Reading Material - Mathematics

Class XI (2025-26)
Subject Code - 041

Chapter 1: Sets
Practical problems on Union and Intersection of two sets

1.12 Practical Problems on Union and
Intersection of Two Sets

In earlier Section, we have learnt union, intersection

and difference of two sets. In this Section, we will Q
go through some practical problems related to our \
daily life.The formulae derived in this Section will

also be used in subsequent Chapter on Probability (ANB)

(Chapter 16). Fig 1.11
Let A and B be finite sets. If A N B = ¢, then
i)n(AuB)=n(A)+n(B) .. (1)

The elements in A U B are either in A or in B but not in bothas AN B = ¢. So, (1)
follows immediately.

In general, if A and B are finite sets, then

n(AuB)=n(A)+n(B)-n(AnNnB) .. (2)

Note that the sets A— B, A N B and B — A are disjoint and their union is A U B
(Fig 1.11). Therefore
n(AuB)=n(A-B)+n(AnNnB)+n(B-A)
=n(A-B)+ n(AnB)+n(B-A)+n(A nB)-n(A NnB)
=n(A)+n(B)-n(A n B), which verifies (2)
(111) If A, B and C are finite sets, then
n(AuBUC)=n(A)+n(B)+n(C)-n(A NnB)-n(B mC)
-n(ANC)+n(AnB NC) s (D)
In fact, we have
n(AuBuUC)=n(A)+n(BuUC)-n[AnNn(BuC)] [by (2)]
=nA)+n(B)+n(C)-n(B mnC)-n[ANn(BuC)] [by (2)]
SinceA N(BuC)=(AnNnB)uU(A nC), we get
n[AN(BuC)]l=n(AnNnB)+n(AnNnC)-n[(AnNnB)n(A nO)]
=n(AnNnB)+n(AnNnC)-n(AnNnBNOC
Therefore
n(AuuBUC)=nA)+n(B)+n(C)-n(A mnB)-n(B NnC(C
-n(A mC)+n(A nB nC)
This proves (3).

Example 23 If X and Y are two sets such that X U Y has 50 elements, X has
28 elements and Y has 32 elements, how many elements does X N'Y have ?



Solution Given that U
r{XWY)=30,n(X)=28, n(Y )=32,
nXNnY)="?

By using the formula Q
n(XuY) =n(X)+n(Y)-n(XNnY), '
we find that (XNY)

n(XNY) =n(X)+n(Y)-n(XuUY)
=28+32-50=10 Fig 1.12

Alternatively, suppose n ( X N'Y ) =k, then
n(X-Y)=28-k,n(Y-X)=32-k(by Venn diagram in Fig 1.12)
ThisgivesS0=n(XuY)=nX-Y)+n X NnY)+n(Y-X)
=(28-k)+k+(32-k)
Hence k =10.

Example 24 In a school there are 20 teachers who teach mathematics or physics. Of
these, 12 teach mathematics and 4 teach both physics and mathematics. How many
teach physics ?

Solution Let M denote the set of teachers who teach mathematics and P denote the
set of teachers who teach physics. In the statement of the problem, the word ‘or’ gives
us a clue of union and the word ‘and’ gives us a clue of intersection. We, therefore,
have
n(MuUP)=20,n(M)=12andn (M NnP)=4
We wish to determine n ( P).
Using the result
n(MUP)=n(M)+n(P)-n (MNP),
we obtain
20=12+n(P)-4
Thus a(P)=12
Hence 12 teachers teach physics.

Example 25 In a class of 35 students, 24 like to play cricket and 16 like to play
football. Also, each student likes to play at least one of the two games. How many
students like to play both cricket and football ?

Solution Let X be the set of students who like to play cricket and Y be the set of

students who like to play football. Then X U'Y is the set of students who like to play

at least one game, and X N'Y is the set of students who like to play both games.

Given n(X)=24,n(Y)=16,n(XuY)=35,nXNnY)="?

Using the formulan (XU Y )=n(X)+n(Y)-n (XNY), we get
35=24+16-n(XNY)



Thus, nX NY)=3
i.e., 5 students like to play both games.

Example 26 In a survey of 400 students in a school, 100 were listed as taking apple
juice, 150 as taking orange juice and 75 were listed as taking both apple as well as
orange juice. Find how many students were taking neither apple juice nor orange juice.

Solution Let U denote the set of surveyed students and A denote the set of students
taking apple juice and B denote the set of students taking orange juice. Then

n (U)=400,n (A)=100,n (B) =150 and n (A N B) =75.
Now n(A"nB’) =n(AuUBY
n(U)-n(AuUB)
=nU)-n(A)-n(B)+n(AnB)
=400 - 100 - 150 + 75 = 225
Hence 225 students were taking neither apple juice nor orange juice.

Example 27 There are 200 individuals with a skin disorder, 120 had been exposed to
the chemical C , 50 to chemical C,, and 30 to both the chemicals C, and C,. Find the
number of individuals exposed to

(i)  Chemical C, but not chemical C, (i) Chemical C, but not chemical C,
(iii) Chemical C, or chemical C,

Solution Let U denote the universal set consisting of individuals suffering from the
skin disorder, A denote the set of individuals exposed to the chemical C, and B denote
the set of individuals exposed to the chemical C,.

Here n(U)=200,n(A)=120,n(B)=50andn (AN B)=30
(i) From the Venn diagram given in Fig 1.13, we have
A=(A-B)uU(AnB).
n(A)=n(A-B)+n(AnB) (Since A-B) and A N B are disjoint.)
orn(A-B)=n(A)-n(AnB)=120-30=90
Hence, the number of individuals exposed to
chemical C, but not to chemical C, is 90. U

(i1) From the Fig 1.13, we have
B=(B-A)uU(AnB).

andso, n (B)= n(B-A)+n(ANB) \V/

(Since B — A and A NB are disjoint.)

oo n(B-A)=n(B)-n(ANB) (ANB)
=50-30= 20 Fig 1.13



Thus, the number of individuals exposed to chemical C, and not to chemical C, is 20.
(i) The number of individuals exposed either to chemical CI or to chemical Cz, i.e.,

(A ]

w

W

n(AuB)=n(A)+n(B)-n(ANnB)
=120 + 50 - 30 = 140.

EXERCISE 1.6

If Xand Y are two sets such thatn ( X )=17,n(Y)=23andn (X UY ) =38,
findn(XNY).

If X and Y are two sets such that X U Y has 18 elements, X has 8 elements and
Y has 15 elements ; how many elements does X MY have?

In a group of 400 people, 250 can speak Hindi and 200 can speak English. How
many people can speak both Hindi and English?

If S and T are two sets such that S has 21 elements, T has 32 elements,and SN T
has 11 elements, how many elements does S U T have?

If X and Y are two sets such that X has 40 elements, X U Y has 60 elements and
X MY has 10 elements, how many elements does Y have?

In a group of 70 people, 37 like coffee, 52 like tea and each person likes at least
one of the two drinks. How many people like both coffee and tea?

In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many
like tennis only and not cricket? How many like tennis?

In a committee, 50 people speak French, 20 speak Spanish and 10 speak both
Spanish and French. How many speak at least one of these two languages?




Chapter 3: Trigonometric Functions

General solution of trigonometric equations of the type siny = sina, cosy = cosa and
tany = tana.

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called trigonometric
equations. In this Section, we shall find the solutions of such equations. We have
already learnt that the values of sinx and cosx repeat after an interval of 27 and the
values of tan x repeat after an interval of 7. The solutions of a trigonometric equation
for which 0 < x < 27 are called principal solutions. The expression involving integer
‘n’ which gives all solutions of a trigonometric equation is called the general solution.
We shall use ‘Z’ to denote the set of integers.

The following examples will be helpful in solving trigonometric equations:

V3

Example 18 Find the principal solutions of the equation sin x = 7

. 3 . 2 T . W 3
Solution We know that, sSin—=—— and SIN— =8| T—— |=SIN—=——
3 2 3 3 3 2
o . T 2n
Therefore, principal solutions are X=— and 3

1
Example 19 Find the principal solutions of the equation tanx = _-\/_5'

T
Solution We know that, tan% = L Thus, tan (n —g)= —tan— = - —

3

d .tan 27t—E -—tanf—_L
an . = NG
Thus tans—nztanlﬁz_L'

6 6 3
Sn 117

Therefore, principal solutions are 6 and 6 -

We will now find the general solutions of trigonometric equations. We have already



seen that:
sinx =0 gives x= nm, where n € Z

T
cosx =0 gives x=(2n + 1)5, where n € Z.

We shall now prove the following results:
Theorem 1 For any real numbers x and y,

sin x = sin y implies x =nw + (-1)"y, where n € Z
Proof If sin x = siny, then

x+y . x=y

sinx—siny=0 or 2cos sin =0
2 2
o Xty . x-y
which gives cos =0 or sin =0
2 2

x+y 7 x=y
Therefore T =12n + 1)5 or > =nn, where n € Z
ie. x=2n+1)mw—-y orx=2nw+y, where neZ
Hence x=2n+ )r+ (=1)"*"yorx=2nmw+(-1)"y, where n € Z.

Combining these two results, we get
x=nn+ (-1)"y, where n € Z.

Theorem 2 For any real numbers x and y, cos x = cos y, implies x= 2nm * y,
where n € Z

Proof If cos x = cos y, then

X+y . x-—y

cosx—cosy=0 1ie., -2 sin sin =)
2 2

X+ x—

Thus sin 4 =1 or sin 2 =)
2 2
x —

Therefore =nmw or = nn, where n € Z
1.8 x=2nm-y orx=2nn+y, where ne Z
Hence x=2nnty wheren € Z

T
Theorem 3 Prove that if x and y are not odd mulitple of R then

tan x = tan y implies x = n + y, where n € Z



Proof 1If tanx=tany, then tanx—tany=0

Sin X COSy —COsx siny

or
COSX COS Y

which gives sin(x—y)=0 (Why?)

Therefore X—y=nm,ie,x=nn+y, wherene Z

3

Example 20 Find the solution of sinx = - —.

ﬁ . T : T . 4m
Solution We have sinx =— — = —SIn—=8In| T+— |=sIn —
2 3 3 3
) . 4n _ _
Hence sin x = Sln?, which gives

. 4
x=nn+(-1) ?, where n € Z.

>

although these may apparently look different.

4n . 3
—— is one such value of x for which sin x = —%. One may take any

3
other value of x for which sinx = — 7 The solutions obtained will be the same

1
Example 21 Solve cosx = —.

T
=COS—
3

NS I )

Solution We have, c0s x =
T
Therefore X =2nxn ig , where n € Z.

Example 22 Solve tan 2x = —cot(x+§).

Solution We have, tan 2x=—cot(x+£] = tan (g+x+%)
3 s



Sn
or tan2x = tan .r+-€

Sn
Therefore 2x=nr+x+ o> where ne Z

Sn
or x=nn+-6—.where nel.
Example 23 Solve sin 2x — sin 4x + sin 6x = 0.

Solution The equation can be written as
sinbx +sin2x—sindx =0

or 2sindxcos2x—sindx =0
1e. sindx(2cos2x—-1) =0
|

Therefore sindxr=0 or cos2x= 5

: n
ie. sindx =0 or cos2x= cos;

X
Hence 4x=nax or 2x= thi'-i . where neZ
Xt

ie. x="—: or x =mti'g.whene nelZ.

Example 24 Solve 2 cos’ x+ 3sinx=0
Solution The equation can be written as

2(l—sin2 .\') +3sinx =0

or 2sin® x—3sinx—2=10
or (2sinx+1) (sinx—2) =0
: 1 2
Hence sinx = -5- or sinx=2
But sin x = 2 is not possible (Why?)
Theref i l sin 1%
erefore sin x = B R



Hence, the solution is given by

e I
x=nn+(-1) 3 where n € Z.

EXERCISE 3.4
Find the principal and general solutions of the following equations:
1. tanx =43 2. secx=2
3. cotx=_J§ 4. cosecx=-2
Find the general solution for each of the following equations:
5. cosd4x=cos2x 6. cos3x+cosx—cos2x=0
7. sin2x+cosx=0 8. sec’ 2x = 1-tan 2x

9, sinx+sin3x+sinS5x=0



Unit-ll Algebra

Chapter: Principle of Mathematical Induction

Process of the proof by induction, motivating the application of the method by looking
at natural numbers as the least inductive subset of real numbers. The principle of
mathematical induction and simple applications.

Chapter

11076CHO4

PRINCIPLE OF
MATHEMATICAL INDUCTION

** Analysis and natural philosophy owe their most important discoveries to
this fruitful means, which is called induction. Newton was indebted
to it for his theorem of the binomial and the principle of
universal gravity. - LAPLACE %

4.1 Introduction

One key basis for mathematical thinking is deductive rea-
soning. An informal, and example of deductive reasoning,
borrowed from the study of logic, is an argument expressed
in three statements:

(a) Socrates is a man.

(b)  All men are mortal, therefore,

(¢) Socrates is mortal.

If statements (a) and (b) are true, then the truth of (¢) is
established. To make this simple mathematical example,
we could write:

(1) Eightis divisible by two.

(i) Anynumber divisible by two is an even number,

therefore,

@) Eightis an even number.

Thus, deduction in a nutshell is given a statement to be proven, often called a
conjecture or a theorem in mathematics, valid deductive steps are derived and a
proof may or may not be established, i.e., deduction is the application of a general
case to a particular case.

In contrast to deduction, inductive reasoning depends on working with each case,
and developing a conjecture by observing incidences till we have observed each and
every case. It is frequently used in mathematics and is a key aspect of scientific
reasoning, where collecting and analysing data is the norm. Thus, in simple language,
we can say the word induction means the generalisation from particular cases or facts.

G. Peano
(1858-1932)
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In algebra or in other discipline of mathematics, there are certain results or state-
ments that are formulated in terms of n, where n is a positive integer. To prove such
statements the well-suited principle that is used-based on the specific technique, is
known as the principle of mathematical induction.

4.2 Motivation

In mathematics, we use a form of complete induction called mathematical induction.
To understand the basic principles of mathematical induction, suppose a set of thin
rectangular tiles are placed as shown in Fig 4.1.

Fig 4.1

When the first tile is pushed in the indicated direction, all the tiles will fall. To be
absolutely sure that all the tiles will fall, it is sufficient to know that
(a) The first tile falls, and

(b) In the event that any tile falls its successor necessarily falls.

This is the underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. In fact, N is the smallest subset of R with the following property:

A set S is said to be an inductive setif le Sand x+ 1 € S whenever x € S. Since
N is the smallest subset of R which is an inductive set, it follows that any subset of R
that is an inductive set must contain N.

Ilustration

Suppose we wish to find the formula for the sum of positive integers 1, 2, 3,...,n, that is,
a formula which will give the value of 1 + 2 + 3 when n =3, the value 1 + 2 + 3 + 4,
when n =4 and so on and suppose that in some manner we are led to believe that the

n(n+l)

formulal +2 +3+..+n= is the correct one.

How can this formula actually be proved? We can, of course, verify the statement
for as many positive integral values of n as we like, but this process will not prove the
formula for all values of n. What is needed is some kind of chain reaction which will

11



have the effect that once the formula is proved for a particular positive integer the
formula will automatically follow for the next positive integer and the next indefinitely.
Such a reaction may be considered as produced by the method of mathematical induction.

4.3 The Principle of Mathematical Induction
Suppose there is a given statement P(n) involving the natural number n such that

(i) The statement is true for n = 1, i.e., P(1) is true, and

(it) If the statement is true for n = k (where k is some positive integer), then
the statement is also true for n = k + 1, 1.e., truth of P(k) implies the
truth of P (k + 1).

Then, P(n) is true for all natural numbers n.

Property (1) is simply a statement of fact. There may be situations when a
statement is true for all n = 4. In this case, step 1 will start from n = 4 and we shall
verify the result for n = 4, i.e., P(4).

Property (ii) is a conditional property. It does not assert that the given statement
is true for n = k, but only that if it is true for n = &, then it is also true for n =k +1. So,
to prove that the property holds , only prove that conditional proposition:

If the statement is true for n = k, then it 1s also true forn =k + 1.

This is sometimes referred to as the inductive step. The assumption that the given
statement is true for n = k in this inductive step is called the inductive hypothesis.

For example, frequently in mathematics, a formula will be discovered that appears
to fit a pattern like

(3%

12 =
22=1+35

S

==
Il

16=42=1+3+5+17,etc.

It is worth to be noted that the sum of the first two odd natural numbers is the
square of second natural number, sum of the first three odd natural numbers is the
square of third natural number and so on.Thus, from this pattern it appears that

14+3454+7+...+2n-1)=n%,1ie,
the sum of the first n odd natural numbers is the square of n.

Let us write

Pn):1+3+5+7+..+2n-1)=n

We wish to prove that P(n) is true for all n.

The first step in a proof that uses mathematical induction is to prove that
P (1) is true. This step is called the basic step. Obviously
1 =12 i.e., P(1) is true.
The next step is called the inductive step. Here, we suppose that P (k) is true for some

12



positive integer k and we need to prove that P (k + 1) is true. Since P (k) is true, we
have

1+3+54+7+...+Q2k=-1)=k s 11

Consider
14+3+5+7+..+2k-1)+{2(k+1)-1} .. (2)
=+ 2k +1)=(k+ 1) [Using (1)]

Therefore, P (k + 1) is true and the inductive proof is now completed.
Hence P(n) is true for all natural numbers 7.

Example 1 For all n 2 1, prove that

nn+1)(2n+1)

6 ;
Solution Let the given statement be P(n), 1.e.,
nn+1)(2n+1)

6
10+D@2Xx1+D)  1x2x3

6 6
Assume that P(k) is true for some positive integer £, i.e.,
 k(k+D2k+D)

6

We shall now prove that P(k + 1) is also true. Now, we have
(17 +2° +3% +4% +..+k* Y+ (k+ 1)?

_ k(k+-1)Gka+l)+ (k417 Using (1)]

2

124+ 224+ 324+ 4%+...+n* =

P(n): 12+ 22+ 3+ 4+..+n° =

=1 which is true.

Forn=1, P():1l=

124+ 224+ 32+ 42+, + I

s (1)

Kk +1) 2k +1)+6(k +1)°
6

(k+1)(2k> +7k+6)
6

k+D(k+1+D){2(k+1)+1}
B 6
Thus P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true
for all natural numbers 7.

13



Example 2 Prove that 2" > n for all positive integers n.

Solution Let P(n): 2" > n
When n =1, 2! >1. Hence P(1) is true.
Assume that P(k) is true for any positive integer £, i.e.,

2>k i )
We shall now prove that P(k +1) is true whenever P(k) is true.

Multiplying both sides of (1) by 2, we get
2 2 2k
ie, 2'>2%k=k+k>k+1

Therefore, P(k + 1) is true when P(k) is true. Hence, by principle of mathematical
induction, P(n) is true for every positive integer n.

Example 3 For all n 2 1, prove that
| 1 | 1 n
—_—t—t—t..+ =
1.2 23 34 nn+l) n+l-

Solution We can write

1,1 1 1 n

3 + o o =
= T2 23 34 nn+1) n+l

P(n)

We note that P(l):i=l=L, which is true. Thus, P(n) is true forn = 1.
1.2 2 1+1
Assume that P(k) is true for some natural number £,

1 1 1 1 k
e 12723734 T kD) k41 s L)
We need to prove that P(k + 1) is true whenever P(k) is true. We have

1 1 1 1 1

+...+ +
1.2 23 34 k(k+1) (k+1)(k+2)

L

= I: : L+...+ I :|+ :
1.2 23 34 k(k+1)| (k+1)(k+2)

k_, 1
T k+1 (k+D)(k+2)

[Using (1)]
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kk+2)+1 (K +2k+D  (k+1) K+l k+1

T hADk+2) T kDG4 T (ka1)(k+2)  k+2 (k+1)+]

Thus P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical
induction, P(n) is true for all natural numbers.

Example 4 For every positive integer n, prove that 7" — 3" is divisible by 4.

Solution We can write
P(n): 7" - 3"is divisible by 4.

We note that

P(1): 7' = 3" = 4 which is divisible by 4. Thus P(n) is true for n = 1

Let P(k) be true for some natural number £,

i.e., P(k) : 7" - 3% is divisible by 4.

We can write 7* — 3% = 4d, where d € N.

Now, we wish to prove that P(k + 1) is true whenever P(k) is true.

NOW 7(k+l)_3(k+l) =7(k +l)_‘7‘3k+‘7‘3k_3(1\‘ +1)
=7(7" =35+ (7-3)3" =7(4d) + (7 - 3)3*
=7(4d) + 4.3 = 4(7d + 35

From the last line, we see that 7* *V — 3% +1 ig divisible by 4. Thus, P(k + 1) is true

when P(k) is true. Therefore, by principle of mathematical induction the statement is
true for every positive integer n.

Example 5 Prove that (I + x)" > (1 + nx), for all natural number n, where x > — 1.

Solution Let P(n) be the given statement,

ie., P(n): (1 +x)" 2 (1 + nx), forx>-1.

We note that P(n) is true when n = 1, since ( 1+x) = (1 + x) for x > -1
Assume that

P(k): (1 + x)* > (1 + kx), x >— 1 is true. sl
We want to prove that P(k + 1) is true for x > —1 whenever P(k) is true. 1))
Consider the identity

(I+xy*'=1+x(1+x)
Giventhat x> -1, so (14x) > 0.

Therefore , by using (1 + x)* > (1 + kx), we have
(I+x)**"> (1 + kx)(1 +x)
ie. (T + x> (1 +x+kx + kx?). w3}

15



Here k is a natural number and x*> > 0 so that kx> > 0. Therefore
(1 +x+ kx+ kx?) 2 (1 +x + kx),

and so we obtain
(1 +x)*" > +x+ kx)
ie. (L+x*! > [1+{+ k)]

Thus, the statement in (2) is established. Hence, by the principle of mathematical
induction, P(n) is true for all natural numbers.

Example 6 Prove that
2.7"+3.5" -5 is divisible by 24, for alln € N.

Solution Let the statement P(n) be defined as
P(n) : 2.7"+3.5" -5 is divisible by 24.

We note that P(n) is true for n = 1, since 2.7 + 3.5 — 5 = 24, which is divisible by 24.
Assume that P(k) is true
ie. 27"+4+35/-5=24¢g, whenge N .. (1)
Now, we wish to prove that P(k + 1) is true whenever P(k) is true.
We have
2.7 . 35 5 =0T .1 +35.5'-5
=7 [2.7*+3.5F-5-35+5]+3.5*.5-5
=7 [24q — 3.5+ 5] + 15.5* -5
=7x24qg-21.5*+35+155-5
=7 x 24¢g - 6.5 + 30
=7x%x24qg -6 (5-5)
=7 x24qg — 6 (4p) [(5*-5) is a multiple of 4 (why?)]

=7 x24q - 24p
=24 (7q - p)
=24 x r; r =7q — p, is some natural number. .. 2)

The expression on the R.H.S. of (1) is divisible by 24. Thus P(k + 1) is true whenever
P(k) is true.

Hence, by principle of mathematical induction, P(n) is true for all n € N.
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Example 7 Prove that
B
124+2%2+...4+n* > ?,ne N
Solution Let P(n) be the given statement.

. n’
ie,P(n):12+22+ ...+ n? >?, ne N

13
We note that P(n) is true for n = 1 since 1° > =

Assume that P(k) is true

i3
ie. Pk): 1?+2>2+ ...+ Kk > ? ..(1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

We have 17 + 22 + 32 + ...+ K+ (k + 1)?

3
- (12+22+...+k2) + (B} = % + (k+1) [by (1)]

[k* + 3K* + 6k + 3]

Q| =

1
3

1
[(k+1)3+3k+2]>§ k+1)°

Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by mathematical induction
P(n) is true for all n € N.

Example 8 Prove the rule of exponents (ab)" = a"b"
by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement
ie. P(n): (ab)" = a'b".

We note that P(n) is true for n = 1 since (ab)' = a'b'.
Let P(k) be tie; i.e.,
(ab)t = a'b* s L)
We shall now prove that P(k + 1) is true whenever P(k) is true.
Now, we have

(ab)*'= (ab)* (ab)

17



= (d" b") (ab) [by (1]
= (a* . a") (b*.b") = a*' . b

Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by principle of math-
ematical induction, P(n) is true for all n € N.

EXERCISE 4.1

Prove the following by using the principle of mathematical induction for all n € N:

Il_l
1. 1+3+32+...+3"“=(32 ).
' 2
nn+1)
2. P+22+3+ ... +n°= > ;
1 1 1 2n
3 1+ + +..+ =
e 1+2) d+2+3) 1+2+43+.n) (n+1)°
nn+1)(n+2)(n+3)
4. 1.23+234+...+ n(n+l) (n+2) = 1 5
n+1
5. 134232433 4.4 n3r= 1)43 3
nn+l)y(n+2)
6. 1.2+23+34+...+n.(n+tl)= 3 .

n(4n* +6n-1)
: .

7. 1.3+35+57+...4(2n-1) 2n+l) =
8. 12+22°+32%+ ..+n2"=(n-1)2"*' + 2.

| S O | 1 1
9, —+—+—+..+—=1-——
2 4 8 2" 2"
1 1 1 1 n
i - t—twt =
23 58 8.1l Bn-1)3n+2) (6n+4)-
1 1 1 1 n(n+3)
11 + + +...+ =
* 123 234 345 nn+)(n+2) 4n+1)(n+2)"-

18



15.

16.

17.

a(r"—-l)
a+ar+ar+..+ar' = ——

)32
B S

n2n—-1)2n+1)
3 .

111 1 n
+—+ +o.t =
1.4 47 17.10 Bn-2)3n+1) Gn+l)"

17+32 +52 + ..+ 2n-1)7 =

1 1 1 1 n
t—t—t..+ =
35 597 T8 2n+1D)2n+3) 32n+3)"

1
1+2+3+...+4n< §(2n+ L)%

. n(n+1)(n+>5)is amultiple of 3.
10>-' + 1 is divisible by 11.

2n

. x*"—y*is divisible by x + y.
. 322 _8n -9 is divisible by 8.
. 41"— 14" is a multiple of 27.

. 2n+7)<(n+3)>

Summary

® One key basis for mathematical thinking is deductive reasoning. In contrast to
deduction, inductive reasoning depends on working with different cases and
developing a conjecture by observing incidences till we have observed each
and every case. Thus, in simple language we can say the word ‘induction’
means the generalisation from particular cases or facts.

® The principle of mathematical induction is one such tool which can be used to
prove a wide variety of mathematical statements. Each such statement is
assumed as P(n) associated with positive integer n, for which the correctness
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for the case n = 1 is examined. Then assuming the truth of P(k) for some
positive integer k, the truth of P (k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical induction is not
the invention of a particular individual at a fixed moment. It is said that the principle
of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the
principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

Later the principle was employed to provide a proof of the binomial theorem.

De Morgan contributed many accomplishments in the field of mathematics
on many different subjects. He was the first person to define and name
“mathematical induction” and developed De Morgan’s rule to determine the
convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers
from a set of explicitly stated assumptions, now known as Peano’s axioms.The
principle of mathematical induction is a restatement of one of the Peano’s axioms.
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Chapter4:

Complex Numbers and Quadratic Equations
Polar representation of complex numbers. Statement of Fundamental Theorem of

Algebra, solution of quadratic equations (with real coefficients) in the complex number
system.

5.5.1 Polar representation of a complex
number Let the point P represent the non- P(2)
zero complex number z = x + iy. Let the b
directed line segment OP be of length r and
0 be the angle which OP makes with the 0
positive direction of x-axis (Fig 5.4). X' <€ o) >X
We may note that the point P is
uniquely determined by the ordered pair of
real numbers (r, 0), called the polar
coordinates of the point P. We consider V
the origin as the pole and the positive &
direction of the x axis as the initial line. Fig 5.4

We have, x = r cos 0, y = r sin 0 and therefore, z = r (cos 0 + i sin 0). The latter

>

is said to be the polar form of the complex number. Here r=.x*+y’ =|z| is the

modulus of z and 0 is called the argument (or amplitude) of z which is denoted by arg z.

For any complex number z # 0, there corresponds only one value of 0 in
0 <0 < 2n. However, any other interval of length 27, for example — T < 0 <7, can be
such an interval. We shall take the value of 0 such that — T < 6 < m, called principal
argument of z and is denoted by arg z, unless specified otherwise. (Figs. 5.5 and 5.6)

Y

Y " 3 Y Y
0 0 0
b if 7o) X X' o) X X'€ o) >X X'€ re) >X
¢]
P
Y’ Y’ P Y’ Y’
®

i (i) (iii) @(iv)
Fig 5.5 (0<6<2m)

@ (i) (iii) (iv)
Fig56 (—t<06<m)
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Example 7 Represent the complex number z =1+ i3 in the polar form.
Solution Let 1 = r cos 6, Jg =rsin 0
By squaring and adding, we get Y

P(1,43)
r? (cosze+sin26):4 A
18, r= JZ = 2 (conventionally, »>0) X 0 5
| . 3 om
Therefore, ¢0s0=— sin®=—— which gives 8= —
2 2 3 Y’
Fig 5.7

T .. T
Therefore, required polar formis <= 2[COS§ +1 Slng]

The complex number z = 1 +i+/3 is represented as shown in Fig 5.7.

16
113 into polar form.

Example 8 Convert the complex number

Solution The gi 1 b — — xl_iﬁ
S01ution € given complex numbper l+i\/§ — 1+i\/§ l—i\/§

-16(1-iv/3) ) -16(1-iv3)
- 1—(:\/5)2 143

= —4(1-i3)=-4+i4\3 (Fig 5.8).

Let —4=rcos 8, 4,/3 =rsin@ P(4, 443) X
By squaring and adding, we get 0
16 +48 = r*(cos?0 +sin’0 ) X ¢ -

which gives =64, ie., r=%8

1 NE) y
Hence cosf=——, sin @ =—— Y

2 2 Fig 5.8

0=n-—= o
3 3

2n . . 2m
Thus, the required polar form is 8 COS? +1 sm?
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[EXERCISE 5.2]

Find the modulus and the arguments of each of the complex numbers in
Exercises 1 to 2.

1. z=-1-i3 2. z=-[3 +i

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:
3. 1-i 4. -1+ —1-i

6. -3 7. J§+i

5.6 Quadratic Equations

L W

i

We are already familiar with the quadratic equations and have solved them in the set
of real numbers in the cases where discriminant is non-negative, i.e., 2 0,
Let us consider the following quadratic equation:

ax’ + bx + ¢ = 0 with real coefficients a, b, ¢ and a # 0.

Also, let us assume that the b —4ac < 0.

Now, we know that we can find the square root of negative real numbers in the
set of complex numbers. Therefore, the solutions to the above equation are available in
the set of complex numbers which are given by

_ —b+b® —4ac _ _b+dac—b* i

2a 2a

X

At this point of time, some would be interested to know as to how many
roots does an equation have? In this regard, the following theorem known as the
Fundamental theorem of Algebra is stated below (without proof).

“A polynomial equation has at least one root.”

As a consequence of this theorem, the following result, which is of immense
importance, is arrived at:

“A polynomial equation of degree n has n roots.”
Example 9 Solve x> +2=0
Solution We have, x> +2 =0

or Pr==2ie,x=2% —2=i\/5i
Example 10 Solve x*+x+ 1=0

Solution Here, bP-dac=12-4x1x1=1-4=-3
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—1+4J-3  —1+43i

2x1 2

Therefore, the solutions are given by x =

Example 11 Solve /5x% + x+4/5=0
Solution Here, the discriminant of the equation is
12 —4xaf5xa5 =1-20=-19
Therefore, the solutions are
—1+4/-19 12419
25 W5

|[EXERCISE 5.3]
Solve each of the following equations:
1. x*?+3=0 2. 2¥%+x+1=0 3. ¥*+3x+9=0
4. - x¥*+x-2=0 5. ¥*+3x+5=0 6. ¥>’-x+2=0
7s \/Ex2+x+«/5=0 8. \/gxz—\/ix+3\/§=0
9. x2+x+L=O 10. X H——+1=0

V2 V2
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Chapter 5: Linear Inequalities

Graphical solution of linear inequalities in two variables. Graphical method of finding

a solution of system of linear inequalities in two variables

6.4 Graphical Solution of Linear Inequalities in Two Variables

In earlier section, we have seen that a graph of an inequality in one variable is a visual
representation and is a convenient way to represent the solutions of the inequality.
Now, we will discuss graph of a linear inequality in two variables.

We know that a line divides the Cartesian plane into two parts. Each part is
known as a half plane. A vertical line will divide the plane in left and right half planes
and a non-vertical line will divide the plane into lower and upper half planes
(Figs. 6.3 and 6.4).

Y

Y Upper half
A A plane

II

Lower half

Left half | Right half
plane

plane plane

I II
X' € >X

0O '
X' € 0/ . >X
A\ 4 v l/v

¥ Y
Fig 6.3 Fig 6.4

A point in the Cartesian plane will either lie on a line or will lie in either of the half
planes I or II. We shall now examine the relationship, if any, of the points in the plane
and the inequalities ax + by < ¢ or ax + by > c.

Let us consider the line
ax+by=c, a#0, b #0 e K1)

25



There are three possibilities namely:
i ax+by= c (i) ax+by>c (i) ax + by <c.

In case (i), clearly, all points (x, y) satisfying (i) lie on the line it represents and

conversely. Consider case (ii), let us first assume that » > 0. Consider a point P (t,p3)

on the line ax + by = ¢, b > 0, so that

ao. + bB = c.Take an arbitrary point X

Q (o, ) in the half plane II (Fig 6.5). \ e Q(0y)
Now, from Fig 6.5, we interpret, i
Y>B  (Why?) i U

or bY>bB or ao+by>ao+bp
(Why?)

or aod+by>c X' € >X
ie., Q(a,Y) satisfies the inequality 0 I Q,.\
ax + by > c. 3,
v >
Thus, all the points lying in the half Y’ <
plane II above the line ax + by = ¢ satisfies Fig 6.5

the inequality ax + by > c¢. Conversely, let (o, B) be a point on line ax + by = ¢ and an
arbitrary point Q(a, y) satisfying

ax + by > c
so that ao. + by> ¢
=% ao + by > aa + bp (Why?)
=% Y>B (as b>0)

This means that the point (o, Y) lies in the half plane II.

Thus, any point in the half plane II satisfies ax + by > ¢, and conversely any point
satisfying the inequality ax + by > ¢ lies in half plane II.

In case b < 0, we can similarly prove that any point satisfying ax + by > ¢ lies in
the half plane I, and conversely.

Hence, we deduce that all points satisfying ax + by > ¢ lies in one of the half
planes II or I according as b > 0 or b < 0, and conversely.

Thus, graph of the inequality ax + by > ¢ will be one of the half plane (called
solution region) and represented by shading in the corresponding half plane.

l The region containing all the solutions of an inequality is called the
solution region.
2. Inorder toidentify the half plane represented by an inequality, it is just sufficient
to take any point (a, b) (not on line) and check whether it satisfies the inequality or
not. If it satisfies, then the inequality represents the half plane and shade the region
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which contains the point, otherwise, the inequality represents that half plane which
does not contain the point within it. For convenience, the point (0, 0) is preferred.
3. If an inequality is of the type ax + by = c or ax + by < ¢, then the points on the
line ax + by = ¢ are also included in the solution region. So draw a dark line in the
solution region.

4. [If aninequality is of the form ax + by > ¢ or ax + by < ¢, then the points on the
line ax + by = ¢ are not to be included in the solution region. So draw a broken or
dotted line in the solution region.

In Section 6.2, we obtained the following linear inequalities in two variables
xandy:  40x+20y < 120 . (1)
while translating the word problem of purchasing of registers and pens by Reshma.

Let us now solve this inequality keeping in mind that x and y can be only whole
numbers, since the number of articles cannot be a fraction or a negative number. In
this case, we find the pairs of values of x and y, which make the statement (1) true. In
fact, the set of such pairs will be the solution set of the inequality (1).

To start with, let x = 0. Then L.H.S. of (1) is

40x + 20y =40 (0) + 20y = 20y.
Thus, we have
20y<1200ry<6 s 1(2)

For x = 0, the corresponding values of y can be 0, 1, 2, 3, 4, 5, 6 only. In this case, the
solutions of (1) are (0, 0), (0, 1), (0,2), (0,3), (0,4),
(0,5) and (0, 6).

Similarly, other solutions of (1), when

x=1,2and 3 are: (1,0), (1, 1),(1,2), (I,
3), (1,4), (2,0),(2,1),(2,2),(3,0)
This is shown in Fig 6.6.

Let us now extend the domain of x and y
from whole numbers to real numbers, and see
what will be the solutions of (1) in this case.
You will see that the graphical method of solution
will be very convenient in this case. For this
purpose, let us consider the (corresponding)
equation and draw its graph.

40x + 20y =120 .. 3)

In order to draw the graph of the inequality

(1), we take one point say (0, 0), in half plane I

and check whether values of x and y satisfy the
inequality or not.
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We observe that x = 0, y = 0 satisfy the %
inequality. Thus, we say that the half plane I is the *

graph (Fig 6.7) of the inequality. Since the points on
the line also satisfy the inequality (1) above, the line
is also a part of the graph.

Thus, the graph of the given inequality is half
plane I including the line itself. Clearly half plane I1
is not the part of the graph. Hence, solutions of
inequality (1) will consist of all the points of its graph
(half plane I including the line).

We shall now consider some examples to
explain the above procedure for solving a linear

X € +
inequality involving two variables. ol

Example 9 Solve 3x + 2y > 6 graphically.

This line divides the xy-plane in two half
planes I and II. We select a point (not on the
line), say (0, 0), which lies in one of the half ‘?e-x
planes (Fig 6.8) and determine if this point ‘5-\
satisfies the given inequality, we note that 7

3(0)+2(0)>6
or 0>6, whichis false.

L7

- w0

-

Hence, half plane I is not the solution region of
the given inequality. Clearly, any point on the
line does not satisfy the given strict inequality.
In other words, the shaded half plane II
excluding the points on the line is the solution
region of the inequality.

Example 10 Solve 3x — 6 =2 0 graphically in
two dimensional plane.

Solution Graph of 3x — 6 = 0 is given in the
Fig 6.9.

We select a point, say (0, 0) and substituting it in
given inequality, we see that: X' €

X' €——
o
v

- N WA &g

II

Y
A

.
-
L

£ SN

Y' Fig6.7
Solution Graph of 3x + 2y = 6 is given as dotted line in the Fig 6.8.

X

3(0)-620 or-6 =0 which is false.
Thus, the solution region is the shaded region on
the right hand side of the line x = 2.
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Example 11 Solve y < 2 graphically.

> <

Solution Graph of y =2 is given in the Fig 6.10.
Let us select a point, (0, 0) in lower half 44 n
plane I and putting y =0 in the given inequality, 3t -2
we see that (....@.-.‘}., .............. >
I x0<2o0r 0<2 whichis true. 14 I
Thus, the solution region is the shaded region x+ < ——— > X
below the line y = 2. Hence, every point below OV 12 345
the line (excluding all the points on the line) Y
determines the solution of the given inequality. Fig 6.10
EXERCISE 6.2
Solve the following inequalities graphically in two-dimensional plane:
1. x+y<5 2. 2x+y=26 3. 3x+4y<12
4. y+822 5. x—-y<2 6. 2x-3y>6
7. =3x+2y2-6 8. 3y-5x<30 9. y<-2
10. x>-3.

6.5 Solution of System of Linear Inequalities in Two Variables

In previous Section, you have learnt how to solve linear inequality in one or two variables
graphically. We will now illustrate the method for solving a system of linear inequalities
in two variables graphically through some
examples.

Example 12 Solve the following system

of linear inequalities graphically.
xX+y25 . (D)
x—-y<3 we (2)

Solution The graph of linear equation
x+y=35
is drawn in Fig 6.11.
We note that solution of inequality
(1) is represented by the shaded region
above the line x + y =5, including the

points on the line.
On the same set of axes, we draw '
the graph of the equation x — y = 3 as Y’ Fig 6.11

shown in Fig 6.11. Then we note that inequality (2) represents the shaded region above
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the line x — y = 3, including the points on the line.
Clearly, the double shaded region, common to the above two shaded regions is
the required solution region of the given system of inequalities.

Example 13 Solve the following system v
of inequalities graphically A A
Sx+4y<40 an L)
E22 .. (2)
y23 s ()

Solution We first draw the graph of
the line

Sx+4y=40, x=2andy=3
Then we note that the inequality (1)
represents shaded region below the line
Sx + 4y =40 and inequality (2) represents

k.
=

L A& U1 &N N G0 O

N

the shaded region right of line x = 2 but 2

" : 3 14
inequality (3) represents the shaded region =
above the line y = 3. Hence, shaded region 0ol 1
(Fig 6.12) including all the point on the lines
are also the solution of the given system Y

of the linear inequalities.

In many practical situations involving
system of inequalities the variable x and y
often represent quantities that cannot have
negative values, for example, number of
units produced, number of articles
purchased, number of hours worked, etc.
Clearly, in such cases, x 20, y 2 0 and the
solution region lies only in the first quadrant.

Example 14 Solve the following system
of inequalities

8x + 3y <100 o K1Y
x>0 ers (2)
y20 .. (3
Solution We draw the graph of the line
8x + 3y = 100 s °F

The inequality 8x + 3y < 100 represents the
shaded region below the line, including the
points on the line 8x +3y =100 (Fig 6.13).
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Since x 20, y 20, every point in the
shaded region in the first quadrant,
including the points on the line and
the axes, represents the solution of
the given system of inequalities.

Example 15 Solve the following
system of inequalities graphically

x+2y<8 .. (1)
2x+y<8 ws (2)
x>0 .. 3)
y>0 .. @

Solution We draw the graphs of X'€

the lines x + 2y =8 and 2x + y = 8.
The inequality (1) and (2) represent
the region below the two lines,

including the point on the respective lines.

=N W AR/ N X

Fig 6.14

Since x> 0, y 2 0, every point in the shaded region in the first quadrant represent
a solution of the given system of inequalities (Fig 6.14).

EXERCISE 6.3

Solve the following system of inequalities graphically:

by x23,922

W
.

2x+y26,3x+4y< 12
5. 2x-y>l,x-2y<-1
7. 2x+ y28, x+2y210
9. Sx+4y<20, x21,y22

10. 3x+4y <60,x+3y<30,x20, y20
11. 2x+y24, x+y<3, 2x-3y<6
12. x-2y<3,3x+4y 212, x20,y=>1

13. 4x+3y <60,y22x, x23, x,y=20

& 3x32y<12. 221,322
4. x+y24, 2x-y<0
6. x+y<6, x+y=4

8. x+y<9, y>x, x20

14. 3x+2y<150,x+4y<80, x<15, y20,x20

15. x+2y<10,x+y21,x-y<0,x20,y20



Chapter 7: Binomial Theorem

General and middle term in binomial expansion.

8.3 General and Middle Terms

1. In the binomial expansion for (a + b)", we observe that the first term is
"Coa”, the second term is ”Cla""b, the third term is ”Cza”‘zbz, and so on. Looking
at the pattern of the successive terms we can say that the (r + 1)” term is
"C a™'b’. The (r + 1)"term is also called the general term of the expansion
(a+ b)'. It is denoted by T . Thus T, ="C a"'b".

Regarding the middle term in the expansion (a + b)", we have

(")

(1) If niseven, then the number of terms in the expansion will be n + 1. Since

n+l1+1)"
nis even so n + 1 is odd. Therefore, the middle termis | —— | ,1i.e.,

2
. th
n
(E+ 1) term.

8 th
For example, in the expansion of (x + 2y)?, the middle term is (E-H ) 1.€.,

5% term.

(i) If n 1s odd, then n +1 is even, so there will be two middle terms in the

32



h
. n+lY n+l Y . .
expansion, namely, > term and e +1| term. So in the expansion

7 +1 th 7 i 1 th
(2x —y)’, the middle terms are > ,i.e.,4™ and T +1] ie., 5% term.

1

2n
3. In the expansion of (X"'—) , where x # 0, the middle term is (

2n+1+1)”’
x b

2

i.e., (n + 1) term, as 2n is even.

1 n
It is given by *'C x" (—) = >C _(constant).
X

This term is called the term independent of x or the constant term.
Example 5 Find « if the 17" and 18™ terms of the expansion (2 + a)* are equal.
Solution The (r + 1)" term of the expansion (x + y)" is given by T _ = "C x*y".
For the 17" term, we have, r+ 1 =17, 1.e., r =16
Therefore, T,=T,, = 5OC“,) (2y9-16 git

=%C, 2% a'®
Similarly, L. =527 a7
Given that T,=T,
So 'C,(2)* a*="C, (2)* a"

34
SOCI(, .2 al7

Therefore Ve = 216
, ol 50! y 17! . 33! i B
Wes @="So. T 16134 50! -

Example 6 Show that the middle term in the expansion of (1+x)*" is

L33 (20—}

n!

2n x", where n is a positive integer.
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th
n
Solution As 2n is even, the middle term of the expansion (1 + x)*' is (7+ 1) .
i.e., (n+ 1)" term which is given by,
(2n)! ,
X

n! n!

nC (1)_:1 n( )n — .nC xn —

n+|

_2n(2n-1) (2n-2) ...4.3.2.1x,,

n! n!

B 1.234..2n- 2)(2n- 1)(2n) ,
B n'n! g

[1 3.5...2n-1)][2.4.6.. (2n)]

n'n!

_ [1.35..2n-112"[1.2.3..n] "

n'n!

_ [L.3.5...2n=D)]n!

n! n!

2” xll

_L3S5.2n- 1)
- n!

2" xll

Example 7 Find the coefficient of x°y* in the expansion of (x + 2y)°.
Solution Suppose x°y? occurs in the (r + 1)" term of the expansion (x + 2y)°.
Now T, ="CxX-"Qyy=°"C2.X".y".
Comparing the indices of x as well as yinx°y* andin T, , we get r=3.
Thus, the coefficient of x®y? is

9 5 987

9 B s DO i IO
C,2 N6l 12 672.

Example 8 The second, third and fourth terms in the binomial expansion (x + a)" are
240, 720 and 1080, respectively. Find x, a and n.

Solution Given that second term T,= 240
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We have T= 2 30~ I |

So "C x1. a = 240 (D)
Similarly "sz"‘2 a* = 720 o (2)
and "Cx"? a’ = 1080 s 13)
Dividing (2) by (1), we get

"Coyx"?a’ 720 (n-D!a_.

"Clx"_]a 240 (n- 2)!. :

a _ 6
or £ (o—1) o (4)

Dividing (3) by (2), we have
a 9
2(n-2) .. (5)

= |

From (4) and (5),
6 9

i 2(1-2)° Thus,n=35

a
Hence, from (1), 5x*a = 240, and from (4),;=5

Solving these equations for a and x, we get x =2 and a = 3.

Example 9 The coefficients of three consecutive terms in the expansion of (1 + a)”
are in the ratiol: 7 : 42. Find n.

Solution Suppose the three consecutive terms in the expansion of (1 + a)" are
(r=D" Fand (r + 1) terms.

The (r— )" term is "C,_,a""?, and its coefficientis "C, _,. Similarly, the coefficients
of " and (r + 1)" terms are "C__ and "C , respectively.

Since the coefficients are in the ratio 1 : 7 : 42, so we have,

HC’._2 3 _1. .
"C_ 7,1.e.,n—8r+9—0 ww LS
”Cr_l B l .

and —"C. 4 e n— Tr+1=0 o 12)

r

Solving equations(1) and (2), we get, n = 55.
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EXERCISE 8.2

Find the coefficient of

1.

Xin (x + 3) 2. a°b" in (a - 2b)"* .

Write the general term in the expansion of

N W

=)

9,
10.

11.

12.

(x* - y)° 4. (*— y)*%, 22 0.

Find the 4™ term in the expansion of (x — 2y)'.

18
1
Find the 13" term in the expansion of | 9X——=| | x = 0.
3x

Find the middle terms in the expansions of

» 52 7 ' = 10
- =
3] e

In the expansion of (1 + a)™", prove that coefficients of @” and a" are equal.

The coefficients of the (r — 1)®, r" and (r + 1)™ terms in the expansion of (x + 1)"
areintheratiol:3:5. Findn and r.

Prove that the coefficient of x" in the expansion of (1 +x)* is twice the coefficient
of x" in the expansion of (1 + x)*"~'.

Find a positive value of m for which the coefficient of x* in the expansion
(1+x)"is 6.
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Chapter 8: Sequences and Series

Formulae for the following special sums
n n n

AINDNS

k=1 k=1 k=1

9.7 Sum to n Terms of Special Series

We shall now find the sum of first n terms of some special series, namely;
1 1+2+3+... +n(sum of first n natural numbers)
(i) 17+ 22+ 32+... + n*(sum of squares of the first n natural numbers)
@) 13+ 23+ 33+... + n’(sum of cubes of the first n» natural numbers).
Let us take them one by one.

.n(n+1)

i S=1+2+3+...+n thenS = (See Section 9.4)

(i) Here S=1+2*+3+...+n?

We consider the identity &% — (k- 1)* = 3k* — 3k + 1

Putting k=1,2...,n  successively, we obtain
P-0=31)*-31)+1
22-13=312)?*-3@2)+1
3-22=33)-303)+1
n-m-1P»=3m?>*-3(n)+1

Adding both sides, we get
n-0=312+22+3+..+n)-30+2+3+...+n)+n

n’=3 ik2—3 ik+n
k=1 k=1

3 £
By (1), we know that Zk=1+2+3+...+n:n(n )

k=1

! 1 3n(n+1
Hence S = Zk2 zg{”%'%_”} =%(2n3+3n2+n)
n o

nn+1)(2n+1)
B 6
(i) Here S =1°+2° + ..+n’

We consider the identity, (k + 1)* — k* = 4k> + 6k*> + 4k + 1
Putting k=1, 2, 3... n, we get
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22— 14 =41y +6(1)*+4(1)+ 1
3 -2¢=42) +6(2)*+4(2)+ 1
4*-3* =43 +6(3)*+43)+ 1

m=-1D*-n-2)0=4n-2+6(n-2+4n-2) + 1
n—-m-1Y=4n-1»+6(n-17%+4n-1)+ 1
m+ D*-n*=4n*+6n*+4n + 1
Adding both sides, we get
m+D*=1"=41P+ 2>+ 3 +.+nP) + 6(1°+ 2>+ 32+ ..+ nH) +

41 +2+3+..+n)+n

=4ik3+6ik2+4ik+n (D)
k=1 k=1 k=1

From parts (i) and (ii), we know that

k_n(n+1) d - k2=n(n+l)(2n+1)
Z an Z :

Putting these values in equation (1), we obtain

6n(n+1)(2n+1)_4n(n+1)_

4Y kP =n*+4n’ +6n° +4n -

6 2
or 48 =n*+4n’+6n* +4n-n (2 +3n+1)-2n(n+1)-n
=n*+ 2n* + n?
= n*(n + 1)
- = +)T
Bk S = n (n4+1) =[n (n4 )]

Example 19 Find the sum to n terms of the series: 5+ 11 + 19 + 29 + 41...

Solution Let us write
B =% 114194204 .48 ;4a

or S"= S5+11+19 +..+ a.+a  +a
On subtraction, we get
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0=5+[6+8+10+12+..(n~1) terms] —a,

or Q=54+ (n—l)[12+2(n—2)><2]

=5+n-1)(n+4)=n"+3n+1
Hence g - Y q =) (K’+3k+1)=) k*+3) k+n
k=1 k=1 k=1 1

D@+l 3nm+1) _n+2)(n+4)
- H——tn = 3 .

Example 20 Find the sum to n terms of the series whose n™ term is n (n+3).
Solution Giventhat a =n(n+3) =n’*+3n
Thus, the sum to n terms is given by

g = tak=ik2+32n:k
" k=1 k=1

k=1

_n@+D@n+l) 3n(a+D) _n(t)(n+5)
- 6 2 85

EXERCISE 9.4

Find the sum to n terms of each of the series in Exercises 1 to 7.

. Ix2+2x3+3x4+4x%x5+... 2. I x2x3+2x3x4+3x4x5+...

| | 1
2 2 2 / + + +
3. 3x1°+5x2°+T7Tx3*+... 4. 12 2%3  3x4
5. 5246+ 7%+ ...+ 20 6. 3x8+6x11+9x14+...

7. P+(1*+2H)+(1*+2*+3) + ...

Find the sum to n terms of the series in Exercises 8 to 10 whose n™ terms is given by
8. n (n+l) (n+4). 9. n*+2"
10. (2n-1)>

39



Chapter 9: Straight Lines

Normal form. General equation of a line.

10.3.6 Normal form Suppose a non-vertical line is known to us with following data:

(i) Length of the perpendicular (normal) from origin to the line.
(i) Angle which normal makes with the positive direction of x-axis.

Let L be the line, whose perpendicular distance from origin O be OA = p and the
angle between the positive x-axis and OA be ZXOA = ®. The possible positions of line
L in the Cartesian plane are shown in the Fig 10.17. Now, our purpose is to find slope
of L and a point on it. Draw perpendicular AM on the x-axis in each case.

. Y
(iii) Fig 10.17 (iv)
In each case, we have OM = p cos ® and MA = p sin ®, so that the coordinates of the
point A are (p cos @, p sin ).
Further, line L is perpendicular to OA. Therefore

| | _Cos ®

The sl fthelineL = — = = ;
= 510pe oL Mo e slope of OA tan @ sin ®

Thus, the line L has slope — el and point A (p cosm, psin (D)on it. Therefore, by

Sin @

point-slope form, the equation of the line L is
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COS®

y—psinm=— (x—pcos®) or xcos®+ ysin ®= p(sin’® + cos’®)

Sin®
or X COS @+ y sin ® = p.
Hence, the equation of the line having normal distance p from the origin and angle ®
which the normal makes with the positive direction of x-axis is given by
XCos®W+ysin®=p ... (6)

Example 11 Find the equation of the line whose perpendicular distance from the
origin is 4 units and the angle which the normal makes with positive direction of x-axis
is 13°,

Y

Solution Here, we are given p = 4 and T‘
o= 15°(Fig10.18). \

B+l

Now cos 15%=
22
-1
) o_ 5
and sin 15 2 (Why?) 4
15’

. >X
By the normal form (6) above, the equation of the Y \
lineis Fig 10.18

xcos15°+ysin15°=4or\/§+1x+ﬁ_ly=4 or (\/§+1)x+(\/§—l)y=8\/§,

22 22

This is the required equation.

Example 12 The Fahrenheit temperature F and absolute temperature K satisfy a
linear equation. Given that K = 273 when F = 32 and that K = 373 when F = 212.
Express K in terms of F and find the value of F, when K = 0.

Solution Assuming F along x-axis and K along y-axis, we have two points (32, 273)
and (212, 373) in XY -plane. By two-point form, the point (F, K) satisfies the equation

K-273=3132273 (F-32) or K—273=@(F—32)
21232 180

or K=§(F—32)+273 s L1)

which is the required relation.
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When K =0, Equation (1) gives

0=2(F-32)+273 or F-32=-22C - 4914 o P -4594,

Alternate method We know that simplest form of the equation of a line is y = mx + c.
Again assuming F along x-axis and K along y-axis, we can take equation in the form
K=mF + ¢ e AL

Equation (1) is satisfied by (32, 273) and (212, 373). Therefore
273=32m+c wee ()
and 373=212m+c o )
Solving (2) and (3), we get
5 2297

me=s —ande= —,

9 9

Putting the values of m and c in (1), we get

K:E Fa 2297 @
9 g

which is the required relation. When K =0, (4) gives F = —459.4.

=== Note| We know, that the equation y = mx + ¢, contains two constants, namely,

m and c. For finding these two constants, we need two conditions satisfied by the
equation of line. In all the examples above, we are given two conditions to determine
the equation of the line.
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10.4 General Equation of a Line

In earlier classes, we have studied general equation of first degree in two variables,
Ax + By + C =0, where A, B and C are real constants such that A and B are not zero
simultaneously. Graph of the equation Ax + By + C = 0 is always a straight line.

Therefore, any equation of the form Ax + By + C = 0, where A and B are not zero
simultaneously is called general linear equation or general equation of a line.

10.4.1 Different forms of Ax + By + C = 0 The general equation of a line can be
reduced into various forms of the equation of a line, by the following procedures:

(a) Slope-intercept form If B # 0, then Ax + By + C = 0 can be written as

——éx—g or y=mx+c (1)
Y B B Y
h m——é and c——g
where B B

We know that Equation (1) is the slope-intercept form of the equation of a line

: : . _C
whose slope is B and y-intercept is B
If B=0, then x = _X ,which is a vertical line whose slope is undefined and
C

x-intercept is ——.

A
(b) Intercept form If C # 0, then Ax + By + C = 0 can be written as

X y Xy
—+——=1 or —+==1
L = a b )
A B
h " db ‘— =
where a="andb= "4
We know that equation (2) is intercept form of the equation of a line whose
oo e C
-1nt CaS — o -1nt LIS o
x-intercept is ~~ - and y-intercept is ~ o

If C =0, then Ax + By + C = 0 can be written as Ax + By = 0, which is a line
passing through the origin and, therefore, has zero intercepts on the axes.

(¢) Normal form Letx cos ®+ y sin ® = p be the normal form of the line represented
by the equation Ax + By + C = 0 or Ax + By = — C. Thus, both the equations are

A B C

same and therefore, rEm S -
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Bp

hich gi cos ®=———and sin @ =—
which gives C C
Ap\’ ( Bp\
: p 14
N O+ 2(Dz(——) +(——) =1
ow sin cos C C
- A’+B’ VA’+B’

A ) B
and sinom =+

Therefore CoOsS® =+ —— —
VA’+B? VAZ+B?

Thus, the normal form of the equation Ax + By + C =0 is
XCOS®+ysin®=p,

where cos @ =t+————, sinw:iL and pziL.
VA +B? VA?+B? VA?+B?
Proper choice of signs is made so that p should be positive.

Example 13 Equation of a line is 3x — 4y + 10 = 0. Find its (i) slope, (i1) x - and
y-intercepts.

Solution (i) Given equation 3x — 4y + 10 = 0 can be written as

3 5
Rty . (D

3
Comparing (1) with y = mx + ¢, we have slope of the given line as m = Z :

(i) Equation 3x — 4y + 10 = 0 can be written as

— = o )
3x—4y=-10 or _E-I_é 1 (2)
3 2
. Xy , 10
Comparing (2) with _+E=1’ we have x-intercept as a = —— and
a

y-intercept as b = %
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Example 14 Reduce the equation \/5 x+y-8=0 into normal form. Find the values
of p and .

Solution Given equation is

w/§x+y—8=0 v §1)

Dividing (1) by \/(\/3)2+(1)2=2, we get

§x+%y=4 or cos30°x+sin 30° y=4 we £2)

Comparing (2) with x cos ® +y sin ® = p, we get p =4 and ® = 30°.

Examplel5 Find the angle between the lines y-— J§x —5=0and J§y —x+6=0.

Solution Given lines are

y—\/gx—5=00ry=\/§x+5 es 1)
: 1
and ﬁy—x+6:00r y=Tx_2\/§ sas 12
3
1
Slope of line (1) is m, = ﬁand slope of line (2) is m, = ﬁ
The acute angle (say) 0 between two lines is given by
tanf = u
1+ mm,

3)

Putting the values of m and m, in (3), we get

|
-

1
[+3%x—
3

tanf = =| -3 1

3| B

which gives 6 = 30°. Hence, angle between two lines is either 30°or 180° — 30° = 150°.

Example 16 Show that two linesax + b y+c¢, =0and ax + b,y + ¢, =0,
where b ,b, # 0 are:

1272
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(i) Parallel if £ =22 and (ii) Perpendicular if a1a>- bib> =0.
by b

Solution Given lines can be written as

gy 6 :
b b - (D)
d y=—"x-=2 2
an by b, o L)
Slopes of the lines (1) and (2) are m = — 4 and m,= —&, respectively. Now
b - b,

(i) Lines are parallel, if m = m,, which gives

a as ay _ az
——=——0r —=—

by b b by
(i) Lines are perpendicular, if m .m,=— 1, which gives
a4 4 _

E'g—_l oraa, + blb2 =)

Example 17 Find the equation of a line perpendicular to the line x- 2y- 3=0 and
passing through the point (1, —2).

Solution Given line x- 2y - 3 = 0 can be written as

- x+ = 1
y 5 5 (1)
Slope of the line (1) is m, = 5 . Therefore, slope of the line perpendicular to line (1) is
|
m, =——= _2
m

Equation of the line with slope — 2 and passing through the point (1, —2) is
y—(—2)=—2(x—1) or y=—2x,

which is the required equation.
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Chapter 11: Introduction to Three-dimensional Geometry
Section Formula

12.5 Section Formula
In two dimensional geometry, we have learnt how to find the coordinates of a point
dividing a line segment in a given ratio internally. Now, we extend this to three dimensional
geometry as follows:

Let the two given points be P(x, y,, z,) and Q (x,, y,, z,). Let the point R (x, y, z
divide PQ in the given ratio m : n internally. Draw PL, QM and RN perpendicular to

the XY-plane. Obviously PL || RN Il QM and feet
of these perpendiculars lie in a XY-plane. The
points L, M and N will lie on a line which is the
intersection of the plane containing PL, RN and
QM with the XY-plane. Through the point R draw
a line ST parallel to the line LM. Line ST will
intersect the line LP externally at the point S and
the line MQ at T, as shown in Fig 12.5. o >Y
Also note that quadrilaterals LNRS and
NMTR are parallelograms. )
The triangles PSR and QTR are similar. Therefore, X /N M
m PR SP SL-PL. NR-PL =z-z LFig12.5

Z
A Q

R T

n QR QT QM-TM QM-NR 1z, -z

mz, +nz,

.« . . Z =
This implies —

Similarly, by drawing perpendiculars to the XZ and YZ-planes, we get

_ my, +ny, and w= mx, + nx,

m+n m+n

Hence, the coordinates of the point R which divides the line segment joining two points
P (x,, y,»z,) and Q (x,, y,, z,) internally in the ratio m : n are

mx2 +nx1 my2 +7’lyl mZ2 +nZ1
m+n = m+n = m+n

If the point R divides PQ externally in the ratio m : n, then its coordinates are
obtained by replacing n by — n so that coordinates of point R will be

mx, —nx; my, —ny, mz, —ng
2 2
m—n — m-—n

Case 1 Coordinates of the mid-point: In case R is the mid-point of PQ, then

X + X Wty & + 2

cn=1%1 that X = s = and z = =L =2
m:n so tha > y = 5
These are the coordinates of the mid point of the segment joining P (x, y,, z,)

and Q (‘x2’ yz’ Zz)'
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Case 2 The coordinates of the point R which divides PQ in the ratio k : 1 are obtained

m
by taking k = - which are as given below:

kx,+x; ky,+y, kz,+z
l+k ~ 1+k  1+k

Generally, this result is used in solving problems involving a general point on the line
passing through two given points.

Example 7 Find the coordinates of the point which divides the line segment joining
the points (1, -2, 3) and (3, 4, -5) in the ratio 2 : 3 (i) internally, and (ii) externally.

Solution (1) Let P (x, y, z) be the point which divides line segment joining A(1, -2, 3)
and B (3, 4, -5) internally in the ratio 2 : 3. Therefore

'x=ﬂ$+an_g' 24+3() 2 2(5)+303) -1

b , €
2+3 5 245 5 2+3 5
o 931
Thus, the required pointis 5375

(i1) Let P (x, y, z) be the point which divides segment joining A (1, -2, 3) and
B (3,4, -5) externally in the ratio 2 : 3. Then

20+ _
2+(=3)

L2HEEND 29 +ERG)

2+ (=3) ’ 2+ (=3)

19

2

Therefore, the required point is (-3, —14, 19).

Example 8 Using section formula, prove that the three points (- 4, 6, 10), (2, 4, 6)
and (14, 0, -2) are collinear.

Solution LetA (—4,6,10),B (2,4, 6) and C(14, 0, — 2) be the given points. Let the
point P divides AB in the ratio k£ : 1. Then coordinates of the point P are

(2k—4 4k + 6 6k+10)
F+1 ° B4+1° E+1

Let us examine whether for some value of k&, the point P coincides with point C.
2k —4 '
k+1

On putting =14 we get k= _2
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3
4(-2)+6
When k:—i,then 4k+6= 32 =0
2 k+1 _3.11
2
6 _ +10
6k+10 °(=3)
and il 3 =2
—5+1

Therefore, C (14, 0,-2) is a point which divides AB externally in the ratio 3 : 2 and is
same as P.Hence A, B, C are collinear.

Example 9 Find the coordinates of the centroid of the triangle whose vertices are
(s Vi 205 (X Vs 2) and (x5, ¥, 25)-

Solution Let ABC be the triangle. Let the coordinates of the vertices A, B,C be
(X, ¥ 2)s (X,, ¥,, 2,) and (x,, y,, z,), respectively. Let D be the mid-point of BC.
Hence coordinates of D are

(x2+x3 Yotys 2, +Z3)

2 9

2 2 2

Let G be the centroid of the triangle. Therefore, it divides the median AD intheratio2: 1.
Hence, the coordinates of G are

(
2(—"2 ’;x3)+x, 2(—” ;y-‘)+ v 2(12223)“,

841 ’ Sl ' P8 |

il 3 3 3

(x1+x2+x3 Nty+y; ZI+Z2+Z3)

Example 10 Find the ratio in which the line segment joining the points (4, 8, 10) and
(6, 10, — 8) is divided by the YZ-plane.

Solution Let YZ-plane divides the line segment joining A (4, 8, 10) and B (6, 10, —8)
at P (x, y, z) in the ratio k : 1. Then the coordinates of P are

4+6k 8+10k 10—8k
k+1° E+1 W B+l
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4+6k=O
k+1

Since P lies on the YZ-plane, its x-coordinate is zero, i.e.,

k==-=2
or 3

Therefore, YZ-plane divides AB externally in the ratio 2 : 3.
EXERCISE 12.3

1. Find the coordinates of the point which divides the line segment joining the points
(-2,3,5)and (1,—4, 6) in the ratio (i) 2 : 3 internally, (i1) 2 : 3 externally.

2. GiventhatP(3,2,-4),Q(5,4,-6)and R (9, 8, —10) are collinear. Find the ratio
in which Q divides PR.

3.  Find the ratio in which the YZ-plane divides the line segment formed by joining
the points (-2, 4, 7) and (3, -5, 8).

4. Using section formula, show that the points A (2, -3, 4), B (-1, 2, 1) and

1
C(O,SJJ are collinear.

Find the coordinates of the points which trisect the line segment joining the points
P (4,2,-6)and Q (10, -16, 6).

W
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Chapter 14: Probability

Random experiments; outcomes, sample space (set representation).
16.2 Random Experiments

In our day to day life, we perform many activities which have a fixed result no matter
any number of times they are repeated. For example given any triangle, without knowing
the three angles, we can definitely say that the sum of measure of angles is 180°.

We also perform many experimental activities, where the result may not be same,
when they are repeated under identical conditions. For example, when a coin is tossed
it may turn up a head or a tail, but we are not sure which one of these results will
actually be obtained. Such experiments are called random experiments.

An experiment is called random experiment if it satisfies the following two
conditions:

(i) It has more than one possible outcome.
(i) Itis not possible to predict the outcome in advance.

Check whether the experiment of tossing a die is random or not?
In this chapter, we shall refer the random experiment by experiment only unless
stated otherwise.

16.2.1 Qutcomes and sample space A possible result of a random experiment is
called its outcome.

Consider the experiment of rolling a die. The outcomes of this experiment are 1,
2,3,4,5, or 6, if we are interested in the number of dots on the upper face of the die.

The set of outcomes {1, 2, 3, 4, 5, 6} is called the sample space of the experiment.

Thus, the set of all possible outcomes of a random experiment is called the sample
space associated with the experiment. Sample space is denoted by the symbol S.

Each element of the sample space is called a sample point. In other words, each
outcome of the random experiment is also called sample point.

Let us now consider some examples.

Example 1 Two coins (a one rupee coin and a two rupee coin) are tossed once. Find
a sample space.

Solution Clearly the coins are distinguishable in the sense that we can speak of the
first coin and the second coin. Since either coin can turn up Head (H) or Tail(T), the
possible outcomes may be
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Heads on both coins = (H,H) = HH

Head on first coin and Tail on the other = (H,T) = HT
Tail on first coin and Head on the other = (T,H) = TH
Tail on both coins = (T,T) =TT

Thus, the sample space is S = {HH, HT, TH, TT}

The outcomes of this experiment are ordered pairs of H and T. For the
sake of simplicity the commas are omitted from the ordered pairs.

Example 2 Find the sample space associated with the experiment of rolling a pair of
dice (one is blue and the other red) once. Also, find the number of elements of this
sample space.

Solution Suppose 1 appears on blue die and 2 on the red die. We denote this outcome
by an ordered pair (1,2). Similarly, if ‘3 appears on blue die and ‘5’ on red, the outcome
is denoted by the ordered pair (3,5).

In general each outcome can be denoted by the ordered pair (x, y), where x is
the number appeared on the blue die and y is the number appeared on the red die.
Therefore, this sample space is given by

S = {(x, y): x is the number on the blue die and y is the number on the red die}.
The number of elements of this sample space is 6 x 6 = 36 and the sample space is
given below:

{(1,1),(1,2),(1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(3,1),(3,2),(3,3),(3,4),(3,5), (3,6), (4,1), (4,2),(4,3),(4,4),(4,5), (4,6)
(5,1),(5,2),(5,3), (5:4), (5.5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) }

Example 3 In each of the following experiments specify appropriate sample space

(1) Aboy hasa 1 rupee coin, a 2 rupee coin and a 5 rupee coin in his pocket. He
takes out two coins out of his pocket, one after the other.

(i) A person is noting down the number of accidents along a busy highway
during a year.

Solution (i) Let Q denote a 1 rupee coin, H denotes a 2 rupee coin and R denotes a 5
rupee coin. The first coin he takes out of his pocket may be any one of the three coins
Q, H or R. Corresponding to Q, the second draw may be H or R. So the result of two
draws may be QH or QR. Similarly, corresponding to H, the second draw may be
QorR.

Therefore, the outcomes may be HQ or HR. Lastly, corresponding to R, the second
draw may be H or Q.

So, the outcomes may be RH or RQ.
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Thus, the sample space is S={QH, QR, HQ, HR, RH, RQ}
(i) The number of accidents along a busy highway during the year of observation
can be either 0 (for no accident ) or 1 or 2, or some other positive integer.
Thus, a sample space associated with this experiment is S= {0,1,2....}

Example 4 Acoin is tossed. If it shows head, we draw a ball from a bag consisting of
3 blue and 4 white balls; if it shows tail we throw a die. Describe the sample space of
this experiment.

Solution Let us denote blue balls by B , B, B ,and the white ballsby W , W, W W,
Then a sample space of the experiment is

s ={ HB,HB,, HB, HW , HW , HW  HW Tl T2, T3, T4, 1), T6}.
Here HB, means head on the coin and ball B. is drawn, HW means head on the coin
and ball W. is drawn. Similarly, Ti means tail on the coin and the number i on the die.

Example 5 Consider the experiment in which a coin is tossed repeatedly until a head
comes up. Describe the sample space.

Solution In the experiment head may come up on the first toss, or the 2nd toss, or the
3rd toss and so on till head is obtained. Hence, the desired sample space is

S={H, TH, TTH, TTTH, TTTTH,...}

EXERCISE 16.1

In each of the following Exercises 1 to 7, describe the sample space for the indicated
experiment.
1. A coin is tossed three times.

A die is thrown two times.

A coin is tossed four times.

A coin is tossed and a die is thrown.

A coin is tossed and then a die is rolled only in case a head is shown on the coin.

2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the

sample space for the experiment in which a room is selected and then a person.

7. One die of red colour, one of white colour and one of blue colour are placed in a
bag. One die is selected at random and rolled, its colour and the number on its
uppermost face is noted. Describe the sample space.

8. An experiment consists of recording boy—girl composition of families with 2
children.
(1) What is the sample space if we are interested in knowing whether it is a boy

or girl in the order of their births?

AN O B W
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10.

11.

12.

13.

14.

16.

(i) What is the sample space if we are interested in the number of girls in the
family?

A box contains 1 red and 3 identical white balls. Two balls are drawn at random

in succession without replacement. Write the sample space for this experiment.

An experiment consists of tossing a coin and then throwing it second time if a

head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the

sample space.

Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and

classified as defective (D) or non — defective(N). Write the sample space of this

experiment.

A coin is tossed. If the out come is a head, a die is thrown. If the die shows up

an even number, the die is thrown again. What is the sample space for the

experiment?

The numbers 1, 2, 3 and 4 are written separatly on four slips of paper. The slips

are put in a box and mixed thoroughly. A person draws two slips from the box,

one after the other, without replacement. Describe the sample space for the

experiment.

An experiment consists of rolling a die and then tossing a coin once if the number

on the die 1s even. If the number on the die 1s odd, the coin 1s tossed twice. Write

the sample space for this experiment.

A coinis tossed. If it shows a tail, we draw a ball from a box which contains 2 red

and 3 black balls. If it shows head, we throw a die. Find the sample space for this

experiment.

A die is thrown repeatedly untill a six comes up. What is the sample space for

this experiment?
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Extra Reading Material for Chapter 2: Relations and Functions
Composition of Functions

1.3 Types of Functions

The notion of a function along with some special functions like identity function, constant
function, polynomial function, rational function, modulus function, signum function etc.
along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been
studied. As the concept of function is of paramount importance in mathematics and
among other disciplines as well, we would like to extend our study about function from
where we finished earlier. In this section, we would like to study different types of
functions.

Consider the functions f,, f,, f; and f, given by the following diagrams.

InFig 1.2, we observe that the images of distinct elements of X under the function
f, are distinct, but the image of two distinct elements 1 and 2 of X, under f, is same,
namely b. Further, there are some elements like e and f in X, which are not images of
any element of X under f,, while all elements of X, are images of some elements of X,
under f,. The above observations lead to the following definitions:

Definition 5 A function f: X — Y is defined to be one-one (or injective), if the images
of distinct elements of X under f are distinct, i.e., for every x, x, € X, f(x) = f(x))
implies x, = x,. Otherwise, fis called many-one.

The function f, and f,in Fig 1.2 (i) and (iv) are one-one and the function f, and f,
in Fig 1.2 (i1) and (i11) are many-one.
Definition 6 A function f: X — Y is said to be onto (or surjective), if every element
of Y is the image of some element of X under f, i.e., for every y € Y, there exists an
element x in X such that f(x) = y.

The function f; and f,in Fig 1.2 (iii), (iv) are onto and the function f, in Fig 1.2 (i) is
not onto as elements e, fin X are not the image of any element in X, under f,.
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1 >
2 >
4
X,

@)

Js fi
1 > a 1 a
3 / ’ \ 3 c
4 > B 4 > d
X (iii) X, Xy (iv) X,

Fig 1.2 (i) to (iv)

Remark f:X — Y is onto if and only if Range of f=Y.
Definition 7 A function f: X — Y is said to be one-one and onto (or bijective), if fis
both one-one and onto.

The function f, in Fig 1.2 (iv) is one-one and onto.

Example 7 Let A be the set of all 50 students of Class X in a school. Let f: A — Nbe
function defined by f(x) = roll number of the student x. Show that f is one-one
but not onto.

Solution No two different students of the class can have same roll number. Therefore,
f must be one-one. We can assume without any loss of generality that roll numbers of
students are from 1 to 50. This implies that 51 in Nis not roll number of any student of
the class, so that 51 can not be image of any element of X under f. Hence, fis not onto.

Example 8 Show that the function f: N— N, given by f(x) = 2x, is one-one but not
onto.

Solution The function fis one-one, for f(x ) = f(x,) = 2x, = 2x, = x, = x,. Further,
f1is not onto, as for 1 € N, there does not exist any x in Nsuch that f(x) = 2x = L.
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Example 9 Prove that the function f: R — R, given by f(x) = 2x, is one-one and onto.

Solution fis one-one, as f(x)) = f(x,) = 2x, = 2x, = x, = x,. Also, given any real

number y in R, there exists % in R such thatf(%) — 3 (%) =y. Hence, fis onto.
Y
A
y=f(x)=2x
X Y O :X
A 4
Y'
Fig 1.3

Example 10 Show that the function f: N— N, given by f(1) =f(2)=1 and f(x) =x— 1,

for every x > 2, is onto but not one-one.

Solution f1is not one-one, as (1) =f(2) = 1. But fis onto, as givenany ye N,y # 1,
we can choose x as y + 1 such that f(y + 1) =y + 1 -1 =y. Also for 1 € N, we

have f(1) = 1.

Example 11 Show that the functionf: R - R,
defined as f(x) = x?, is neither one-one nor onto.

Solution Since f(- 1) =1 = f(1), f is not one-
one. Also, the element — 2 in the co-domain R is
not image of any element x in the domain R
(Why?). Therefore f is not onto.

Example 12 Show that f: N — N, given by

x+1,1f x1s odd,

fx)=

x—1if xiseven

1s both one-one and onto.
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Solution Suppose f(x,) =f(x,). Note that if x, is odd and x, is even, then we will have
x +1=x,-1,ie,x,—x =2 whichis 1mp0551ble Slmllarly, the possibility of x, being
even and x, being odd can also be ruled out, using the similar argument. Therefore
both x, and x, must be either odd or even. Suppose both x and x, are odd. Then
fx)= f(xz) = x, +1=x,+ 1= x, =x,. Similarly, if both x, and x, are even, then also
fx)=f(x)=x -1=x,-1= x =x, Thus, fis one-one. Also, any odd number
2r + 1 in the co-domain N is the image of 2r + 2 in the domain N and any even number
2r in the co-domain N is the image of 2r — 1 in the domain N. Thus, f'is onto.

Example 13 Show that an onto function f: {1, 2,3} — {1, 2, 3} is always one-one.

Solution Suppose fis not one-one. Then there exists two elements, say 1 and 2 in the
domain whose image in the co-domain is same. Also, the image of 3 under f can be
only one element. Therefore, the range set can have at the most two elements of the
co-domain {1, 2, 3}, showing that f is not onto, a contradiction. Hence, f must be one-one.

Example 14 Show that a one-one function f: {1, 2, 3} — {1, 2, 3} must be onto.

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different
elements of the co-domain {1, 2, 3} under f. Hence, fhas to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary
finite set X, i.e., a one-one function f: X — X is necessarily onto and an onto map
f: X — Xis necessarily one-one, for every finite set X. In contrast to this, Examples 8
and 10 show that for an infinite set, this may not be true. In fact, this is a characteristic
difference between a finite and an infinite set.

EXERCISE 1.2

1
1. Show that the function f: R, = R, defined by f(x) = ” is one-one and onto,

where R is the set of all non-zero real numbers. Is the result true, if the domain
R, is replaced by N with co-domain being same as R_?

2. Check the injectivity and surjectivity of the following functions:
(i) f: N — N given by f(x) = x*
(i) f:Z — Z given by f(x) = x*
(i) f: R — R given by f(x) = x>
(iv) f: N — N given by f(x) = x°
(v) f:Z — Z given by f(x) = x°
3. Prove that the Greatest Integer Function f: R — R, given by f(x) = [x], is neither
one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
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10.

11.

Show that the Modulus Function f: R — R, given by f(x) = | x], is neither one-
one nor onto, where | x | is x, if x is positive or 0 and | x| is — x, if x is negative.

Show that the Signum Function f: R — R, given by

Lif x>0
fx)y=<0,1f x=0
Lif x<0

is neither one-one nor onto.

LetA={1,2,3},B={4,5,6,7}andletf={(1,4), (2,5), (3,6)} be a function
from A to B. Show that f'is one-one.

In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

(i) f: R — R defined by f(x) = 3 — 4x
(ii) f: R — R defined by f(x) = 1 + x

Let A and B be sets. Show that f: A x B — B x A such that f(a, b) = (b, a) is
bijective function.

n+1

,if nis odd

2
Letf: N — N be defined by f(n) = " for all n € N.
5 ,1f nis even

State whether the function fis bijective. Justify your answer.
Let A=R - {3} and B =R - {1}. Consider the function f: A — B defined by

JFx)y= (;) . Is fone-one and onto? Justify your answer.

Let f: R — R be defined as f{x) = x*. Choose the correct answer.

(A) fis one-one onto (B) fis many-one onto

(C) fis one-one but not onto (D) f1is neither one-one nor onto.
Let f: R — R be defined as f(x) = 3x. Choose the correct answer.

(A) fis one-one onto (B) fis many-one onto

(C) fis one-one but not onto (D) fis neither one-one nor onto.
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1.4 Composition of Functions and Invertible Function

In this section, we will study composition of functions and the inverse of a bijective
function. Consider the set A of all students, who appeared in Class X of a Board
Examination in 2006. Each student appearing in the Board Examination is assigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arranges to deface the
roll numbers of students in the answer scripts and assigns a fake code number to each
roll number. Let B < N be the set of all roll numbers and C < N be the set of all code
numbers. This gives rise to two functions f: A— B and g : B — C given by f(a) = the
roll number assigned to the student @ and g (b) = the code number assigned to the roll
number b. In this process each student is assigned a roll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student is eventually attached a code number.

This leads to the following definition:

Definition 8 Let f: A— B and g : B — C be two functions. Then the composition of
fand g, denoted by gof, is defined as the function gof: A — C given by

gof (x) = g(f(x)), v x € A.

Fig 1.5

Example 15 Let f: {2,3,4,5} > {3,4,5,9}and g: {3,4, 5,9} — {7, 11, 15} be
functions defined as f(2) =3, f3) =4, f(4)= f(5)=5and g(3) =g(4) =7 and
g(5)= g(@) =11. Find gof.

Solution We have gof(2) = g(f(2)) = g(3) =7, gof(3) = g(f(3)) = g(4) =7,
gof(4) = g(f(4)) =g (5) =11 and gof (5) = g(5) = 11.

Example 16 Find gof and fog, if f: R — R and g : R — R are given by f(x) = cos x
and g (x) = 3x°. Show that gof # fog.

Solution We have gof(x) = g(f(x)) = g(cos x) = 3 (cos x)* = 3 cos® x. Similarly,
fog(x) = f(g(x)) = f(3x?) = cos (3x?). Note that 3cos? x # cos 3x2, for x = 0. Hence,
gof # fog.
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_ 7 3] . ; 3x+4
Example 17 Show that if f:R-— s —-R- r is defined by f(x)= Sr_7 and
3 7 . | Tx+4
g:R- r —-R- 2 is defined by g(x) = St_3 , then fog =1, and gof =1, where,

3
functions on sets A and B, respectively.

. ’ ,
A=R- {g},B=R— {—} L) =x, vxe A, I,(x)=x, Vxe€ B are called identity

Solution We have

(Gx+4))
3x+4 5x-7) 21x+28+20x-28 41x
gof (x)=g = - =——=X
S5x-17 5 Bx+4) _3 15x+20-15x+21 41
(5x—7)
Tx+4 3(275“:))}4 21x+12+20x—-12 _ 41
el . _ X+ _ X— _ X X _ x:
ey fog(x)_f(s,v—3)_5 (Tx+4))_,  35x+20-35x+20 41
(5x-3)

Thus, gof(x) = x, v x € B and fog(x) = x, vx € A, which implies that gof = I,
and fog =1,.

Example 18 Show that if f: A — B and g : B — C are one-one, then gof: A — C s
also one-one.

Solution Suppose gof (x,) = gof (x,)

= g (f(x)) =g(f(x)))
= fx) =f(x,), as g is one-one
= X, =X, as fis one-one

Hence, gof is one-one.

Example 19 Show that if f: A — B and g : B — C are onto, then gof : A - C is
also onto.

Solution Given an arbitrary element z € C, there exists a pre-image y of z under g
such that g (y) = z, since g is onto. Further, for y € B, there exists an element x in A
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with f(x) =y, since fis onto. Therefore, gof (x) = g (f(x)) = g (y) = z, showing that gof
is onto.

Example 20 Consider functions f'and g such that composite gofis defined and is one-
one. Are fand g both necessarily one-one.

Solution Consider f: {1, 2, 3,4} — {1, 2, 3, 4, 5, 6} defined as f(x) = x, v x and
g:{1,2,3,4,5,6} = {1,2,3,4,5,6}asg(x)=x,forx=1,2,3,4and g(5) =g (6) =5.
Then, gof(x) = x v x, which shows that gof is one-one. But g is clearly not one-one.

Example 21 Are f and g both necessarily onto, if gof'is onto?

Solution Consider f: {1,2,3,4} —» {1,2,3,4}and g: {1,2,3,4} — {1, 2, 3} defined
asf(1)=1,f(2)=2, fB)=f(4=3,g(1)=1,g(2)=2and g(3)=g(4)=3. Itcanbe
seen that gofis onto but fis not onto.

Remark 1t can be verified in general that gof is one-one implies that f is one-one.
Similarly, gofis onto implies that g is onto.

Now, we would like to have close look at the functions f and g described in the
beginning of this section in reference to a Board Examination. Each student appearing
in Class X Examination of the Board is assigned a roll number under the function fand
each roll number is assigned a code number under g. After the answer scripts are
examined, examiner enters the mark against each code number in a mark book and
submits to the office of the Board. The Board officials decode by assigning roll number
back to each code number through a process reverse to g and thus mark gets attached
to roll number rather than code number. Further, the process reverse to f assigns a roll
number to the student having that roll number. This helps in assigning mark to the
student scoring that mark. We observe that while composing f and g, to get gof, first f
and then g was applied, while in the reverse process of the composite gof, first the
reverse process of g is applied and then the reverse process of f.

Example 22 Let f: {1, 2, 3} — {a, b, c} be one-one and onto function given by
f(1)=a,f(2)=band f(3) = c. Show that there exists a function g : {a, b, c} — {1, 2, 3}
such that gof =1, and fog = I, where, X = {1,2,3}and Y = {a, b, c}.

Solution Consider g : {a,b,c} > {1,2,3}asg(a)=1,g(b)=2and g(c)=3.Itis
easy to verify that the composite gof = is the identity function on X and the composite
fog =1 is the identity function on Y.

Remark The interesting fact is that the result mentioned in the above example is true
for an arbitrary one-one and onto function f: X — Y. Not only this, even the converse
is also true , i.e., if f: X — Y is a function such that there exists a functiong: Y — X
such that gof = I, and fog = I, then f must be one-one and onto.

The above discussion, Example 22 and Remark lead to the following definition:
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Definition 9 A function f: X — Y is defined to be invertible, if there exists a function
g:Y — Xsuch that gof=1, and fog =I,. The function g is called the inverse of f and
is denoted by /.

Thus, if f is invertible, then f must be one-one and onto and conversely, if f is
one-one and onto, then f must be invertible. This fact significantly helps for proving a
function f to be invertible by showing that fis one-one and onto, specially when the
actual inverse of fis not to be determined.

Example 23 Let f: N — Y be a function defined as f(x) = 4x + 3, where,
Y ={ye N:y=4x+ 3 for some x € N }. Show that fis invertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4x + 3,
(y-3)

for some x in the domain N. This shows that x= . Define g : Y - N by

gly=L ;3) . Now, gof(x) = g (f(x)) = g (4x + 3) =

ean
L )

1 = a +3 =y~-3+ 3 =y. This shows that gof =1

and fog = 1, which implies that fis invertible and g is the inverse of f.

Example 24 Let Y ={n?>: ne€ N} c N. Consider f: N — Y as f(n) = n>. Show that
fis invertible. Find the inverse of f.

~3)) 4(y-3
fog(y)=f(g(>ﬂ))=f[(y )) w—3)

Solution An arbitrary element y in Y is of the form »?, for some n € N. This

implies that n = \/; This gives a function g : Y — N, defined by g(y) = /y . Now,

2
gof(n) = g(n?) = ‘/nz = n and fog(y) :f(\/;)=(\/;) =y, which shows that
gof =1 and fog = L. Hence, fis invertible with f ' = g.

Example 25 Let f': N — R be a function defined as f'(x) =4x*> + 12x + 15. Show that
f:N— S, where, S is the range of f, is invertible. Find the inverse of f.

Solution Let y be an arbitrary element of range f. Then y = 4x> + 12x + 15, for some

(¥y=6)-3)

x in N, which implies that y = (2x + 3)> + 6. This gives x = 5

,asy=26.
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‘. (y=6)-3)
Letus define g: S —->Nbyg(y) = )

2
Now gof(x) =g(f(x)) = g(@4x*+ 12x + 15) = g((2x + 3)* + 6)
_ ((\/(ZX+3)2+6—6)—3)_(2x+3—3)_
2 2 7
2
and fog (y) = f((( ')’_26)_3)J={2(( y;6)_3)+3J +6

2 2
Henge, gof =1 and fog =I. This implies that f'is invertible with f ' = g.

Example 26 Consider f: N > N, g : N —> N and /4 : N — R defined as f(x) = 2x,
g() =3y+4and h(z) =sin z, \yx, yand z in N. Show that ho(gof) = (hog) of.

Solution We have

ho(gof) (x) = h(gof (x)) = h(g(f(x))) = h(g(2x))
=h(3(2x) + 4) = h(6x + 4) = sin (6x + 4) VxeN.
Also,  ((hog)of) (x) = (hog) (f(x)) = (hog) (2x) = h(g(2x))
=h(3(12x) +4) = h(6bx + 4) =sin (bx + 4), wvx € N.
This shows that ho(gof) = (hog)of.
This result is true in general situation as well.
Theorem 1 Iff: X > Y,g:Y—>Zand h:Z — S are functions, then

ho(gof) = (hog)of.

Proof We have

ho(gof) (x) = h(gof (x)) = h(g(f(x))), vxin X
and (hog) of (x) = hog(f (x)) = h(g(f(x))), vx in X.
Hence, ho(gof) = (hog)of.

Example 27 Consider f: {1, 2,3} = {a, b,c} and g : {a, b, c} — {apple, ball, cat}
defined as f(1) = a, f(2) = b, f(3) = ¢, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f -!, ¢! and (gof)! and show that
(gof) ' = flog™.
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Solution Note that by definition, f and g are bijective functions. Let
f ™ a, b, c} = (1, 2, 3} and g': {apple, ball, cat} — {a, b, ¢} be defined as
fMa}=1,fYb} =2, f'{c} =3, g '{apple} =a, g'{ball} =b and g'{cat} =c:
It is easy to verify thatf'of =1, . fof"' =1 , ,g'og=1 , and gog' =1,
where, D = {apple, ball, cat}. Now, gof: {1, 2, 3} — {apple, ball, cat} is given by
gof (1) = apple, gof(2) = ball, gof(3) = cat. We can define
(gof)™ : {apple, ball, cat} — {1, 2, 3} by (gof)™ (apple) = 1, (gof)™" (ball) =2 and
(gof)™ (cat) = 3. It is easy to see that (gof)" o (gof) = I,,,and
(gof) o (gof)™" = 1. Thus, we have seen that f, g and gof are invertible.
Now,  f~'og™ (apple)=f ~(g"'(apple)) = f ~(a) = 1 = (gof)" (apple)
flog ™! (ball) = f~'(g"'(ball)) = f (D) = 2 = (gof)™ (ball) and
fog™ (cat) = f'(g ' (cat)) = f "(c) = 3 = (gof)™" (cat).
Hence (gof)* =F log.
The above result is true in general situation also.
Theorem 2 Letf: X —> Y and g : Y — Z be two invertible functions. Then gof is also
invertible with (gof)™" = fog™.
Proof To show that gof'is invertible with (gof)™' = f'og™', it is enough to show that
(f'og )o(go) = I, and (gofo(f'og ") = L.
Now, (flog™o(gof) = ((f 'og™") og) of, by Theorem 1
= (f'o(g'og)) of, by Theorem 1
= (f"'ol,) of, by definition of g"'
=1.
X

Similarly, it can be shown that (gof )o(f " 0og ') = L.

Example 28 Let S = {1, 2, 3}. Determine whether the functions f: S — S defined as
below have inverses. Find /', if it exists.

(@ f={1,1),2,2),G,3)}
(b) f={01,2),2,1),G, 1}

() f=11,3),3,2),2, D}

Solution

(a) Itiseasy to see that f is one-one and onto, so that f is invertible with the inverse
ot Faven by = {1, 1)@, 2, 3. 3)} =1,

(b) Since f(2) =f(3) = 1, f is not one-one, so that f is not invertible.

(c) Itiseasy to see that f 1is one-one and onto, so that f is invertible with

f7={G,1,2,3),1,2)}.
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EXERCISE 1.3
Letf:{1,3,4} > {1,2,5}andg: {1,2,5} — {1, 3} be given by
f=1{1,2),(3,5),@, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
Let f, g and & be functions from R to R. Show that

(f + g)oh = foh + goh

(f . g oh = (foh) . (goh)

Find gof and fog, if
1D fx)=lxland glx)=15x-21

| —

(i) £(x) = 8 and g(x) = X3.

(4x+3)
(6x—4)

inverse of f?

2
It fix)= \ xig, show that fof(x) = x, for all x;t—i-. What is the

State with reason whether following functions have inverse
@ f:{1,2,3,4} — {10} with
f=1{Q,10), (2, 10), (3, 10), (4, 10)}
(i) g:1{5,6,7,8} = {1, 2, 3,4} with
g=1{(5,4),(6,3),(7,4), (8, 2)}
Gii) h:{2,3,4,5} = {7,9,11, 13} with
h={(@2,7), (3,9),(4,11), (5, 13)}

x
Show that f: [-1, 1] = R, given by f(x) = 12 1s one-one. Find the inverse
of the function f: [-1, 1] — Range f.

Hint: Fory € R = f in [—1, 1], i _2
(Hint: For y € Range f, y=f(x) = L4 forsomexin -1, 1],1.e.,x= a-) )

Consider f: R — R given by f(x) = 4x + 3. Show that f'is invertible. Find the
inverse of f.

Consider f: R, — [4, =) given by f(x) = x* + 4. Show that fis invertible with the
inverse f~'of f given by f~'(y) = \/y—4, where R_is the set of all non-negative

real numbers.
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10.

11.

14.

Consider f: R, — [- 5, o) given by f(x) = 9x* + 6x — 5. Show that fis invertible

(rve))

with f~!(y) = ( 3

Let f: X — Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g, and g, are two inverses of f. Then for all y € Y,
fog,(y) = 1,(y) = fog,(y). Use one-one ness of f).
Consider f: {1,2,3} = {a, b, ¢} given by f(1) =a, f(2) = b and f(3) = c. Find
f~! and show that (f ') = f.
Let f: X — Y be an invertible function. Show that the inverse of f! is f, i.e.,
' =
1

If f: R — R be given by f(x) = (3—x)?, then fof (x) is

(A) 3 (B) x’ ©) x D) (3 - 2).

X1

4

Letf: R - {—;} — R be a function defined as f(x) = . The inverse of

3x+

[ 4
fis the map g : Range f > R — {—5} given by

'] 3y ' 4y
(A) g(y)——3_4y (B) g(y)——4_3y
_ 4y SOy

© sM=37 @) 8=7737
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Extra Reading Material for Chapter 12: Limits and Derivatives
Derivatives of composite functions (Chain rule).

5.3.1 Derivatives of composite functions
To study derivative of composite functions, we start with an illustrative example. Say,
we want to find the derivative of f, where

fx) =(2x + 1)’

One way is to expand (2x + 1)? using binomial theorem and find the derivative as
a polynomial function as illustrated below.

d d 3
—fm = — [2x+1)°]

=i 8x? +12x% +6x+1)

i
=24x> +24x + 6
=6 2x + 1)?
Now, observe that fx)=((hog) (x)
where g(x) =2x + 1 and A(x) = x*. Put ¢t = g(x) = 2x + 1. Then f(x) = h(r) = . Thus
df , dh dt
ol 6(2x+1)P?=32x+1)?.2=3#.2= o dr

The advantage with such observation is that it simplifies the calculation in finding
the derivative of, say, (2x + 1)!®. We may formalise this observation in the following
theorem called the chain rule.

Theorem 4 (Chain Rule) Let f'be a real valued function which is a composite of two

dt dv
functions u and v; i.e., f=v o u. Suppose 7 = u (x) and if both E and E exist, we have

o, s
dx di dx

We skip the proof of this theorem. Chain rule may be extended as follows. Suppose
fis areal valued function which is a composite of three functions u, v and w; i.e.,

f=wou)ov.Ift=v(x)and s = u(z), then

df _dOvow) di_dw ds di

dx dt  dx ds dt dx

provided all the derivatives in the statement exist. Reader is invited to formulate chain
rule for composite of more functions.

Example 21 Find the derivative of the function given by f(x) = sin (x?).

Solution Observe that the given function is a composite of two functions. Indeed, if
t = u(x) = x* and v(¢¥) = sin ¢, then
F&x) = (v o ) (x) = vux)) = v(x*) = sin 22
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d dt . :
Put ¢ = u(x) = x*. Observe that ?v =cost and — = 2x exist. Hence, by chain rule

t dx
df  d
L = —v-ﬂzcostax
dx dt dx
It is normal practice to express the final result only in terms of x. Thus
, i
—— = cost-2x=2xcos X’
dx
Alternatively, We can also directly proceed as follows:
y = sin (x*) = 4y =i (sin x?)
X dx

=cos x> — (x?) = 2x cos x?
dx

Example 22 Find the derivative of tan (2x + 3).
Solution Let f(x) = tan (2x + 3), u(x) = 2x + 3 and v(¢) = tan t. Then
(vou) x) =v(ux) =v2x+3)=tan 2x + 3) =f(x)

v
Thus fis a composite of two functions. Put# = u(x) = 2x + 3. Then E =sec’t and

t . "
;l_ = 2 exist. Hence, by chain rule
5

& _er at

= =2sec? (2x+3)
dx dt dx

Example 23 Differentiate sin (cos (x?)) with respect to x.
Solution The function f(x) = sin (cos (x?)) is a composition f(x) = (w 0 v o u) (x) of the

three functions u, v and w, where u(x) = x?, v(t) = cos t and w(s) = sin s. Put

t =u(x) = x> and s = v(f) = cos t. Observe that d—wzcoss,éz—sintand ﬂz 2K
ds dt dx

exist for all real x. Hence by a generalisation of chain rule, we have

o _dw s g8 R 2
dx ds dt dx =(cos s) . (=sin 7). (2x) = — 2x sin x> . cos (cos x°)

69



Alternatively, we can proceed as follows:
y = sin (cos x?)

dy — d . ) 5. 2
Therefore I dx sin (cos x*) = cos (cos x°) o (cos x°)
= cos (cos x2) (- sin x?) L3 (x>
dx

= — sin x* cos (cos x?) (2x)
=~ 2x sin 22 cos (cos x?)

EXERCISE 5.2
Differentiate the functions with respect to x in Exercises 1 to 8.
1. sin (> +5) 2. cos (sin x) 3. sin (ax + b)
'sin(ax+b) s
4. sec (tan (J;)) i cos (cx+d) 6. cos x’ . sin® (x°)

7. 24cot(x?) 8. cos(vx)
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