Chapterwise Most Expected Questions SUBJECT- MATHEMATICS(041) CLASS - IX

CHAPTER - 1 (NUMBER SYSTEMS)

b.

d.

Solve the following questions:

- **Q1.** The product of any two irrational numbers is :
 - a. always an irrational number
 - c. always an integer

always a rational number

- sometimes rational, sometimes irrational
- **Q2.** Which of the following is not equal to $\left[\left(\frac{5}{6}\right)^{\frac{1}{5}}\right]^{-\frac{1}{6}}$:

a.
$$\left(\frac{5}{6}\right)^{\frac{1}{5}-\frac{1}{6}}$$
 b. $\frac{1}{\left[\left(\frac{5}{6}\right)^{\frac{1}{5}}\right]^{\frac{1}{6}}}$ c. $\left(\frac{6}{5}\right)^{\frac{1}{30}}$ d. $\left(\frac{5}{6}\right)^{-\frac{1}{30}}$

Q3. The number of rational numbers between $\sqrt{3}$ and $\sqrt{5}$ is :

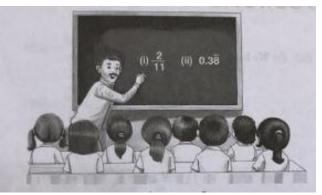
one h. two C. three infinitely many a. d. **Q4.** The arrangement of $\sqrt{5}$, $\sqrt{2}$, $\sqrt{3}$ in ascending order is : a. $\sqrt{2}, \sqrt{3}, \sqrt{5}$ b. $\sqrt{5}, \sqrt{3}, \sqrt{2}$ c. $\sqrt{2}, \sqrt{5}, \sqrt{3}$ d. $\sqrt{3}, \sqrt{2}, \sqrt{5}$ **Q5.** Value of $\sqrt[4]{(81)^{-2}}$ is : $\frac{1}{81}$ a. $\frac{1}{9}$ b. $\frac{1}{2}$ C. d. 9 **Q6.** The product $\sqrt[3]{2}\sqrt[4]{2}\sqrt[1]{32}$ equals : $\sqrt{2}$ $\sqrt[12]{2}$ $\sqrt[12]{32}$ a. 2 b. d. c. **Q7.** Value of $(256)^{0.16} \times (256)^{0.09}$ is : 4 b. 16 64 d. 256.25 a. c. **Q8.** The decimal expansion of the number $\sqrt{2}$ is : a finite decimal 1.41421 a. b. non - terminating recurring d. c. non-terminating non - recurring **Q9.** The number obtained on rationalising the denominator of $\frac{1}{\sqrt{7}-2}$ is : b. $\frac{\sqrt{7}-2}{3}$ c. $\frac{\sqrt{7}+2}{5}$ d. $\frac{\sqrt{7}+2}{45}$

Page 1 of 30

MATHS/IX/ASGMT

Q10. How many rational numbers are between two rational numbers?

Q11. Is every irrational or rational number a real number?


Q12. Write the value of 1.999... in the form $\frac{p}{q}$, where p, q are integers, $q \neq 0$.

Q13. Write the rationalising factor of $\frac{1}{\sqrt{7} - \sqrt{4}}$. Q14. Find the value of $(81)^{0.16 + 0.09}$. Q15. Find the value of $(256)^{0.16} \times (256)^{0.09}$ Q16. Evaluate: $\left(\frac{1}{2}\right)^5 \times \left(\frac{-2}{3}\right)^4 \times \left(\frac{3}{5}\right)^{-1}$ Q17. Simplify: $\frac{4}{81} - 8^3\sqrt{216} + 15\sqrt{4} + \sqrt{225}$ Q18. Simplify: $\frac{1}{(2 + \sqrt{5})} + \frac{1}{(\sqrt{5} + \sqrt{6})} + \frac{1}{(\sqrt{6} + \sqrt{7})} + \frac{1}{(\sqrt{7} + \sqrt{8})}$ Q19. Simplify: $\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$ Q20. If $a = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ and $b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, then find the value of $a^2 + b^2 - 5ab$. Q21. If $a = 5 + 2\sqrt{6}$ and $b = \frac{1}{a}$ then what will be the value of $a^2 + b^2$ Q22. If $a = 9 - 4\sqrt{5}$, then find the value of $a - \frac{1}{a}$. Q23. If $\left(\frac{3}{4}\right)^6 \times \left(\frac{16}{9}\right)^5 = \left(\frac{4}{3}\right)^{x+2}$, find the value of x.

Q24. If x = 2 + $\sqrt{3}$, find the value of $x^2 + \frac{1}{x^2}$.

Case-study based questions:

Q25. To judge the preparation of students class IX on topic "Number System" Mathematics teachers write two numbers on black board (as shown in figure), and asks some questions about the members, which are following, then answer the question :

	i.	Write the	decimal f	orm of	2/11				
		a. 0.81	b.	0.1	8	c.	0.17	d.	0.71
	ii.	Write the	p/q form	of 0.3	3				
		a. 5/18	8 b.	. 7/1	18	c.	11/18	d.	1/18
	iii.	Write the	decimal e	expansi	on of 2/11				
		a. Non	- termina	ting		b.	Terminating		
		c. Non	- termina	ting re	peating	d.	Non - terminatir	ng noi	n - repeating
	iv.	If p/q form	n of $0.3\overline{8}$	is m/n,	then value	of (m	(+ n) is		
		a. 25	b.	. 11		c.	29	d.	23
	v.	The decim	al expans	sion of	0.38				
		a. Tern	ninating			b.	Non-terminating	5	
		c. Non-	terminat	ing rep	eating	d.	Non-terminating	g non	-repeating
				C	HAPTER - 2	2 (PO	LYNOMIALS)		
Solv	e the	following	questior	15:					
Q1.	$\sqrt{2}$	is a polyno	mial of de	egree					
	a.	2	b.	. 0		C.	1	d.	$\frac{1}{2}$
			_	(<u> </u>				2
Q2.	If p	$(x) = x^2 - 2$	$\sqrt{2x+1}$, t	hen p	$2\sqrt{2}$ is equ	al to :			
	a.	0	b.	. 1		C.	$4\sqrt{2}$	d.	$8\sqrt{2} + 1$
Q3.	The	value of the	e polynon	nial 5x	- 4x ² + 3, w	hen x	x = -1 is :		
	a.	- 6	b.	6		с.	2	d.	-2
Q4.	Zero	o of the poly	vnomial p	(x) = 2x	x + 5 is :				
	a.	$-\frac{2}{5}$	b.		5	c.	2	d.	5
		3		2			5		2
Q5.					nial 2x ² + k		n the value of k is		-
0.6	a.			. 4	,	с.	2	d.	-2
Q6.		l is a factor	-	-					
07	a.							d.	$x^4 + 3x^3 + 3x^2 + x + 1$
Q7.					or of $(x + y)^3$			J	2
00	a. Tha	-	-		$+ y^2 - xy$		-	a.	Зху
Ų٥.					ision of (x +			٩	27
	a.	1		. 9		C.	18	d.	27
Q9.	If $\frac{x}{y}$	$+\frac{y}{x} = -1 (x)$	$(x, y \neq 0)$, t	he valu	the of $x^3 - y^3$	is :			
	a.	1	b.	-1		c.	0	d.	$\frac{1}{2}$
				-					2
MAT	HS/IX	/ASGMT			Page 3	of 30			

Q10. If x + y + 2 = 0, then write the value of $x^3 + y^3 + 8$.

Q11. Write the factors of polynomial $4x^2 + y^2 + 4xy + 8x + 4y + 4$.

Q12. Find the coefficient of x^2 in $(x^2 - 2)^3$.

Q13. Find the value of 249² – 248².

Q14. Find the value of 95×96 .

Q15. Find the value of the polynomial $p(z) = 3z^2 - 4z + \sqrt{17}$, when z = 3.

Q16. If -1 is a zero of the polynomial $p(x) = ax^3 - x^2 + x + 4$, find the value of a.

Q17. Using factor theorem, show that x-y is a factor of $x(y^2 - z^2) + y(z^2 - x^2) + (x^2 - y^2)$.

Q18. Check whether (p + 1) is a factor of $(p^{100} - 1)$ and $(p^{101} - 1)$.

Q19. If a + b + c = 7 and ab + bc + ca = 20, find the value of $a^2 + b^2 + c^2$.

Q20. Find the product of $(3x + 2y) (3x - 2y) (9x^2 + 4y^2)$.

Q21. If $\left(\frac{8}{15}\right)^3 - \left(\frac{1}{3}\right)^3 - \left(\frac{1}{5}\right)^3 = \frac{x}{75}$, find x.

Q22. Factorise $(x - 3y)^3 + (3y - 7z)^3 + (7z - x)^3$.

Q23. Expand :

a.
$$\left(\frac{1}{x} + \frac{y}{3}\right)^3$$
 b. $\left(4 - \frac{1}{3x}\right)^3$

Q24. If $x + \frac{1}{x} = 3$, find the value of $x^2 + \frac{1}{x^2}$ and $x^3 + \frac{1}{x^3}$.

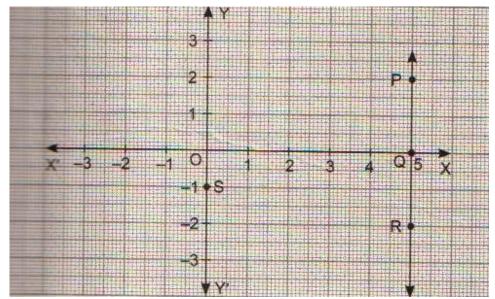
Q25. Determine whether the indicated numbers are zeroes of the given polynomial.

i.
$$g(x) = 3x^2 - 2; x = \frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}$$

ii.
$$f(x) = x^3 - 6x^2 + 11x - 6$$
; $x = 1, 3$

Q26. If $p(x) = x^3 + 3x^2 - 2x + 4$, find the value of p(-2) + p(1) + p(0).

Q27. If x - 2y = 11 and xy = 8, find the value of $x^3 - 8y^3$.


Case-study based questions:

- **Q28.** On one day, principal of a particular school visited the classroom. Class teacher was teaching the concept of polynomial to students. He was very much impressed by her way of teaching. To check, whether the students also understand the concept taught by her or not, he asked various questions to students. Some of them are given below. Answer them.
 - i. Which one of the following is not a polynomial?

a.
$$4x^2 + 2x - 1$$

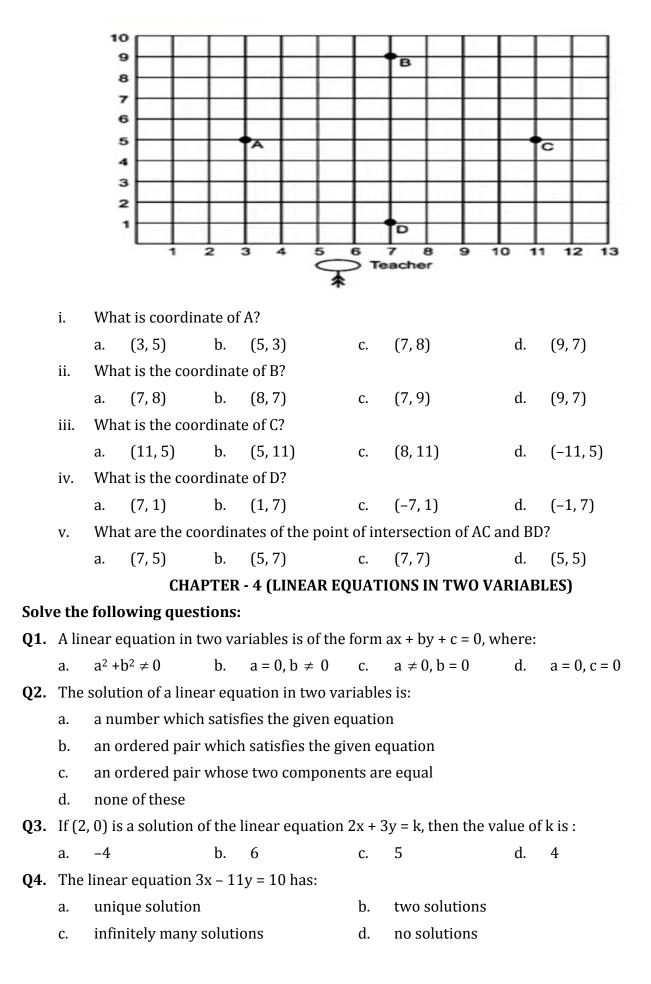
b. $y + \left(\frac{3}{y}\right)$
c. $x^3 - 1$
d. $y^2x + 5y + 1$

	ii.	The	polynomial	of the	e type $ax^2 + bx +$	c, a =	0 is called :		
		a.	Linear poly	nom	ial	b.	Quadratic polyn	omial	
		C.	Cubic poly	nomi	al	d.	Biquadratic poly	vnomi	al
	iii.	If x ·	+ 2 is the fac	tor of	f x ³ – 2ax ² + 16, t	hen v	value of a is :		
		a.	-7	b.	1	C.	- 1	d.	7
	iv.	The	value of k, if	(x -	1) is a factor of 4	4x ³ + 3	3x ² – 4x + k, is :		
		a.	1	b.	-2	C.	-3	d.	3
	v.	The	number of z	eroe	s of the polynom	ial x ²	+ 4x + 2 is :		
		a.	1	b.	2	C.	3	d.	4
				CH	IAPTER - 3 (CO	ORDI	NATE GEOMETR	Y)	
Solv	e the	e follo	owing quest	ions	:				
Q1.	Abs	cissa	of all points	on th	e x - axis is :				
	a.	0		b.	1	C.	-1	d.	none of these
Q2.	A po	oint b	oth of whose	e cooi	dinates are nega	ative	lies in the :		
	a.	first	quadrant			b.	second quadran	t	
	C.	thir	d quadrant			d.	fourth quadrant		
Q3.	Whi	ch of	the points P	(0, 3), Q (1, 0), R (0, -	-1) an	nd S(-5, 0), T (1, 2)) do n	ot lie on the x - axis?
	a.	P an	nd Q only	b.	Q and S	C.	P, R and T	d.	Q, S and T
Q4.		coor in are		e poi	nt lying on the n	egati	ve side of x - axis a	at a d	istance of 5 units from the
	a.	(0, 5	5)	b.	(0, -5)	с.	(5, 0)	d.	(-5, 0)
Q5.	If th	e coo	rdinates of t	wo p	oints are P(–2, 3) and	Q (-3, 5), then (al	osciss	a of P)–(abscissa of Q) is :
	a.	1		b.	-1	с.	-2	d.	-5
Q6.	Sign	is of t	he abscissa a	and th	ne ordinate of a p	point	in the second qua	drant	are respectively :
	a.	+ve,	, +ve	b.	-ve, -ve	с.	–ve, +ve	d.	+ve, -ve
Q7.	Ord	inate	of all points	on th	e x - axis is :				
	a.	0		b.	1	C.	2	d.	-1
Q8.	The	dista	nce of the po	oint (4, –3) from x - ax	is is :			
	a.	- 3 ı	units	b.	4 units	C.	3 units	d.	5 units
Q9.	The	point	t at which th	e two	coordinate axes	s mee	t is called the :		
	a.	abso	cissa	b.	origin	C.	ordinate	d.	quadrant
Q10	.Poir	nts (1	, –1), (2, –2),	(4, -	5), (-3, -4)				
	a.	lie i	n II quadran	t		b.	lie in III quadrar	nt	
	C.	lie ii	n IV quadran	ıt		d.	do not lie in the	same	quadrant
Q11	.Wri	te the	e abscissa of	the p	oint (–2, 7).				
Q12	.Wri	te the	e co-ordinate	s of a	point whose or	dinat	e is –3 and which	lies o	n y-axis.

- **Q13.** Find ordinate of all points on the x-axis.
- **Q14.** Find the perpendicular distance of point P(3, 4) from x-axis.
- **Q15.** If the points A(0, 2), B(0, -6) and C(a, 3) lie on y-axis, then find the value of a.
- **Q16.** In the figure given below, PQ is a line parallel to the y-axis at a distance of 5 units from it. What are the coordinates of the points P, Q, R and S?

- **Q17.** Write the co-ordinates of the point :
 - i. Whose ordinate is -5 and which lies on y-axis?
 - ii. Which lies on x and y axes both?
 - iii. Whose abscissa is –3 and which lies on x-axis?
- **Q18.** Name the quadrants in which the following points lie:

(-5, -4), (2, -4), (-7, 6), (2, 3)


Q19. Which of the following points lie on x-axis? Which on y-axis?

A(0, 2), B(5, 6), C(-3, 0), D(0, -3), E(0, 4), F(6, 0), G(3, 0)

- **Q20.** If x > 0 and y > 0, then the point (x, y) lies in which quadrants?
- **Q21.** In which quadrants or on which axis do each of the points (4, -2), (-3, 7), (-1, -2), (3. 6) lie?
- **Q22.** If a point is on negative side of y-axis at a distance of 3 units from origin, then the coordinates of the point.
- **Q23.** Find the perpendicular distance of the point P(3, 4) from x-axis.
- **Q24.** Find the coordinates of the point which lies on y-axis at a distance of 4 units in the negative direction of y-axis.

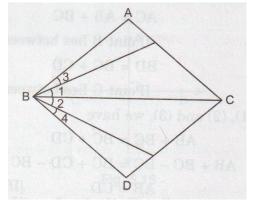
Case-study based questions:

Q25. Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

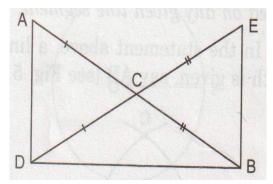
Q5.	The	solution of equat	ion x	– 2y = 4 is:				
	a.	(0, 2)	b.	(2,0)	C.	(4, 0)	d.	(1, 1)
Q6.	The	equation 2x + 5y	= 7 ha	as a unique solut	tion, i	if x, y are :		
	a.	natural numbers	5		b.	positive real nur	nbers	
	C.	real numbers			d.	rational number	S	
Q7.	The	equation x = 7, in	two	variables, can be	writ	ten as :		
	a.	1.x + 1.y = 7	b.	1.x + 0.y = 7	C.	0.x + 1.y = 7	d.	0.x + 0.y = 7
Q8.	If a	linear equation ha	ıs solı	utions (–2, 2), (0	, 0) a	nd (2, –2), then it	is of t	he form
	a.	y - x = 0	b.	x + y= 0	C.	-2x + y = 0	d.	-x + 2y = 0
Q9.	Any	point on the x-ax	is is o	f the form :				
	a.	(x, y)	b.	(0, y)	C.	(x, 0)	d.	(x, x)
Q1(). x = !	5, y = 2 is a solutio	on of t	he linear equati	on :			
	a.	x + 2y = 7	b.	5x + 2y = 7	C.	x + y = 7	d.	5x + y = 7
Q1 1	L.Wri	te the equation 2x	x = 9, i	in the standard f	orm (of a linear equatio	n in t	wo variables.
Q12	2.Con	npare the equation	$rac{x}{3}$	$+\frac{3}{2}y+4=2y-3$	and	lx + my - n = 0 an	d writ	te the value of l, m and n.
Q13	B. Hov	v many solution(s) doe	s the equation y	= 5x ·	+ 2 have?		
Q1 4	I. Wri	te a linear equatio	on in t	wo variables wh	iose d	one solution is give	en by	the point (a, b).
Q15	5. Find	d the value of x for	the l	inear equation 2	$2\sqrt{2}x$	-3y+4=0 corres	spond	ling to y = 2.
Q16	5. Wri	-		the statement			eased	by 7 gives 69". Also, find

- **Q16.** Write a linear equation for the statement "Twice a number decreased by 7 gives 69". Also, find one solution. How many solutions does the equation have?
- **Q17.** Show that x = 1, y = 4 satisfy the linear equation 2x + y 6 = 0.
- **Q18.** If $x = 2\sqrt{2}$ and $y = \sqrt{2}$ satisfy the linear equation $3x + ky = 4\sqrt{2}$, find the value of k. Can there be more than one value of k?
- **Q19.** If $\left(\frac{x}{3}\right) + 2y = 5$ express x in terms of y. Also, check whether x = 3, y = 2 is the solution of this equation or not?
- **Q20.** Write any four solutions for the following linear equation ax by = 2ab.

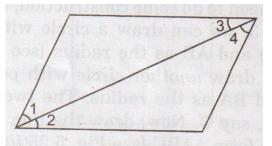
Q21. Check whether equations (i) $\sqrt{x} + \frac{1}{\sqrt{x}} = 3$ (ii) $\sqrt{2x} + \sqrt{3y} = 0$ are linear.

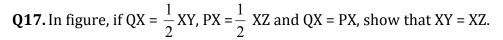

Case-study based questions:

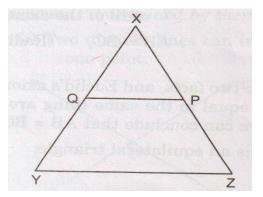
- **Q22.** Charity is the act of giving help to those in need it. It is a humanitarian act. So in this order, Radha distributed chocolates in an orphanage, on her birthday, she gave 5 chocolates to each child and 20 chocolates to adults. Taking number of children as x and total chocolates distributed as y.
 - i. Write a linear equation, in standard form as ax + by + c = 0.


a.	20x - y + 5 = 0	b.	5x - y + 20 = 0
C.	x - 20y + 5 = 0	C.	20x - y + 10 = 0

	ii.	Valu	e of (a + b +	c) is :					
		a.	24	b.	26	C.	14	d.	30
	iii.	If the	e number of	childı	ren is 18, then tl	he nu	mber of distribute	ed cho	ocolates are :
		a.	90	b.	100	C.	110	d.	120
	iv.	If sh	e distributed	ł 205	chocolates, ther	1 how	many children ar	e the	re in the orphanage?
		a.	36	b.	37	C.	39	d.	41
	v.		e gave 8 cho then form a			and 2	8 chocolates as x a	and to	otal chocolates distributed
		a.	y = 5x + 28	b.	8y = x + 20	C.	y = 8x + 28	d.	y = 8x - 20
			CHAP	TER -	5 (INTRODUC	TION	TO EUCLID'S GE	OME	TRY)
Solv	e the	follo	wing quest	ions:					
Q1.	The	three	from solids	to poi	ints are :				
	a.	Solic	ls - surfaces	- lines	s - points	b.	Solids - lines - su	rface	s - points
	C.	Line	s - points - s	urface	es - solids	d.	Lines - points - s	urfac	es - solids
Q2.	Eucl	id sta	ted that all r	ight a	ngles are equal	to ea	ch other in the for	m of	:
	a.	an a	xiom	b.	a definition	C.	a postulate	d.	a proof
Q3.	'Line	es are	parallel if th	ney do	o not intersect' i	s stat	ed in the form of :		
	a.	an a	xiom	b.	a definition	C.	a postulate	d.	a proof
Q4.	Whi	ch of	the following	g need	ls a proof?				
	a.	Theo	orem	b.	Axiom	C.	Definition	d.	Postulate
Q5.	Ару	ramio	l is a solid fi	gure,	the base of whic				
	a.		a triangle	b.			only a rectangle		
Q6.		knov ement		+ y =	10, then x + y	+ Z =	= 10 + z. The Euc	lid's a	axiom that illustrates this
	a.	First	Axiom	b.	Second Axiom	C.	Third Axiom	d.	Fourth Axiom
Q7.			Valley Civilis		(about 3000 B.0	C.), th	e bricks used for	const	ruction work were having
	a.	1:3	:4	b.	4:2:1	C.	4:4:1	d.	4:3:2
Q8.	Eucl	id div	ided his fam	ious ti	reatise "The Ele	ment	s" into :		
	a.	13 c	hapters	b.	12 chapters	C.	11 chapters	d.	9 chapters
Q9.	Eucl	id bel	ongs to the o	count	ry:				
	a.	Baby	vlonia	b.	Egypt	C.	Greece	d.	India
Q10	.How	y man	y lines do pa	ss thr	ough two distin	nct po	ints?		
Q11	.How	v man	y lines can p	ass th	irough a given p	oint?			
Q12	.How	v man	y line segme	nts ca	an be determine	d by t	three collinear poi	ints?	
Q13	. Defi	ne pa	rallel lines.						


Q14. In figure, we have $\angle 1 = \angle 2, \angle 3 = \angle 4$. Show that $\angle ABC = \angle DBC$. State the Euclid's axiom used.




Q15. In figure, AC = DC, CB = CE. Show that AB =DE. Write Euclid's axiom to support this.

Q16. In figure, if $\angle 1 = \angle 3, \angle 2 = \angle 4$ and $\angle 3 = \angle 4$, write the relation between $\angle 1$ and $\angle 2$, by using an Euclid's axiom. Write the axiom.

Q18. Solve the equation x - 15 = 25 and state Euclid's axiom used here.

CHAPTER - 6 (LINES AND ANGLES)

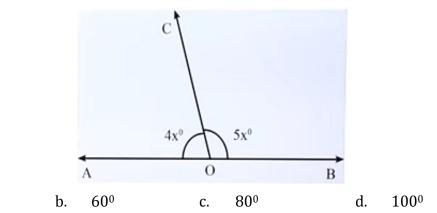
Solve the following questions:

Q1. If two angles are complements of each other then each angle is :

a. an acute angle b. a right angle c. a reflex angle d. an obtuse angle

Q2. An angle which measures more than 180° but less than 360° , is called :

a. an acute angle b. a reflex angle c. an obtuse angle d. a straight angle


Q3. The measure of an angle is five times its complement. The angle measures :

a.
$$25^{0}$$
 b. 35^{0} c. 65^{0} d. 75^{0}

Q4. Two complementary angles are such that twice the measure of the one is equal to three times the measure of the other. The larger of the two measures :

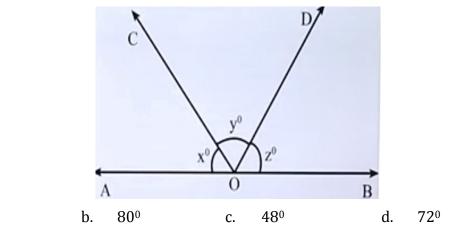
a.
$$72^{0}$$
 b. 54^{0} c. 63^{0} d. 36^{0}

Q5. In the given figure, AOB is a straight line. If $\angle AOC = 4x^0$ and $\angle BOC = 5x^0$ then $\angle AOC = ?$

Q6. Which of the following statements is false?

 40^{0}

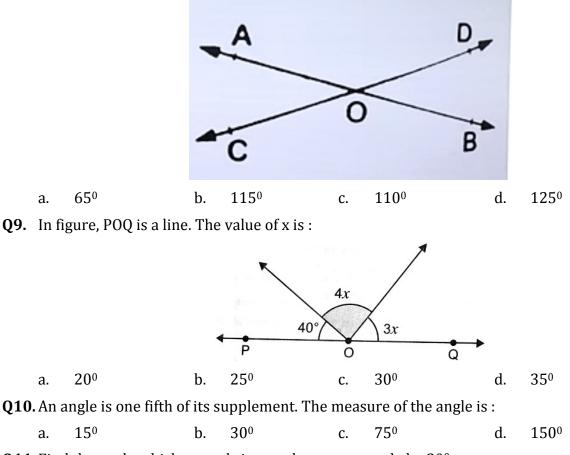
a.


a. Through a given point, only one straight line can be drawn.

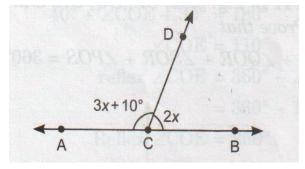
b. Through two given points, it is possible to draw one and only one straight line.

c. Two straight lines can intersect only at one point.

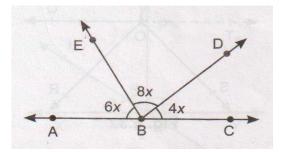
d. A line segment can be produced to any desired length.


Q7. In the adjoining figure, AOB is a straight line. If x : y : z = 4 : 5 : 6, then y = ?

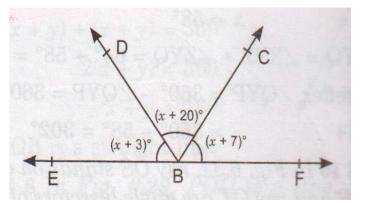
a.

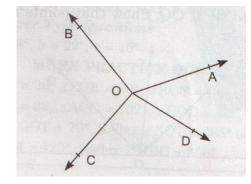

600

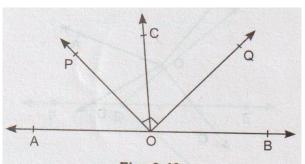
Q8. In the given figure, straight lines AB and CD intersect at 0. If $\angle AOC + \angle BOD = 130^{\circ}$ then $\angle AOD = ?$

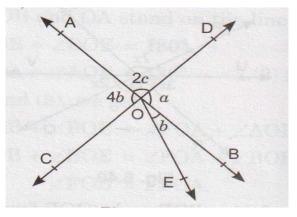


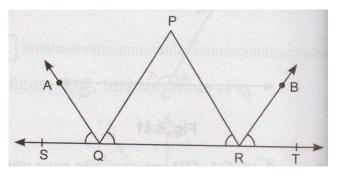
- **Q11.** Find the angle which exceeds it complementary angle by 30⁰.
- **Q12.** Two supplementary angles are in the ratio 2:7. Find the measure of angles.
- **Q13.** If an angle is 14⁰ more than its complement, then find its measure.

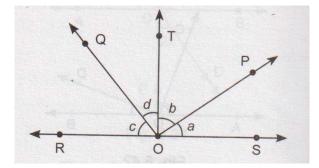

Q14. In figure, ACB is a line. If $\angle DCA = 3x + 10^{\circ}$ and $\angle DCB = 2x$, then find the value of x.


Q15. In figure, find the measure of $\angle DBC$:


Q16. In figure, find the value of x.


Q17. In figure, prove that $\angle AOB + \angle BOC + \angle COD + \angle DOA = 360^{\circ}$.


- **Q18.** "If two lines intersect each other, then the vertically opposite angles so formed are equal." Prove it.
- **Q19.** In the figure, OP bisects $\angle AOC, OQ$ bisects $\angle BOC$ and $OP \perp OQ$. Show that points A, O and B are collinear.


Q20. In the figure, two straight lines AB and CD intersect each other at 0. If $\angle COE = 70^{\circ}$, find the values of a, b and c.

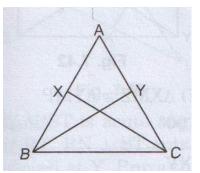
Q21. In figure, QA and RB are the bisectors of $\angle PQS$ and $\angle PRT$ respectively, and $\angle SQA = \angle TRB$. Prove that $\angle PQR = \angle PRQ$.

Q22. In figure a + b = c + d, then prove that $\angle ROT = 90^{\circ}$.

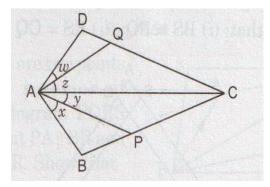
CHAPTER - 7 (TRIANGLES)

Solve the following questions:

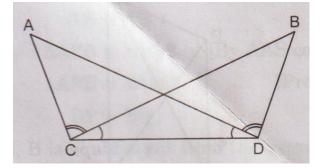
- **Q1.** If one angle of a triangle is equal to the sum of the other two angles, then the triangle is :
 - a. an isosceles triangle b. an obtuse angled triangle
 - c. an equilateral triangle d. a right angled triangle
- **Q2.** It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then which of the following is true?
 - a. DF = 5cm, $\angle F = 60^{\circ}$ b. DF = 5cm, $\angle E = 60^{\circ}$ c. DE = 5cm, $\angle E = 60^{\circ}$ d. DE = 5cm, $\angle D = 40^{\circ}$
- **Q3.** If the bisector of the angle A of a $\triangle ABC$ is perpendicular to the base BC of the triangle then the triangle ABC is :
 - a. Scalene b. Obtuse angled c. Equilateral d. Isosceles
- **Q4.** In quadrilateral ABCD, BM and DN are drawn perpendiculars to AC such that BM = DN. If BR = 8cm, then BD is :
 - a. 4cm b. 12 cm c. 16 cm d. 2 cm
- **Q5.** In $\triangle ABC$ and $\triangle PQR$, three equality relations between corresponding parts are as follows :
 - AB = QP, $\angle B = \angle P$, BC = PR. State which of the congruence criterion applies in this case :
 - a. SAS b. ASA c. SSS d. AAS
- **Q6.** D, E and F are the mid points of sides BC, CA and AB respectively of $\triangle ABC$. Then $\triangle DEF$ is congruent to triangle :
 - a. ABC b. AEF c. BFD, CDE d. AFE, BFD, CDE


Q7. If $\triangle ABC \cong \triangle PQR$ and $\triangle ABC$ is not congruent to $\triangle RPQ$, then which of the following is not true?

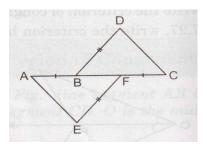
a. BC = PQ b. AC = PR c. QR = BC d. AB = PQ


Q8. In $\triangle ABC$, AB = AC and $\angle B = 50^{\circ}$, then $\angle C =$

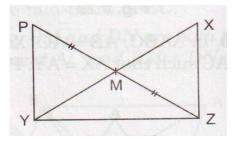
c.


- a. 40^{0} b. 50^{0} c. 80^{0} d. 130^{0}
- **Q9.** In triangles ABC and PQR, AB =AC, $\angle C = \angle P$ and $\angle B = \angle Q$. The two triangles are :
 - a. isosceles but not congruent b. isosceles and congruent
 - congruent but not isosceles d. neither congruent nor isosceles
- **Q10.** In $\triangle ABC$ and $\triangle DEF$, If AB = DE, $\angle A = \angle D$ and AC = DF, then write the criterion of congruency condition.
- **Q11.** In $\triangle PQR$, $\angle R = \angle P$ and PR PQ = 3cm. If the perimeter of $\triangle PQR$ is 15cm, then find PR.
- **Q12.** In the figure, ABC is a triangle in which AB = AC. X and Y are points on AB and AC such that AX = AY. Prove that $\triangle ABY \cong \triangle ACX$.

Q13. In the figure, if AB = AD, $\angle x = \angle \omega$ and $\angle y = \angle z$, then prove that AP = AQ.



Q14. In the figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that AD = BC and $\angle A = \angle B$.

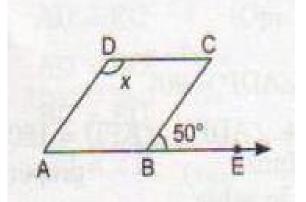


Q15. In the figure, AB = CF, EF = BD and $\angle AFE = \angle CBD$, prove that

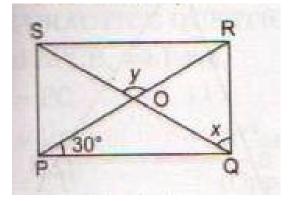
- i. $\Delta AFE \cong \Delta CBD$ and
- ii. AE = CD

Q16. In a right angled triangle XYZ right angled at Z, M is the mid - point of XY. Z is joined to M and produced to a point P such that PM = ZM. Point P is joined to point Y.

Show that :

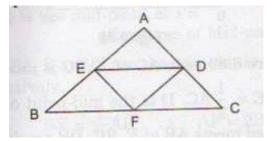

- iv. $ZM = \frac{1}{2}XY$ $\angle PYZ = 90^{\circ}$ i. $\Delta XMZ \cong \Delta YMP$ ii. iii. $\Delta PYZ \cong \Delta XZY$ CHAPTER - 8 (QUADRILATERALS) Solve the following questions: **Q1.** Three angles of a quadrilateral are 75⁰, 90⁰ and 75⁰. The fourth angle is : 900 95^{0} a. h. 105^{0} d. 120^{0} C. **Q2.** A diagonal of a rectangle is inclined to one side of the rectangle at 25^o. The acute angle between the diagonals is : 55^{0} b. 50^{0} c. 40^{0} d. 25^{0} a. **Q3.** ABCD is a rhombus such that $\angle ACB = 40^{\circ}$. Then $\angle ADB$ is : 40^{0} b. 45^{0} 50^{0} 60^{0} c. d. a. **Q4.** The quadrilateral formed by joining the mid - points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if : a. PQRS is a rectangle b. PQRS diagonals of PQRS are perpendicular d. diagonals of PQRS are equal c. **Q5.** If bisectors of $\angle A$ and $\angle B$ of a quadrilateral ABCD intersect each other at P, $\angle B$ and $\angle C$ at Q, $\angle C$ and $\angle D$ and $\angle A$ at S, then PQRS is a rectangle a. b. rhombus parallelogram c.
 - d. quadrilateral whose opposite angles are supplementary

MATHS/IX/ASGMT

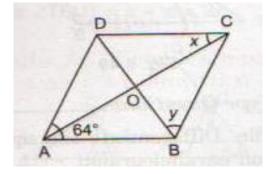

Page 16 of 30

- **Q6.** D and E are the mid points of the sides AB and AC of $\triangle ABC$ and O is any point on side BC. O is joined respectively, the DEQP is :
 - a. a square b. a rectangle c. a rhombus d. a parallelogram
- **Q7.** The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if,
 - a. ABCD is a rhombus
 - b. diagonals of ABCD are equal
 - c. diagonals of ABCD are equal and perpendicular
 - d. diagonals of ABCD are perpendicular
- **Q8.** The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If $\angle DAC = 32^\circ$ and $\angle AOB = 70^\circ$, then $\angle DBC$ is equal to :

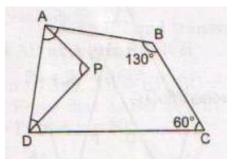
- **Q9.** D and E are the mid-points of the sides AB and AC respectively of $\triangle ABC$. DE is produced to F. To prove that CF is equal and parallel to DA, we need an additional information which is :
 - a. $\angle DAE = \angle EFC$ b. AE = EF c. DE = EF d. $\angle ADE = \angle ECF$
- **Q10.** In the given figure, ABCD is a parallelogram in which $\angle CBE = 50^{\circ}$. What is the value of x?

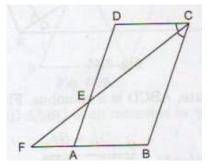


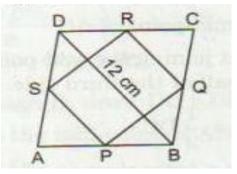
- **Q11.** Two consecutive angles of a parallelogram are in the ratio 1:3, then find the smaller angle.
- **Q12.** In figure, PQRS is a rectangle. If $\angle RPQ = 30^{\circ}$, then find the value of (x +y).

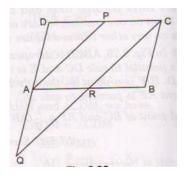


Q13. If PQRS is a parallelogram, then find $\angle Q - \angle S$.

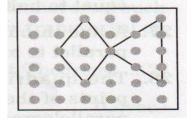

Q14. In the figure points D, E and F are the mid-points of the sides AC, AB and BC of $\triangle ABC$. If AB = 4.2cm, BC = 5.6cm and AC = 3.6 cm, then find the perimeter of $\triangle DEF$.


- **Q15.** The perimeter of a parallelogram is 36cm. If the smaller side is 8cm long. Find the measure of its longer side.
- **Q16.** Two opposite angles of a parallelogram are $(3x 2)^0$ and $(63-2x)^0$. Find all the angles of the parallelogram.
- **Q17.** In the figure, ABCD is a rhombus. Find the value of x and y.


Q18. In figure, ABCD is a quadrilateral in which $\angle B = 130^{\circ}$, $\angle C = 60^{\circ}$ and angle bisectors of $\angle A$ and $\angle D$ meet at P. Find $\angle APD$.


Q19. In parallelogram ABCD of the given figure, the bisector $\angle C$ meets AD at E. CE and BA are produced to meet at F. Prove that BC = BF.

Q20. In Figure, ABCD is a quadrilateral and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. If BD = 12cm, then find (QR + SP).


- **Q21.** ABCD is a parallelogram and P is the mid-point of DC. A line through C drawn parallel to PA meets produced DA at Q and AB at R. Prove that
 - i. DA = AQ
 - ii. CR = QR

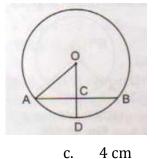
Case-study based questions:

- **Q22. Geoboard :** During maths lab activity each students was given a opportunity to show up his/her creation on a geoboard using rubber bands. When students were demonstrating their works, teacher ashed some questions. What would be your answer, if you were the class?
 - i. A quadrilateral with all sides equal was formed. It could be a :
 - a. trapezium b. parallelogram
 - c. kite d. rhombus
 - ii. A quadrilateral with unequal diagonals but perpendicular was formed. Its special name might be :
 - a. a kite b. a square c. both a and b d. a rectangle
 - iii. A rectangle formed by joining the mid-points of a quadrilateral?
 - a. a rectangle b. a rhombus c. a parallelogram d. none of these
 - iv. A quadrilateral was formed with one pair of parallel sides and non-parallel sides equal. Which of the following can be its feature?
 - a. Its diagonals are equal
 - b. opposite angles are supplementary
 - c. It can be split up into two shapes a parallelogram and an isosceles triangle.
 - d. All of above

- v. A quadrilateral having equal and mutually perpendicular diagonals was formed. It was a :
 - a. square b. rectangle c. rhombus d. kite

CHAPTER - 10 (CIRCLES)

Solve the following questions:


2cm

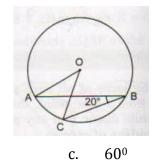
 20^{0}

a.

a.

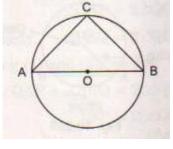
- **Q1.** AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the center of the circle is :
 - a. 17cm b. 15 cm c. 4 cm d. 8 cm
- **Q2.** In figure, if OA = 5cm, AB = 8cm and OD is perpendicular to AB, then CD is equal to :

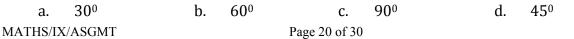
d. 5 cm

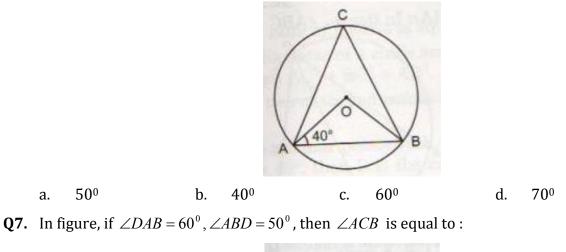

- **Q3.** If AB = 12cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is :
 - a. 6 cm b. 8 cm c. 10 cm d. 12 cm
- **Q4.** In figure, if $\angle ABC = 20^{\circ}$, then $\angle AOC$ is equal to :

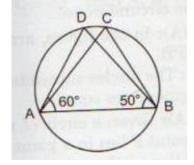
b.

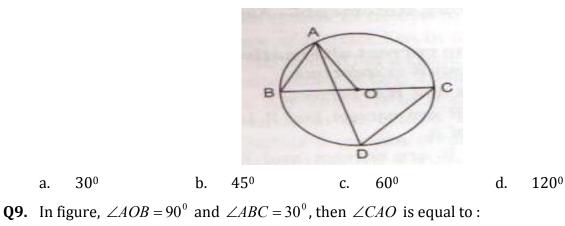
40⁰

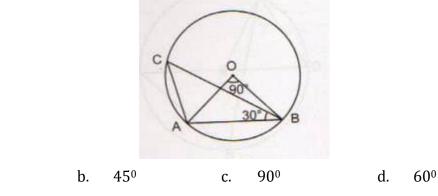

b.


3 cm


d. 10⁰

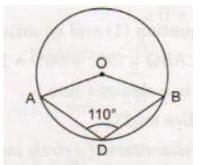

Q5. In figure, if AOB is a diameter of the circle and AC = BC, then $\angle CAB$ is equal to :


Q6. In Figure if $\angle OAB = 40^{\circ}$, then $\angle ACB$ is equal to :

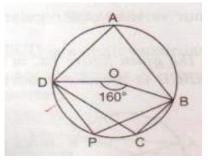


Q8. In figure, BC is a diameter of the circle and $\angle BAO = 60^{\circ}$. Then $\angle ADC$ is equal to :

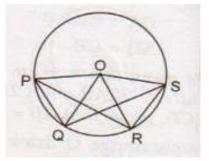
Q10. Chord AB Subtends $\angle AOB = 60^{\circ}$ at the center of a circle. If OA = 5cm, find the length of AB in cm.

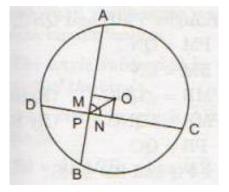

a.

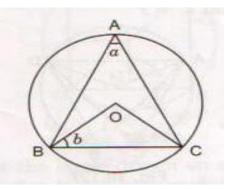
300

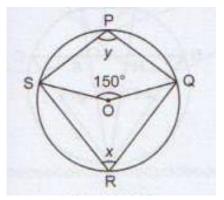

300

a.

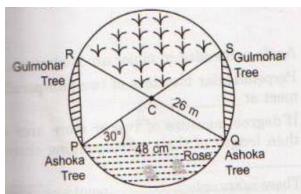

- **Q11.** Find the length of the chord, which is at a distance of 3cm from the center of a circle of radius 5cm.
- **Q12.** In the figure, O is the center of the circle passing through A, D and B. If $\angle ADB = 110^{\circ}$, find the measure of $\angle AOB$, corresponding to arc ADB.


Q13. In figure, ABCD is a cyclic quadrilateral and 0 is the center of the circle. If $\angle BOD = 160^{\circ}$, then find $\angle BCD$.


Q14. In the given figure, O is the center of a circle passing through points P, Q, R and S. If PQ = RS, prove that PR = QS.


- **Q15.** Two circles of radii 10 cm and 8cm intersect and the length of the common chord is 12cm. Find the distance between their centers.
- **Q16.** In figure, AB and CD are two chords of a circle whose center is 0. If $OM \perp AB$, $ON \perp CD$ and $\angle OPM = \angle OPN$, prove that MB = ND.

Q17. In figure, 0 is the center of a circle, BC is its chord and A is any point on the circle. If $\angle BAC = a$ and $\angle OBC = b$, find a + b.



Q18. In figure, O is the center of the circle passing through P, Q, R and S. If $\angle SOQ = 150^{\circ}$, find the values of x and y.

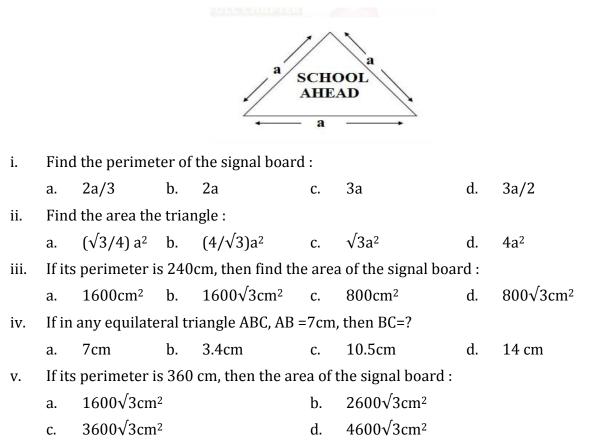
Case-study based questions:

Q19. There is a circular park of radius 26m. Four trees (2 Ashoka and 2 Gulmohar) are on the boundary of the park, an shown by points P, Q and R, S respectively. Let C be the centre of the park. There are few flower beds developed in different parts of the park.

i. Which shops resemble the tulip area?

a. a segment b. a sector c. a semicircle d. a quadrantii. Two Ashoka trees are 48 apart from each other. From C, the line joining PQ is at a distance of :

5m b. 10 m 12 m d. 15m a. C. If PS is a diameter then measure of $\angle PQS =$ iii. 60^{0} d. 900 b. 120^{0} 105° a. c. MATHS/IX/ASGMT Page 23 of 30


	iv.	If $\angle QPS = 30^{\circ}$	and Q	, C, R are collinea	ar the	n measure of $\angle P$.	RQ =	
		a. 60 ⁰	b.	45 ⁰	C.	75 ⁰	d.	90 ⁰
	v.	Which of the fo	ollowir	ng is not true?				
		a. $\angle RQS = 2$	∠RPS		b.	$\angle PSQ = \frac{1}{2} \angle PCQ$	Q	
		c. PR = QS			d.	None of these		
				CHAPTER - 12	(HER	ON'S FORMULA)		
Solv	ve the	e following que	stions	:				
Q1.	In Z					The area of $\triangle ABC$		
	a.	$6\sqrt{6} cm^2$	b.	$6\sqrt{3} cm^2$	C.	$6\sqrt{2} cm^2$	d.	$9\sqrt{6}cm^2$
Q2.		sides of a triang triangle is :	gle are	in the ratio 25 :	14:1	12 and its perime	ter is	510m. The greatest side of
	a.	120m	b.	170m	C.	270m	d.	250m
Q3.	The	perimeter of an						
	a.	$10\sqrt{3} \text{ m}^2$	b.	$15\sqrt{3}$ m ²	C.	$20\sqrt{3}$ m ²	d.	$100\sqrt{3} \text{ m}^2$
Q4.	The	sides of a triang	le are	35cm, 54cm and	l 61cr	n. The length of it	s long	gest altitude is :
	a.	$16\sqrt{5}$ cm	b.	$10\sqrt{5}$ cm	C.	$24\sqrt{5}$ cm	d.	28 cm
Q5.	The	area of an isosc	eles tri	iangle having ba	se 2 c	m and length of o	ne of	the equal sides 4cm, is :
	a.	$\sqrt{15}$ cm ²	b.	$2\sqrt{15}$ cm ²	C.	$\sqrt{\frac{15}{2}}$ cm ²	d.	$4\sqrt{15}$ cm ²
Q6.	The	base of an isosc	eles ri	ght triangle is 3()cm. I	ts area is :		
	a.	225 cm ²	b.	$225\sqrt{3}$ cm ²	C.	$225\sqrt{2}$ cm ²	d.	450 cm ²
Q7.	An i	sosceles right tr	iangle	has area 8 cm². '	The le	ength of its hypote	enuse	is :
	a.	$\sqrt{32}$ cm	b.	4 cm	c.	$4\sqrt{3}$ cm	d.	$2\sqrt{6}$ cm
Q8.	The	base of a right t	riangle	e is 8 cm and hyp	ooten	use is 10cm. Its ar	ea is	equal to :
	a.	48 cm ²	b.	40 cm ²	C.	24 cm ²	d.	80 cm ²
Q9.		edges of a trian se per square cer	-		8 cm	and 10 cm. The c	ost of	painting it at the rate of 9
	a.	Rs. 2.00	b.	Rs. 2.16	C.	Rs. 4.32	d.	Rs. 2.70
Q10	. If th	e area of an equ	ilatera	l triangle is $16\sqrt{2}$	$\overline{3}$ cm ²	² , then the perime	ter of	the triangle is :
	a.	48 cm	b.	24 cm	C.	12 cm	d.	36 cm
011	. If th	le area of an equ	ilatera	l triangle is 16	$\overline{3}$ cm ²	² , then find the pe	rimet	er of the triangle.
Q11		1		-				_
-		-	riangle	e is 8 cm and hyp		use is 10cm. Find	its ar	ea.

- **Q14.** The difference of semi-perimeter and the sides of a $\triangle ABC$ are 8cm, 7 cm and 5cm respectively. Find the semi perimeter of $\triangle ABC$.
- **Q15.** The semi-perimeter of a triangle is 132 cm. The product of the difference of semi-perimeter and its respectively sides is 13200 cm³. Find the area of the triangle.
- **Q16.** The perimeter of a triangle is 300 cm and its sides are in the ratio 5 : 12 : 13. Find its area.
- **Q17.** Find the area of an isosceles triangle whose one side is 10 cm greater than its each equal side and its perimeter is 100 cm. (Take $\sqrt{5} = 2.236$)
- **Q18.** Find the percentage increase in the area of a triangle if its each side is doubled.
- **Q19.** The cost of levelling a triangular plot of land at the rate of Rs 12 per sq m is Rs 81000. If the sides of the plot are in the ration 13 : 12 : 5, find its sides.
- **Q20.** Each of the equal sides of an isosceles triangle measures 2 cm more than its height, and the base of the triangle measures 12 cm. Find the area of the triangle.
- **Q21.** Find the cost of turfing a triangular field at the rate of Rs. $5/m^2$ having lengths of its sides as 40 m, 70 m and 90 m. (Take $\sqrt{20} = 4.47$)
- **Q22.** The sides of a triangular field are 24 m, 7 m and 25 m. Find the numbers of triangular beds that can be made of sides 3 m, 4 m and 5 m.

Case-study based questions:

Q23. The traffic signs are located on the side or top of the road. They give direction on how we should behave on the road, so that the traffic can proceed safely and smoothly. Everyone must know the traffic signs. To prevent the children of school, a traffic signal board, indicating "SCHOOL AHEAD" is an equilateral triangle with side a (shown in below figure)

Answer the following questions by looking the figure.

CHAPTER - 13 (SURFACE AREAS AND VOLUMES)

Solve the following questions:

5010	c un	. Ionowing que	Stions					
Q1.	The	surface area of	a sphei	re of radius 14c	m is :			
	a.	1386 Sq.cm	b.	1400 Sq.cm	c.	2464 Sq.m	d.	2000 sq.cm
Q2.	Wha	at is the total su	rface ai	rea of a cone ha	ving r	adius $\frac{r}{2}$ and heig	ht 213	?
	a.	$\pi r \left(1 + \frac{r}{4}\right)$	b.	$\pi r \left(r + \frac{1}{4} \right)$	C.	$\pi r \left(1 + \frac{r}{2}\right)$	d.	$\pi r \left(4 + \frac{1}{2}\right)$
Q3.	Ifa	right circular co	ne has	radius 4cm and	slant	height 5cm then	what	is its volume?
	a.	16π cm ³	b.	14π cm ³	c.	$12\pi \mathrm{cm}^3$	d.	18π cm ³
Q4.	The	radius of a hem	ispher	e is r. what is its	s volu	me?		
	a.	$\frac{4}{3}\pi r^3$	b.	$\frac{2}{3}\pi r^3$	C.	$4\pi r^3$	d.	$2\pi r^3$
Q5.	Wha	at is the total su	rface ai	rea of a hemispl	nere o	f radius r?		
	a.	$4\pi r^2$	b.	πr^2	c.	$2\pi r^2$	d.	$3\pi r^2$
Q6.	If th	e radius of a spł	nere is	doubled, then w	vhat is	s the ratio of their	surfa	ce area?
	a.	1	b.	2:1	c.	1:4	d.	4:1
Q7.	The area		e base	of a cone is 10.	5 cm,	and its slant hei	ght is	10cm. The curved surface
	a.	150 sq.cm	b.	165 sq.cm	C.	177 sq.cm	d.	180 sq.cm
Q8.	The	height of a cone	e is 21c	m and its slant	height	t is 28cm. The vol	ume c	of the cone is :
	a.	7356 cm ³	b.	7546 cm ³	c.	7506 cm ³	d.	7564 cm ³
Q9.	The	radius of a sphe	ere is 2	r, then its volun	ne wil	l be :		
	a.	$\frac{4}{3}\pi r^3$	b.	$4\pi r^3$	C.	$\frac{8\pi r^3}{3}$	d.	$\frac{32}{3}\pi r^3$
Q10			-			from 6cm to 12c the two cases is :	m as a	air is being pumped into it.
	a.	1:4	b.	1:3	c.	2:3	d.	2:1
Q11		radius and the l its slant height		surface area of	f a rig	ht circular cone a	are 8c	m and 10cm ² respectively.
Q12		e volume and th ind the height		-	t circu	ular cone are 48π	cm ³	and 12π cm ² respectively,
				6 1. I.I.		–		

- **Q13.** Find the total surface area of a solid hemisphere with radius 7cm.
- **Q14.** Find the surface area of a sphere whose diameter is d.
- **Q15.** Write volume of a hemisphere in terms of surface area of the corresponding sphere.
- **Q16.** A joker's cap is in the form of a right circular cone of base radius 7cm and height 24cm. Find the area of the sheet required to make 10 such caps.

Q17. Curved surface area of a cone is 154 cm² and its slant height is 14cm. Find :

- i. Radius of the base.
- ii. Total surface area of the cone.
- **Q18.** The radius and height of a right circular cone are in the ratio 2:3. Find its slant height, if its volume is 100.48 cm³. (take π = 3.14)
- **Q19.** A hemispherical bowl made of iron has inner radius 7cm. Find the cost of polishing inner hollow portion of bowl at the rate of Rs. 10 per 100 cm².
- **Q20.** A boy has a spherical sweets of a radius 4cm. A girl has 8 spherical sweets each of radius 2cm. Find the ratio of the volume of the sweets the boy has to the sweets the girl has.
- Q21. A solid metallic sphere of diameter 4.2cm is dropped in a container full of water, so that it is

completely immersed in water. Find the amount of water displaced by the sphere. (Use $\pi = \frac{22}{7}$)

- **Q22.** A shopkeeper has one spherical laddoo of radius 5 cm. With the same amount of material, how many laddoos of radius 2.5cm can be made?
- **Q23.** The floor area of a tent which is in the form of a right circular cone is $\frac{3168}{7}$ m². The area of canvas

required for making the tent is $\frac{3960}{7}$ m². Find the air capacity of the tent.

- **Q24.** The internal and external diameters of a hollow hemispherical vessel are 24 cm and 25 cm respectively. If the cost of painting 1 cm^2 of the surface area is Rs. 0.05, find the total cost of painting the vessel all over.
- **Q25.** The water for a factory is stored in a hemispherical tank whose internal diameter is 14cm. The tank contains 50 KL of water. Water is pumped into the tank to fill it to its capacity. Calculate the volume of water pumped into the tank.

Case-study based questions:

Q26. Once four friends Rahul, Arun, Ajay and Vijay went for a picnic at a hill station. Due to peak season, they did not get a proper hotel in the city. The weather was fine so they decided to make a conical tent at a park. They were carrying 300m² cloth with them. As shown in the figure they made the tent with height 10m and diameter 14m. The remaining cloth was used for floor.

i.	Ноч	w much clot	n was	used for the floo	or?			
	a.	31.6 m ²	b.	16m ²	c.	10m ²	d.	20 m ²
ii.	Wh	at was the v	olume	e of the tent?				
	a.	300m ³	b.	160m ³	c.	513.3 m ³	d.	500m ³
iii.	Wh	at was the a	rea of	the floor?				
	a.	50 m ²	b.	100 m ²	C.	150m ²	d.	154 m ²
iv.	Wh	at was laten	t heig	ht of tent?				
	a.	12m	b.	12.2 m	C.	15m	d.	17 m
						_		

CHAPTER - 14 (STATISTICS)

Solve the following questions:

- **Q1.** Which one of the following is not the graphical representation of statistical data?
 - a. bargraph b. histogram
 - c. frequency polygon d. comulative frequency distribution
- **Q2.** In a histogram, the area of each rectangle is proportional to :
 - a. the class mark of the corresponding class interval
 - b. the class size of the corresponding class interval
 - c. frequency of the corresponding class interval
 - d. cumulative frequency of the corresponding class interval
- **Q3.** In a histogram the class intervals or the groups are taken along :
 - a. y axis
 - b. x axis
 - c. both of x axis and y axis
 - d. in between x and y axis
- **Q4.** We can draw histogram, if we have :
 - a. grouped and continuous classes b. non continuous classes
 - c. classes without frequency d. none of the above
- **Q5.** The following data gives amount of manure (in thousand tonnes) manufactured by a company during some years:

Year	1992	1993	1994	1995	1996	1997
Manure (in thousand tonnes)	18	35	45	30	85	85

- i. Represent the above data with help of a bar graph.
- ii. The consecutive years during which the maximum decrease in manure production took place is?

06.	The distribution of weights	(in kg) of 87	people is given below :
2 01	The distribution of weights		people is given below .

Weight	30-35	35-40	40-45	45-50	50-55	55-60
(in kg)						
Frequency	12	20	25	15	10	5

Construct a histogram for the above distribution.

Q7. Construct a histogram for the following data :

Class Interval	Frequency
10-19	20
20-29	15
30-39	45
40-49	60
50-59	75

Q8. Construct a frequency polygon with histogram, for the following information :

Class Interval	Frequency
30-45	4
45-60	8
60-75	15
75-90	19

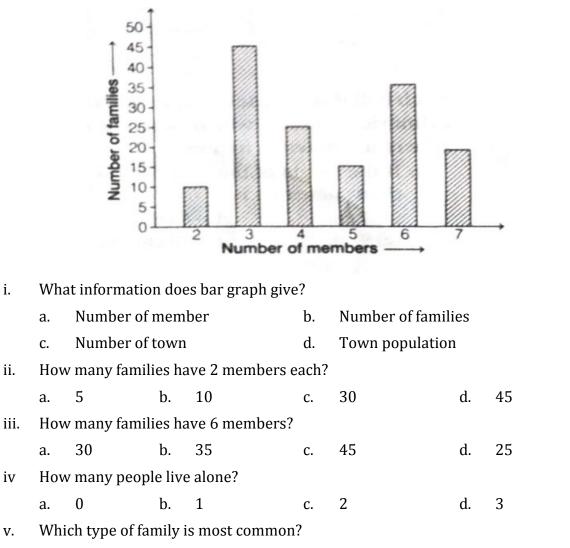
Q9. The daily wages of 100 workers (in Rs.) in a factory are given below :

Daily wages (in Rs.)	150-200	200-250	250-300	300-350
No. of workers	16	29	37	18

Draw a frequency polygon for the given data.

Q10. Draw a frequency polygon for the data given below, without drawing a histogram :

Class	150-160	160-170	170-180	180-190	190-200	200-210
Frequency	5	15	20	25	15	10


011 . The monthly profit	(in Rs.) of 100 sh	ops are distributed as follows :
	(111 1(3)) 01 100 31	lops are also ibuted as follows.

Profit per shop (in Rs.)	0-50	50-100	100-150	150-200	200-250	250-300
No. of shops	12	18	27	20	17	6

Draw a frequency polygon for it.

Case-study based questions:

Q12. Rajasthan Government conduct a survey of 150 families of a town, the number of members in each family was recorded and the data has been represented by the following bar graph.

3 members b. 4 members c. 5 members d. 6 members

a.

To Get More material for Maths IX - X Click below

CBSE MATHS IX-X

To Get More Material for XI-XII Click below

CBSE MATHS XI-XII