The perimeter of a Square with side (a) is ?
Q 29	The diagonal of a Square with side (a) is ?
Q 30	The area of a parallelogram with breadth(b) and altitude(h) is ?
Q 31	The area of a rhombus with diagonals d_1d_1 and d_2d_2 is ?
Q32	The perimeter of a rhombus with diagonals d_1d_1 and d_2d_2 is ?
Q 33	The area of a trapezium with parallel sides a and b and distance between two parallel sides as h is ?
Q34	The area of a regular hexagon with side(a) is ?
	SHORT ANSWER TYPE QUESTIONS
Q 35	Find the area of a triangular garden whose sides are 40m., 90m and 70m.
	$(\text{use }\sqrt{5} = 2.24)$
Q 36	Find the cost of leveling a ground in the form of a triangle with sides 16m, 12m
	and 20m at Rs. 4 per sq. meter.
Q 37	Find the area of a triangle, two sides of which are 8cm and 11cm and the perimeter is 32 cm.
Q 38	The area of an isosceles triangle is 12cm ² . If one of its equal side is 5cm. Find its base.
Q 39	Find the area of a right triangle whose sides containing the right angle are 5cm
	and 6cm.
	LONG ANSWER TYPE QUESTIONS
Q40	Calculate the area of the shaded region.
	A UOZI B 22m C
------	--
Q 41	If each sides of a triangle is double, then find the ratio of area of the new triangle thus formed and the given triangle.
Q 42	A field is in the shape of a trapezium whose parallel sides are 25m and 10m. If its non-parallel sides are 14m and 13m, find its area.
Q 43	An umbrella is made by stitching 10 triangular pieces of cloth of 5 different colour each piece measuring 20cm, 50cm and 50cm. How much cloth of each colour is required for one umbrella? ($\sqrt{6} = 2.45$)
Q 44	A triangle and a parallelogram have the same base and some area. If the sides of the triangle are 26cm, 28cm and 30cm and the parallelogram stands on the base 28cm, find the height of the parallelogram.
Q 45	Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.
Q 46	A triangular park ABC has sides 120m, 80m and 50m. A gardener Dhania has to put a fence all around it and also plant grass inside. How much area does she need to plant?
Q 47	A triangular park ABC has sides 120m, 80m and 50m. A gardener Dhania has to put a fence all around it and also plant grass inside. find the cost of fencing it with barbed wire at the rate of Rs 20 per metre leaving a space 3m wide for a gate on one side.
Q 48	The sides of a triangular plot are in the ratio of 3 : 5 : 7 and its perimeter is 300 m. Find its area
Q 49	A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle. Find the area of the signal board, using Heron's formula if its perimeter is 180 cm?
Q 50	An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.
Q 51	Find the area of a quadrilateral ABCD in which $AB = 3$ cm, $BC = 4$ cm, $CD = 4$ cm, $DA = 5$ cm and $AC = 5$ cm.
Q52	A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram
Q53	A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	1 (c) $\sqrt{32} cm$ Q. 2 (d) $24\sqrt{5} cm$ Q. 3 (d) None of these Q. 4 (a) 24 m.
	Q. 5 (b) 5 cm. Q. 6 d Q.7 d Q8 b 9 c 10 b
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED
	QUESTIONS
11	i-cii–aiii-civ-dv-a
12	I-a ii-a iii-c iv-d
13	i-a ii-b iii – c iv -d v - a
14	I-a ii-b iii-c iv-d v-a
15	Ia ii ciii div cv d
16	1344 sq m
17	1/2
18	$D = v(I^2_{+b}^2)$
19	$A = \frac{1}{2} (a + b + c)$
20	Area = $a/4 \sqrt{(4b^2 - a^2)}$
21	$\sqrt{2}$ side
22	√{s (s-a) (s-b)(s-c)}
23	Base x height
24	lx b
25	2(I + b)
26	$v(l^2 + b^2)$

27	a ²
28	4a
29	√2 a
30	bh
31	1/2 d ₁ x d ₂
32	$2 v (d_1^2 + d_2^2)$
33	½ (a+ b) h
34	3/2 v 3 a ²
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS
35	1344 sq. m.
36	384
37	$8\sqrt{30} \ cm^2$
38	6cm.
39	15cm ²
	SOLUTIONS TO LONG ANSWER TYPE QUESTIONS
40	1074m ²
41	2v 2
42	196 sq. m.
43	980 cm ² each.
44	12cm.
45	8 v 30 CM ²

46	375 √15 m ²
47	Rs. 4940
48	1500 v 3 m ²
49	900 v 3 cm ²
50	9 v 15 cm ²
51	15.2 cm ²
52	12cm
53	48 cm ²

CHAPTER 13 : SURFACE AREA AND VOLUME

iv)	What will be the amount of iron used in road roller?(take Π =3014) a) 178038cm ³ b)406944cm ³ c) 228906cm ³ d) 356076cm ³
v)	If 1cubic cm of iron weighs 10g, what will be the weight of road rollar(in kg)?
	a)1780.38kg b)4069.44kg c)2289.06kg d)3560.76kg
Q12	Ravi was doing an experiment to find the radius r of a sphere. For this he took a cylindrical container with radius R=7cm and height 10cm. He filled the container half by water. Now he dropped a sphere in the container. He observed that the water level in the container raised 3.40cm
i)	What is the approximate radius of sphere a) 7cm b)5cm c) 4cm d)3cm
ii)	What is the volume of cylinder? a) 700 cm^3 b) 500 cm^3 c) 1540 cm^3 d) 2000 cm^3
iii)	What is the approximate volume of sphere? a) 700cm ³ b) 600cm ³ c) 500cm ³ d) 523.8cm ³
iv)	How many litres water can be filled in the full container?(1litre=1000cm ³) a)1.50 b)1.44 c)1.54 d)2
v)	What is the surface area of sphere? a) 314.3 cm ² b) 300 cm ² c) 400 cm ² d) 500 cm ²
Q13	The residents of a society decided to paint a hall cancer detection centre in their premises. If the floor of the cuboidal hall has a perimeter equal to 250m and height 6m then
i)	Find the cost of painting its 4 walls (including doors etc) at the rate of Rs8 per m ² a)Rs9000 b)Rs10000 c)Rs11000 d)Rs12000
ii)	What is the amount contributed by each resident, if there are 50 residents in society? a)Rs120 b)Rs240 c)Rs65 d)Rs150
iii)	If there are 200 people in society and 50 litres of water per person every day. Water reservoir measuring 20mx10mx5m. For how many days the water of the tank is sufficient? a)200 b)150 c)100 d)50
iv	If area of floor is 50m ² , how many square shaped tiles of dimension 0.5mx0.5m are required to cover the floor? a)25 b)50 c)100 d)200
v)	What is the ratio of perimeter of floor to perimeter of a tile?a) 125:1b)250:1c)125:2d)125:3
Q14	50 students of class IX planned a visit to old age home and to spend the whole day with its inmates, each one prepared cylindrical flower vase using cardboard to gift the inmates. The radius of cylinder is 4.2cm and height is 11.2cm.
i)	What is the total surface area of each of the cylindrical vase a)248cm ² b)351.12cm ² c)304.12cm ² d)400cm ²
ii)	What is the total amount spent for purchasing the cardboard at the rate of Rs20 per 100cm ² ? a)Rs3511.20 b)Rs3010.20 c)Rs3412.12 d)Rs3612.12
iii)	What is the approximate volume of one vase? a)621cm ³ b)800cm ³ c)891cm ³ d)1000cm ³

iv)	What is the approximate amount spent to decorate the curved
-	surface area of a vase at the rate of Rs2per100 m ² ?
	a)Rs6 b)Rs10 c)Rs16 d)Rs20
v)	If radius of cylinder is doubled, then new area of base will be
	times of original area of base.
	a)2times b)3 times c)4 times d)no change
Q15	In a grinding mill, there were installed 5 types of mills. These
	mills used spherical shaped steel balls of radius 5mm, 7mm,
	10mm, 14mm, 16mm respectively. For repairing purpose mill
	needs 10 balls of radius 7mm and 20 balls of radius 3.5m. The
	workshop was having 20000mm ³ steel which was melted and 10
	balls of radius /mm and 20 balls of radius 3.5m were made and
	the remaining steel was stored for future use.
1)	What was the volume of 10 balls of radius /mm?
	a) $143/3.3$ mm ³ b) 14000 mm ³ c) 7000 mm ³ d) 20000 mm ³
"	what was the volume of 20 balls of radius 3.5mm? $a_{2}^{2} = b_{1}^{2} = b_$
:::>	a)2000mm ² D)1800mm ² C)1796.6mm ² d)3593.3mm ²
· · · ·)	$\square OW \Pi UCH SLEEF Was kept for Tuture use? \square OM m^3 = 0.000 \text{ mm}^3$
iv()	What was the surface area of one ball of radius 7mm ²
10)	$a)600 \text{ mm}^2$ $b)616 \text{ mm}^2$ $c)308 \text{ mm}^2$ $d)154 \text{ mm}^2$
V)	What is the ratio of surface area of a ball of radius 7mm and a ball
v)	of radius 3 5mm?
	a)2.1 $b)1.2$ $c)4.1$ $d)1.4$
	OBJECTIVE TYPE OUESTIONS(OTHER THAN MCO)
	STATE TRUE OR FALSE(FROM 01 TO 05)
016	If the radius of a cylinder is doubled and its curved surface area is
z	not changed, the height must be halved.
Q17	A cone, a hemisphere and a cylinder stand on equal bases and
-	have the same height. The ratio of their volumes is 1:2:3.
Q18	If the height of the diagonal of a cube is $6\sqrt{3}$ cm, then the length
	of the edge of the cube is 3cm.
Q19	If a sphere is inscribed in a cube, then the ratio of the volume of
	the cube to the volume of the sphere will be 6: Π .
Q20	A cylinder and a right circular cone are having the same base and
	same height. The volume of the cylinder is three times the
	volume of cone.
0.21	FILL IN THE BLANK
Q21	I otal surface area of a cube is 96cm ² . Side of cube is
QZZ	Height and radius of base of a cone is 3.5cm and 12cm.its slant
022	A subs has numerically equal surface area and volume. Edge of
Q23	A cube has numerically equal surface area and volume. Euge of
024	Cube is Area of the base of a solid hemisphere is $36 \Pi \text{cm}^2$ Volume of
V24	hemisphere is
025	Ratio of the surface area to the volume of the sphere of unit
<u></u>	radius is
	SHORT ANSWER TYPE OUESTIONS
026	Find the canacity in litres of a conical vessel having height 8 cm and slant
~~~	i ma the capacity in needs of a conical vessel naving height o cin and slatt

	height 10 cm.
Q27	Calculate the surface area of a hemispherical dome of a temple with
	radius 14 m to be whitewashed from outside.
Q28	The volume of a solid hemisphere is 1152 $\pi$ cm ³ . Find its curved surface
	area.
Q29	A heap of wheat is in the form of a cone whose diameter is 10.5 m and
	height is 3 m. Find it volume If 1m ³ wheat cost is ₹10, then find total
	cost.
Q30	A cylindrical vessel can hold 154 g of water. If the radius of its base is 3.5
	cm, and1cm ³ of water weighs 1 g, find the depth of water.
Q31	How much ice-cream can be put into a cone with base radius 3.5 cm and
	height 12 cm?
Q32	The curved surface area of a cone is 12320 sq. cm, if the radius of its base
	is 56 cm, find its height.
Q33	Two cubes of edge 6 cm are joined to form a cuboid. Find the total
	surface area of the cuboid.
Q34	A metallic sphere is of radius 4.9 cm. If the density of the metal is 7.8
	g/cm ² , find the mass of the sphere ( $\pi$ = 22/7).
Q35	A rectangular piece of paper is 22 cm long and 10 cm wide. A cylinder is
	formed by rolling the paper along its length. Find the volume of the
	cylinder.
0.26	LONG ANSWER TYPE QUESTIONS
Q36	A wall of length 10 m is to be built across an open ground. The height of
	the wall is 5 m and thickness of the wall is 42 cm. If this wall is to be
	built with brick of dimensions 42 cm $\times$ 12 cm $\times$ 10 cm, then how many
027	bricks would be required?
Q37	internal radius is 0.00 m. Find thiskness of nine
038	Internal radius is 0.09 m. Find thickness of pipe.
Q.0	radius 12 cm. Versha reshapes it in the form of a sphere. Find the radius
	and curved surface area of the sphere so formed
039	Salim provides water to a village, having a population of 4000 which
255	requires 150 litres of water per head per day. He has storage tank
	measuring 20 m $\times$ 15 m $\times$ 6 m. For how many days will the water of his
	tank last? He increased the rate for providing water as the dependence
	of villagers increased on him. Which value is depicted by Salim?
Q40	To maintain beauty of a monument, the students of the school cleaned
	and painted the dome of the monument. The monument is in the form
	of a hemisphere. From inside, it was white washed by the students
	whose area is 249.48 m ² . Find the volume of the air inside the dome. If
	white washing costs ₹2 per m ² , how much does it costs ?
Q41	The curved surface area of a cylinder is 154 cm. The total surface area of
	the cylinder is three times its curved surface area. Find the volume of
	the cylinder.

Q42	It costs ₹3300 to paint the inner curved surface of a 10 m deep well. If
	the rate cost of
	painting is of ₹30 per m ₂ , find :
	(a) inner curved surface area
	(b) diameter of the well
	(c) capacity of the well.
Q43	A dome of a building is in the form of a hemisphere. From inside, it was whitewashed at the cost of ₹498.96. If the rate of whitewashing is ₹4 per
	square metre, find the :
	(i) Inside surface area of the dome
	(ii) Volume of the air inside the dome.
Q44	A right triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about
	the side 5 cm. Find the volume of the solid so obtained. If it is now
	revolved about the side 12 cm, then what would be the ratio of the
	volumes of the two solids obtained in two cases ?
Q45	A right triangle of hypotenuse 13 cm and one of its sides 12 cm is made
	to revolve taking side 12 cm as its axis. Find the volume and curved
	surface area of the solid so formed.

	ANSWERS
	COMPETENCY BASED QUESTIONS
ANS1	c)
ANS2	a)
ANS3	d)
ANS4	b)
ANS5	c)
ANS6	c)
ANS7	b)
ANS8	c)
ANS9	b)
ANS10	b)
	CASE STUDY(ANS)
ANS11(i)	c)27+9=36cm
ii)	$d)2\Pi rh = 2\Pi x 36 x 100 = 7200\Pi cm^2$
iii)	d)(1584x7x100)/2x22x36=700
iv)	a) $\Pi$ h(R ² -r ² )=3.14x100(36 ² -27 ² )=178038cm ³
v)	a) $178038 \times 10g = 1780380/1000 \text{kg} = 1780.38 \text{kg}$
ANS12(i)	b) $(4/3)\Pi r^3 = \Pi x 7^2 x 3.40, r = 5$
ii)	$c)(22/7)x7x7x10=1540cm^{3}$
iii)	$c)(4/3)(22/7)(5^3)=500(aprox)$
iv)	c)1540/1000=1.54
v)	$a)4\Pi r^{2} = 4(22/7)(5x5) = 314.3 cm^{2}$
ANS13(i)	d)2(l+b)hx8=250x6x8=Rs12000
ii)	b)12000/50=Rs240
iii)	c)(20x10x5x1000)/200x50=100
iv)	$d(50/(0.5\times0.5)=200)$
V)	$a)250/(4 \times 0.5) = 125:1$
ANS14(i)	$b)\Pi r(2h+r)=(22/7)(4.2)(2x11.2+4.2)=351.12cm^{2}$
ii)	a)50x351.12x(20/100)=Rs3511.20
iii)	a) $\Pi r^2 h = (22/7) x 4.2 x 4.2 x 11.2 = 621 cm^3$
iv)	$a)2\Pi rh(2/100) = 2x(22/7)x4.2x11.2x(2/100) = Rs6(approx)$
v)	$c)\Pi(2r)^2 = 4(\Pi r^2)$
ANS15(i)	$a)10(4/3)\pi r^{3} = 10(4/3)(22/7)(7x7x7) = 14373.3 \text{mm}^{3}$
ii)	d)20(4/3)(22/7)(3.5x3.5x3.5=3593.3mm ³
iii)	b)20000-(14373.3+17966.6)=2033.4
iv)	b)4(22/7)(7x7)= $616$ mm ²
v)	c)[4x(22/7)x7x7]/[4x(22/7)x3.5x3.5]=4:1
	OBJECTIVE TYPE QUESTIONS(OTHER THAN MCQ)
ANS16	$True,2\Pi rh=2\Pi(2r)h/2$
ANS17	True,(1/3)∏r ² r: (2/3)∏r ³ : ∏r ² r
ANS18	False, $a\sqrt{3}=6\sqrt{3}$ ,a=6
ANS19	True, $a^3$ :(4/3) $\prod (a/2)^3 = 6$ : $\prod$ .
ANS20	True
ANS21	4cm, 6a ² =96,a=4cm
ANS22	$12.5$ cm, $l=\sqrt{r^2+h^2}=\sqrt{12^2+3.5^2}=12.5$ cm
ANS23	$6$ cm, $a^3 = 6a^2$ so edge=6
ANS24	144∏cm ² , ∏r ² =36∏ so r=6cm. volume=( $2/3$ ) ∏(6x6x6)=144∏
ANS25	$3:1, 4\Pi(1)^2/(4/3) \Pi(1)^3=3:1$

	SHORT ANSWER TYPE QUESTIONS
ANS26	$R^2 + h^2 = l^2$
	$\Rightarrow$ r ² + 8 ² = 10 ²
	$\Rightarrow$ r ² = 100 - 64 = 36
	$\Rightarrow$ r = 6 cm
	Now, volume of conical vessel = $(1/3)\pi r^2 h = (1/3) \times (22/7) \times 6 \times 8 =$
	$301.71 \text{ cm}^3 = 0.30171 \text{ litre}$
ANS27	Surface area of dome = $2\pi r^2$
	$= 2 \times (22/7) \times 14 \times 14 = 1232 \text{ m}^2$
	Hence, total surface area to be whitewashed from outside is 1232 m ² .
ANS28	volume of hemisphere = $1152 \pi \mathrm{cm}^3$
	$\therefore (2/3)\pi r^3 = 1152$
	$\Rightarrow$ r=12
	Now, curved surface area = $2\pi r^2$
	$= 2 \times \pi \times (12)^2 = 288\pi \text{ cm}^2$
ANS29	Volume of cone = $(1/3)\pi r^2 h$
	= (1/3) × (22/7) × 5.25 × 5.25 × 3
	$= 86.625 \text{ m}^3$
	Cost of 1m ³ of wheat = ₹10
	Cost of 86.625 m ³ of wheat = ₹10 × 86.625
	= ₹866.25
ANS30	Since 1 cm ³ of water weighs 1 g.
	$\therefore$ Volume of cylindrical vessel = 154 cm ³
	$\pi r^2 h = 154$
	(22/7) × 3.5 × 3.5 × h = 154
	h = 4cm
	Hence, the depth of water is 4 cm.
ANS31	radius (r) = $3.5$ cm and height (h) = $12$ cm
	$\therefore$ Amount of ice-cream = (1/3) $\pi r^2 h$
	$= (1/3) \times (22/7) \times 3.5 \times 3.5 \times 12$
	$= 154 \text{ cm}^3$
ANS32	$\pi rl = 12320$
	I = (12320x7)/(22x56)
	= 70 cm
	Again, we have
	$r^{2} + h^{2} = l^{2}$
	$h^2 = 70^2 - 56^2$
	= 4900 - 3136 = 1764
	h = √1764 = 42 cm
ANS33	When two cubes are joined end to end, then
	Length of the cuboid = $6 + 6 = 12$ cm
	Breadth of the cuboid $= 6 \text{ cm}$
	Height of the cuboid = 6 cm
	Total surface area of the cuboid = $2 (lb + bh + hl)$

	$= 2(12 \times 6 + 6 \times 6 + 6 \times 12)$
	= 2(72 + 36 + 72) = 2(180)
	$= 360 \text{ cm}^2$
ANS34	radius of metallic sphere (r) = 4.9 cm
	Volume of sphere= $(4/3)(22/7)(4.9)^3 = 493$ cm ³
	mass=493x7.8=3845.4g
ANS35	Since rectangular piece of paper is rolled along its length.
	$\therefore 2\pi r = 22$
	r = (22x7)/2x22) = 3.5  cm
	Height of cylinder (h) = $10 \text{ cm}$
	$\therefore$ Volume of cylinder = $\pi r^2 h$
	$= (22/7) \times 3.5 \times 3.5 \times 10 = 385 \text{ cm}^3$
	LONG ANSWER TYPE QUESTIONS
ANS30	length of the wall (L) = 10 m = 1000 cm
	Breadth of the wall (B) = $42 \text{ cm}$
	Height of the wall (H) = 5 m = 500 cm
	$\therefore$ Volume of the wall = L × B × H
	$= 1000 \times 42 \times 500 \text{ cm}^3$
	Volume of each brick = $42 \times 12 \times 10$ cm ⁻
	Number of bricks=(1000x42x500)/42x12x10=4166.67
	= 4167
	Hence, the required number of bricks is 4167.
AN557	Internal radius (r) of cylindrical pipe = $0.09 \text{ m} = 9 \text{ cm}$
	Length (height) of cylindrical pipe (h) = $0.14 \text{ m} = 14 \text{ cm}$
	Let external radius of the cylindrical pipe be R cm.
	volume of cylindrical pipe = 748 cm ³ $= (P^2 - r^2)h = 748$
	$\Rightarrow 11(R - r) r = 748$ $\Rightarrow (22/7) (P^2 - 0^2) 14 = 748$
	$\Rightarrow (22/7) (R - 9) 14 = 740$
	$\Rightarrow R = 81 + 17 = 98$
	$\Rightarrow$ R = $\sqrt{90}$ = $7\sqrt{2}$ CIII = $9.9$ CIII Thus thickness of the pipe = $0.0 - 0.0$ cm
	Thus, thickness of the pipe = $9.9 - 9 = 0.9$ cm
ANSJO	$\frac{1}{2} = \frac{1}{2} $
	Lat P be the radius of sphere so formed
	: Volume of sphere = Volume of cone
	$(\Lambda/2)\pi P^3 = (1/2)\pi r^2 b$
	$AR^3 - 12 \times 12 \times A8$
	$R^3 - 12 \times 12 \times 12$
	R = 12  m
	Now curved surface area of sphere $= 4\pi P^2$
	$- A \propto (22/7) \times 12 \times 12$
	$- \frac{1}{10} (22/1) \wedge 12 \wedge 12$ - 1810 29 cm

ANS39	the population of the village = 4000
	Requirement of water per head per day = 150 litres
	$\therefore$ Total requirement of water per day = 4000 × 150 litres
	= 600000 litres
	Volume of water tank = $20 \times 15 \times 6$
	$= 1800 \text{ m}^3$
	= 1800 × 1000 litres
	Now, number of days for which water of the tank will last
	= 1800X1000/600000 = 3 days
	Hence, water tank can serve for 3 days.
ANS40	dome of the monument is hemispherical in shape, which was
	whitewashed by the students.
	Now, total area to be white washed = $249.48 \text{ m}^2$
	Cost of white washing = ₹2 per m ²
	∴ Total cost of white washing = ₹2 × 249.48
	= ₹498.96
	Also, $2\pi r^2 = 249.48$
	r ² =(249.48x7)/2x22=158.76, r=12.6
	Volume of dome= $(2/3)(22/7)(12.6)^3$
	$= 4191.264 \text{ m}^3$
ANS41	curved surface area of cylinder = 154 cm ² (given]
	Total surface area of cylinder = $3 \times \text{curved surface area}$
	$2\pi rh + 2\pi r^2 = 3 \times 154 \ 3 \ 154 + 2\pi r^2 = 462$
	$2\pi r^2 = 462 - 154 = 308$
	$r^2 = 49$ r = 7 cm
	2πrh=154
	h=(154x7)/2x22x7=3.5cm
	Volume of cylinder= $(22/7)(7)^2(3.5)=539$ cm ³
ANS42	cost of painting inner curved surface is ₹30 per m2 and total cost is
	₹3300
	Curved surface area=3300/30=110m ⁻
	$2\pi rn = 110$
	r = (110x7)/2x11x10 = 1.75m
	Volume=itr $\Pi = (22/7) \times 1.75 \times 1.75 \times 10 = 90.25 \Pi$
	Hence, inner curved surface area is 110 m², diameter of the well is $2 \times 1.75$ i.e. $2.5$ m and capacity of the well is $96.25$ m ³
ANS43	dome of building is a hemisphere
	Total cost of whitewashing inside the dome $= 7408.06$
	Rate of whitewashing $-\overline{z}/2$ per m ²
	Inside surface area of dome $-198.96/4 - 124.74 m^2$
	113000 3011000 a100 01 00110 - 430.30/4 - 124.74111

	$r^2 = (124.74x7)/2x22 = 19.845$
	r=4.45m
	Volume of air inside dome= $(2/3)\pi r^3 = (2/3)(22/7)(4.45)^3 = 184.63 m^3$
ANS44	right triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about
	the side 5 cm.
	$\therefore$ Radius of the base of cone = 12 cm
	Height of the cone = 5 cm
	Volume of cone= $(1/3)\pi x 12^2 x 5 = 720\pi/3 cm^3$
	Again, right triangle ABC is now revolved about side 12cm.
	Now, volume of cone= $(1/3)\pi x 5^2 x 12 = 300\pi/3 \text{ cm}^3$
	Required ratio of volumes= $720\pi/3:300\pi/3=12:5$
ANS45	hypotenuse and one side of a right triangle are 13 cm and 12 cm
	respectively.
	Third side= $(13^2 - 12^2)^{1/2} = 5$ cm
	Now, given triangle is revolved, taking 12 cm as its axis
	$\therefore$ Radius of the cone (r) = 5 cm
	Height of the cone (h) = $12 \text{ cm}$
	Slant height of the cone $(1) = 13$ cm
	$\therefore$ Curved surface area = $\pi$ rl = $\pi$ (5)(13) = 65 $\pi$ cm ²
	Volume of the cone = $(1/3)\pi r^2 h = (1/3)\pi \times 5 \times 5 \times 12 = 100\pi \text{ cm}^3$
	Hence, the volume and curved surface area of the solid so formed are
	100 $\pi$ cm ³ and 65 $\pi$ cm ² respectively.

## **CHAPTER : STATISTICS**



	2000 and 2001.											
	120 100 100 100 100 100 100 100											
	What is the ratio of the total sales of branch B2 for both years to the total sales of branch B4 for both years?											
	(a) 2:3 (b) 4:5 (c) 7:9 (d) 6:9											
Q4	To draw a histogram to represent the following frequency distribution:											
	CLASS5-1010-1515-2525-4545-75INTERVAL </td											
	FREQUEN         6         12         10         8         15           CY											
	the adjusted frequency for the class 25-45 is: (a) 6 (b) 5 (c) 3 (d) 2											
0.5	The histogram shows the heights of 21 students in a class, grouped into 5-											
~~~	inch groups.											


	step of the second seco	40 50 60 70 x										
	Which of these is true about the frequency polygon?											
	(a) The maximum amount of rainfall received is between 40-50 cm.											
	(b) The amount of ra	ainfall received was a	bout 10-20 cm for 10 of the days.									
	(c) The amount of ra the days.	ainfall received was a	bout 50-60 cm for more than 15 of									
	(d) There were equa cm and 60-70 cm.	l number of days wh	en the rainfall was between 10-20									
Q 9	If a frequency polyg	on is drawn from the	following frequency distribution,									
			then its first two points will be									
	Marks (out of 50)	Number of students										
	0-10	8										
	10-20	10										
	20-30	6										
	30-40	7										
	4-50	10										
	(a) (0,0), (4,0) (b) (-5,0), (5,8) (c) (5	5,8), (5,10) (d) (0,0), (0,4)									
Q10	If a frequency polyg	on is drawn from the	following frequency distribution,									
	then its last two poin	nts will be										

	Marks (out of 50)	Number of students								
	0-10	8								
	10-20	10								
	20-30	6								
	30-40	7								
	Marks (out of 50) Number of students 0-10 8 10-20 10 20-30 6 30-40 7 40-50 10 (a) (35,7), (45,10) (b) (45,10), (55,0) (c) (50,5), (50,0) (d) (7,35), (10,45) CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS Anil is a Mathematics teacher in Hyderabad. After Periodic test 3, he asks students to collect the mathematics marks of all the students of Class IX- A B and C. He prepares the frequency distribution table using the collected marks and draws Histogram using the table as shown in figure. Variation of mathematics (i) What is the width of the class? (a) 10 (b) 15 (c) 5 (d) None of these What is the total number of students in the Histogram?									
	(a) (35,7), (45,10) ((10,45) CASE STUDI	b) (45,10), (55,0) (c) (50, ES/ SOURCE BASED INTE	5), (50,0) (d) (7,35), GRATED QUESTIONS							
		·								
Q 1	Anil is a Mathematics	teacher in Hyderabad. Aft	er Periodic test 3, he asks							
	students to collect the	e mathematics marks of al	I the students of Class IX- A,							
	B and C. He prepares the frequency distribution table using the collected									
	marks and draws Hist	ogram using the table as s	snown in figure.							
	Frequency									
	20	Marks of students								
	18 16									
	14									
	10									
	0-10 10-20 2	0-30 30-40 40-50 50-60 60-70 70-80	\$0-90 90-100 Marks							
(i)	(i) What is the width	of the class?								
	(a) 10 (b) 15 (c) 5 (d) None of these								
(ii)	What is the total num	ber of students in the Hist	ogram?							
	(a) 80 (b) 74 (c) 79 (d) 82								

(iii)	How many students scored 50% and above marks?
	(a) 35 (b) 51 (c) 42 (d) 45
(iv)	How many students scored less than 50% marks?
	(a) 19 (b) 26 (c) 27 (d) 23
(v)	What is the range of the collected marks?
	(a) 60 (b) 59 (c) 53 (d) 100
Q 2	A random survey is done on the number of children belonging to different
	age groups who play in government parks and the information is given in the
	form of a histogram given below
	Y Y 20 10 16 14 12 10 0 2 4 10 6 7 0 12 13 14 15 15 14 15 15 14 15 15 16
(i)	The number of children belonging to the age group 2 to 4 year are
	(a) 6 (b) 8 (c) 10 (d) 12
(ii)	on how many children the survey was done?
	(a) 54 (b) 58 (c) 60 (d) 64
(iii)	which age group children has least frequency?
	(a) 1-2 (b) 2-4 (c) 7-9 (d) 11-15
(iv)	how many children of age below 9 years goes to government parks?

	(a) 42 (b) 46 (c) 48 (d) 50
(v)	How many children of age 7 years or more goes to government parks?
	(a) 28 (b) 30 (c) 35 (d) 40
Q 3	The Class teacher of Class X preparing result analysis of a student. She
	compares the marks of a student obtained (out of 100) in Class IX (2018-19)
	and Class X (2019-20) using the double bar graph as shown below
	$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
(i)	In which subject has the performance improved the most?
	(a) Maths (b) Social Science (c) Science (d) English
(ii)	In which subject has the performance deteriorated?
	(a) Maths (b) Social Science (c) Science (d) English
(iii)	In which subject is the performance at par?
	(a) Hindi (b) Maths (c) Science (d) English
(iv)	What is the difference of marks in Maths Subject?
	(a) 5 (b) 30 (c) 0 (d) 10
(v)	What is the percentage of marks obtained by a student in
	(2019-20)?

	(a) 60% (b) 55% (c) 54% (d) 65%
Q 4	The histogram of weekly wages (in Rs.) of workers in a factory is given below:
(i)	Which group has the maximum number of workers? (a)800-810 (b)880-890 (c)830-840 (d) 870-880
(ii)	How many workers earn Rs. 850 and more? (a) 8 (b) 10 (c) 14 (d) 20
(iii)	How many workers earn less then Rs, 850? (a) 10 (b) 20 (c) 30 (d) 40
(iv)	What is the class mark of interval 880-890? (a) 800 (b) 865 (c) 870 (d) 885
(v)	Total number of workers (a) 10 (b) 20 (c) 30 (d) 40
Q 5	The following bar graph shows the pass percentage in annual examination of a secondary school. Read the bar graph given below, and choose the correct option each

	110 100 90 100 90 100 90 100 100
(i)	The pair of classes in which the absolute value of difference of percentages of boys and girls is same?
	(a) VI, VIII (b) VI, IX (c) VII, IX (d) VIII, X
(ii)	The class in which least percentage of girls failed?
	(a) VII (b) X (c) IX (d) VIII
(iii)	The class in which least percentage of boys failed?
	(a) VII, X (b) VII, IX (c) VIII, VI (d) IX,X
(iv)	Classes in which boys performed better than girls?
	(a) VI (b) VI,VIII (c) VII, IX (d) IX, X
(v)	which class overall result was best?
	(a) VII (b) X (c) IX (d) VIII
	OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
Q 1	In a histogram the areas of the rectangles are directly proportional to the
	frequencies of corresponding classes. (True / False)

Q 2	For drawing frequency polygon, we always need to draw a histogram. (True /											
	False)											
Q 3	In histogram of varying width, the adjusted frequency of a class is											
	Adjusted frequency = $\frac{\text{Minimum class size}}{\text{class size}} \times \text{frequency of that class.}$											
	(True / False)											
Q 4	Frequency poly	gon is cor	nstructed b	y plotting	g frequency o	f the class int	erval					
	and upper limit of the class interval. (True / False)											
Q 5	Width of the bars have no significance in a histogram. (True / False)											
Q 6	The mid-point of a class is called											
Q 7	For drawing frequency polygon, we needfor x-axis											
	and for y- axis.											
Q 8	In a bar graph	0.4cm len	gth of a ba	ar represe	ents 100 peop	ole. The lengt	h of					
	bar which repr	esent 120	0 people is									
Q 9	The class mark	s of the cl	ass interva	al 140-14	5 is							
Q 10	One of the side	es of frequ	ency polyc	jon is the		axis.						
		SH	ORT ANSW	ER TYPE	QUESTIONS							
Q 1	The following t	able show	s the favou	urite spor	ts of 250 stud	dents of a sch	iool.					
	Sports	Cricket	Football	Tennis	Badminton	Swimming	Repre					
	No. of	75	25	50	25	65	sent					
	students	75	55	50	23	05	data					
	by a bar graph						uutu					
0.2	The following +	able chow	s the inter	act noid 4	w India (in +h	ousand crore						
\ <u>\</u> _	rupees) on ext	ernal deht	s durina th	est paid (ne period	1998–99 to	2002–03	:					
	Tupees) on external debts during the period 1996–99 to 2002–03.											

	Represent the data by a bar graph.												
	Year	199 9	98– 19	1999-	999-2000		0-01	0-01 2001-02		2002-03			
	Interest												
	(in								106		120		
	thousand	and 70		8	4	9	98						
	crore												
	rupees)												
Q3	The air distances of four cities from Delhi (in km) are given												
	City Kolkata Mumbai Chennai Hyderabad												
	Distance fro	m	17	840	1100)	1700		122	0			
	Delhi (in km	ו)	1.	0-10	1100	,	1700		1220				
Q 4	Draw a bar graph to represent the above data.												
	No of		2010 11						2015 1	-	2014	15	
	students	g	950	1	125		1400		1750		1900		
0.5	The above ta Represent the	ble s e abc	hows ove da	the yea Ita by a	ar wise bar gr	aph.	gth of		hool				
Ų J			1 50 0	VUIKCIS				/CII				7	
	Daily	140	-18	180-	2 22	0-2	260-	-3	300-3	3	840-3		
	wages (in rupees)	(0	20	6	50	0 00		40		80		
	Number										4		
	of	1	.6	9		2	2	7			т		
	workers												
	Construct a h	histog	ıram t	o repre	esent th	e abc	ove free	que	ncy distr	ibuti	on.	-	
Q 6	The following a market, du	table ring a	e shov a certa	ws the ain wee	average ek.	e daily	y earni	ngs	of 40 ge	enera	al store	s in	

	Daily earnings (in rupees)		600-650		0	650-70 0		700-75 0		750-8 00	800–8 50	850-9	850-900	
	Nu of sto	imber ores	er			9		2		7	11	5		
	Dra	w a his	togra	am to	repr	esent	: the	abc	ve data	а.				
Q 7														
	Class interval		I	8-13	1	3–18	-18 18-		23–28	28-33	33-38	38-43		
		Frequency		320		780	'80 16		540	260	100	80		
	Draw a histogram for the frequency distribution of the following data													
Q 8														
	Monthly school fee (in Rs):		30-	60 6	0-90	90-	-120	12	20-150	150-180	180-210	210-24	0	
	Number of schools		5		12	14		18		18 10		4		
	Con	struct a	a hist	togra	n foi	r the f	follov	ving) data:	1	1	1]	
Q 9	In figure, there is a histogram depicting daily wages of workers in a factory. Construct the frequency distribution table.													

		Age (i	n	10-	17-2	24	4-3	31.	-3	38-	-	45–	52-	
		years)	16	3		0	7	,	44		51	58	
		Numbe	er											
		of		175	225	-	00	10		250		400	EDE	
		illitera	te	175	323	1	.00	13		250	,	400	525	
		persor	าร											
	Draw	i a histo	gram	to repr	esent	the a	above	e dat	а					
Q 3	Draw a	histogra	am to	repres	ent th	e fol	lowin	g da	ta.					
	Class	10	14	20	32									
	interv	/ -1	-2	-3	-5	52-	-80							
	al	4	0	2	2									
	Frequ	۱ 5	6	0	25	21								
	ency	5	0	5	25	21								
Q 4	Draw a histogram to represent the data given below													
	Marks	(g) 0·	-20	20 - 3	30 30	- 50	50 -	- 60						
	No. of		0	13		16	11							
	studer	nts		15		10	1							
Q 5	In a study of diabetic patients in a village, the following observations were								e					
	noted.													
	Г	Age in			20-3			4	0-5	50	-6	60-	-	
		years	1	0-20	0	3	0-40		0	()	70		
	-	Numbe	r											
		of		2	5		12		19	Ģ	9	4		
		patients	5											
	F	Represen	t the	above	data b	yat	reque	ency	poly	gon				
Ųΰ	Draw a frequency polygon for the following frequency distribution.													
		Class		1-1	11_	20	21-30		30 31_		41	-50	51-	
		interva	I	0		20	~ 1	50	51	.0		50	60	
		Freque	ncy	8	3		6	5	12	2		2	7	

Q 7	The ages (in years) of 360 patients treated in a hospital on a particular day									
	are given below.									
	Age in years			10-20	20	-30	30-40	40-50	50-60	60-70
	Num	Number of patients				40	60	20	120	30
	Dra	aw a histo	ogram ar	and a frequency polygon on the same graph to						
	represent the above data.									
Q 8	Class	interval	20-25	25-30	3	0-35	35-40	40-45	45-50	
			20 20	, 23-30		<u>го</u>	20.0	46	10	
	Frequ	lency	30	24		52	28	40	10	
	Draw	a histogr	am and t	the freq	uen	cy pol	ygon fro	om the ab	ove data.	
Q 9	Follow	ing table	gives th	ne distrik	outi	on of s	students	of sectio	ns A and	B of a
	class a	according	to the r	narks ol	otai	ned by	/ them.			
	SECTION A SECTION B									
	MARKS		FREQU	E MARKS FRE		FREC	QUE			
			NCY			NCY				
		0-15	5	0-15		3				
		15-30	12	15-3	0	16				
		30-45	28	30-4	5	25				
		45-60	30	45-6	0	27				
		60-75	35	60-7	5	40				
		75-90	13	75-9	0	10				
Q 10	The following are the scores of two groups of class V students in a GK test							GK test		
		SCORES 50-52 47-49 44-46 41-36			(GROUP A			GROU	IP B
					'	4			2	
						10			3	
						15			4	
						18		8		
		38-40				20			12	
		35-37				12			17	
		32-34				13			22	
		TOTAL			9	92				

Page **208** of **223**

	SOLUTIONS TO COMPETENCY BASED QUESTIONS
Ans 1	(b)4
Ans 2	(b) Vinay; Rs 275000
Ans 3	(c) 7:9
Ans 4	(d) 2
Ans 5	(c) 11
Ans 6	(b) (155,15)
Ans 7	(c) 10
Ans 8	(d) There were equal number of days when the rainfall was between 10-20
	cm and 60-70 cm.
Ans 9	(b) (-5,0), (5,8)
Ans 10	(b) (45,10), (55,0)
	SOLUTIONS TO CASE STUDIES/ SOURCE BASED INTEGRATED QUESTIONS
Ans1(i)	(a) 10
(ii)	(b) 74
(iii)	(b) 51
(iv)	(d)23
(v)	(d) 100
Ans2(i)	(c) 10
(ii)	(d) 64
(iii)	(d) 11-15
(iv)	(b) 46
(v)	(a) 28

Ans3(i)	(a) Maths
(ii)	(d) English
(iii)	(a) Hindi
(iv)	(b) 30
(v)	(c) 54%
Ans4(i)	(c)830-840
(ii)	(b) 10
(iii)	(b) 20
(iv)	(d) 885
(v)	(c) 30
Ans5(i)	(b) VI, IX
(ii)	(a) VII
(iii)	(c) VIII
(iv)	(c) VIII, VI
(v)	(b) X
	SOLUTIONS TO OBJECTIVE TYPE QUESTIONS (OTHER THAN MCQs)
1	TRUE
2	FALSE
3	TRUE
4	FALSE
5	FALSE
6	Class mark

7	Class mark, frequency							
8	4.8							
9	142.5							
10	X-axis							
	SOLUTIONS TO SHORT ANSWER TYPE QUESTIONS							
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

9				
	CLASS	S INTERVAL	FREQUENC	Y
	150-2	00	50	
	200-2	50	30	
	250-3	00	35	
	300-3	50	20	
	350-4	00	10	
	TOTAL	-	145	
10		CLASS	FREQUENC	
			γ	
		60-65	3	
		65-70	3	
		70-75	8	
		75-80	10	
		80-85	5	
		85-90	1	
		TOTAL	30	
	SOLUTIO	NS TO LONG ANSV	VER TYPE QUE	STIONS
1	Class			₽
-----	-----------	--------------------	--	---
1 I	Class	Frequency	Scale:	
	Interval	requercy	On X axis 1 big division = 8 units	
	4.5-12.5	6	On Y axis 1 big division = 2 units	
	12.5-20.5	15	24-	
	20.5-28.5	24	22-	
	28.5-36.5	18		
	36.5-44.5	4	14- 8-10-	
	44.5-52.5	9	9 10-	
			om → x	
			Class intervals —	
2	Age (in	Number of		
	vears)	Illiterate Persons		
	9.5-16.5	175		
	16 5-23 5	325		
	23 5-30 5	100		
	30 5-37 5	150		
	37 5-44 5	250		
	44 5-51 5	400		
	F1 E E0 E	525		
	51.5-58.5	525	v ~ .	
			 Scale: On X axis 1 big division = 9.5 years 	
			On Y axis 1 big division = 50 person	s
			2 550 + 525	
			£ 500- 400	
			♣ 400 + ¥ 350 - 325	
			3 300 - 250	
			* om Litter *x	
			의 등은 중은 중은 중을 등을 하는 Age group (in years) —→	

Page **216** of **223**

3			Adjust	
	Class	F	ed	
	Interval	Frequency	Freque	
			ncy	
	10.14	F	$\frac{4}{4} \times$	
	10-14	5	5=5	
	14-20 6		$\frac{\frac{4}{6}}{6} \times 6=4$	
	20-32	9	$\frac{4}{12} \times 9=3$	
	32-52	25	$\frac{4}{20} \times 25=5$	
	52-80	21	$\frac{4}{28} \times$ 21=3	
	Y S O O O S O O O O O O O O O O O O O O	cale: m X axis 1 big div m Y axis 1 big div 5 3 25 30 35 40 45 5 Class intervals	/ision = 5 units /ision = 1 unit 0 55 60 65 70 7	
4	Class	Frequen	Adjusted	

	Interval	су	Frequenc	cy y			
	0-20	10	$\frac{10}{20} \times 10 =$	5			
	20-30	13	$\frac{10}{10} \times 13 = 1$	13 st 14 - 12			
	30-50	16	$\frac{10}{20} \times 16 =$	8 ¹⁰ / ₁₀ ¹⁰ / ₁₀			
	50-60	11	$\frac{10}{10} \times 11 = 1$				
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5	We take tw	vo imagin	ed classes-	-one at the beginning $(0-10)$ and other at the			
	end (70–80)) each w	ith frequend	cy zero.			
	With these two classes, we have the following frequency table:						
			Frequen				
			су	Scale:			
	Age in	Class	(Numbe	On X axis 1 big division = 10 years			
	Years	Mark	r of	On Y axis 1 big division = 2 patients			
			Patients	E (45, 19)			
)	Δ 18-			
	0-10	5	0				
	10-20	15	2				
	20-30	25	5	$z = \frac{10}{84}$			
	30-40	35	12	$\int \frac{1}{2} \frac{6}{1} \int \frac{1}{\sqrt{(25,5)}} \sqrt{\frac{6}{6}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt$			
	40-50	45	19	$\frac{1}{2}$ $\frac{1}$			
	50-60	55	9				
	60-70	65	4	Class intervals>			
	70-80	75	0				
				-			

		SECTION A	SECTION B
MARK	CLASS	FREQUENC	FREQUENC
S	MARK	Y	Y
	S		
0-15	7.5	5	3
15-30	22.5	12	16
30-45	37.5	28	25
45-60	152.5	30	27
60-75	67.5	35	40
75-90	82.5	13	10

9

