To get more sample papers, practice papers, Study Material (Only for CBSE IX-X) Join

my whatsapp group at link shared below

https://chat.whatsapp.com/HTcfeKqE4wN8075HOehy0t

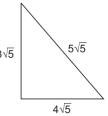
Chapter 1: Number System

MULTIPLE-CHOI	ICE QUESTIONS ——
Choose the correct answer from the given	n four options in the following questions:
1. Every rational number is	
(a) a natural number	(b) an integer
(c) a real number	(d) a whole number [CBSE SP 2011]
2. Decimal representation of a rational	number cannot be
(a) terminating	(b) non-terminating
(c) non-terminating repeating	(d) non-terminating non-repeating
	[CBSE SP 2010]
3. π is an irrational number because its	decimal expansion is
(a) terminating	(b) non-terminating
(c) non-terminating repeating	(d) non-terminating non-repeating
4. Every point on a number line represe	ents
(a) a unique real number	(b) a natural number
(c) a rational number	(d) an irrational number
5. Which of the following is a rational r	number?
(a) $\frac{-2}{3}$ (b) $\frac{-1}{\sqrt{5}}$	(c) $\frac{13}{\sqrt{5}}$ (d) $\frac{\sqrt{2}}{3}$ [CBSE SP 2011]
6. Which of the following is irrational?	
(a) 0.15 (b) $0.15\overline{16}$	(c) 0. 1516 (d) 0.5015001500015
7. A rational number equivalent to $\frac{3}{17}$	is
(a) $\frac{6}{17}$ (b) $\frac{6}{34}$	(c) $\frac{17}{3}$ (d) $\frac{3}{34}$
8. A rational number between 2 and 3 i	s
(a) 2.010010001	(b) $\sqrt{6}$
(c) $\frac{5}{2}$	(d) $4-\sqrt{2}$ [CBSE SP 2013]
9. Four rational numbers between 3 and	d 4 are
(a) 3.1, 3.2, 3.8, 3.9	(b) $\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}$
(c) 3.1, 3.2, 4.1, 4.2	(d) $\frac{13}{5}$, $\frac{14}{5}$, $\frac{16}{5}$, $\frac{17}{5}$
10. The smallest irrational number to be	added to $3 + \sqrt{2}$ to get a rational number
ia	

(b) $3 - \sqrt{2}$ (c) $\sqrt{2} - 3$ (d) $\sqrt{3} + 2$

(a) $-\sqrt{2}$

11.	The value	of $0.\overline{3}$	in the form	$\frac{p}{q}$	where <i>p</i> and	q are	integers	and q	7 ≠ 0 is
-----	-----------	---------------------	-------------	---------------	--------------------	-------	----------	-------	----------


- (a) $\frac{33}{100}$ (b) $\frac{3}{10}$ (c) $\frac{1}{3}$
- (d) $\frac{3}{100}$ [CBSESP2011]
- 12. $0.3\overline{2}$ expressed in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, is
 - (a) $\frac{8}{25}$
- (b) $\frac{29}{90}$ (c) $\frac{32}{90}$

- 13. $0.\overline{437}$ expressed in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, is
 - (a) $\frac{437}{9999}$
- (b) $\frac{394}{999}$
- (c) $\frac{434}{99}$

- **14.** Simplest rationalisation factor of $\sqrt[3]{40}$ is
 - (a) $\sqrt[3]{25}$
- (b) $\sqrt[3]{5}$
- (c) $\sqrt{40}$

- 15. $2\sqrt{5} + \sqrt{5}$ is equal to
 - (a) $2\sqrt{10}$
- (b) 10
- (c) $3\sqrt{5}$
- (d) $3\sqrt{10}$

- 16. The perimeter of the given figure is
 - (a) $60\sqrt{5}$
 - (b) $12\sqrt{5}$
 - (c) $27\sqrt{5}$
 - (d) $32\sqrt{5}$

- 17. On simplification of $\left(\frac{2}{3}\sqrt{5} \frac{1}{2}\sqrt{2} + 6\sqrt{11}\right) + \left(\frac{1}{3}\sqrt{5} + \frac{3}{2}\sqrt{2} \sqrt{11}\right)$, we get
 - (a) $\sqrt{5} + \sqrt{2} + 5\sqrt{11}$

(b) $\frac{\sqrt{5}}{2} + 2\sqrt{2} + \sqrt{11}$

(c) $\sqrt{5} + \sqrt{2} + 6\sqrt{11}$

- (d) $\sqrt{5} + 2\sqrt{2} + 5\sqrt{11}$
- **18.** The product of $\sqrt[3]{7}$ and $\sqrt{5}$ is
 - (a) $\sqrt[3]{35}$
- (b) $\sqrt[6]{35}$
- (c) $\sqrt[6]{6125}$
- (d) $\sqrt[6]{1225}$

- 19. The product of $\frac{1}{6}\sqrt{18}$ and $\frac{1}{3}\sqrt{18}$ is
 - (a) 1
- (b) $\frac{1}{12}$
- (c) $\frac{1}{2}$
- (d) $\sqrt{2}$
- 20. $\sqrt{5} \times \sqrt{7} \times \sqrt{15} \times \sqrt{21}$ in simplified form is
 - (a) $\sqrt{105}$
- (b) $\sqrt{210}$
- (c) 105
- (d) 210
- 21. $(3+\sqrt{3})(3-\sqrt{3})$ on simplification becomes equal to

- (a) 18
- (b) $2\sqrt{3}$
- (c) 6
- (d) 9

- **22.** The value of $(3 + \sqrt{5})^2 (3 \sqrt{5})^2$ is
- (b) 16
- (c) 4
- (d) 14
- 23. $\sqrt[3]{250} \div \sqrt[3]{10}$ in simplified form is equal to
 - (a) $\sqrt[3]{25}$
- (b) 5
- (c) $\sqrt{5}$
- (d) $\sqrt[3]{2500}$

- 24. $\frac{30}{\sqrt{20}+\sqrt{5}}$ is equal to
 - (a) $\frac{10}{3\sqrt{5}}$ (b) $\frac{30}{\sqrt{5}}$
- (c) $\frac{10}{\sqrt{5}}$
- (*d*) $12\sqrt{5}$

[CBSE SP 2011]

- 25. $\frac{6}{\sqrt{12}-\sqrt{3}}$ is equal to
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{2}{\sqrt{3}}$
- (c) $2\sqrt{3}$
- (d) $6\sqrt{3}$

[CBSE SP 2011]

- **26.** The value of $\frac{2^0 + 7^0}{5^0}$ is
 - (a) 2
- (c) $\frac{9}{5}$
- (d) $\frac{1}{5}$

- 27. On simplifying $\frac{2^{30} + 2^{29}}{2^{31} 2^{30}}$, we get
 - (a) 1
- (b) 2
- (c) $\frac{2}{3}$
- (d) $\frac{3}{2}$

- **28.** The value of $\sqrt{(3^{-2})}$ is
 - (a) $\frac{1}{9}$
- (b) 9
- (c) 3
- (d) $\frac{1}{3}$
- 29. $\left(\frac{256}{625}\right)^{-\frac{3}{4}}$ in its simplified form is equal to
 - (a) $\frac{25}{64}$
- (b) $\frac{64}{125}$
- (c) $\frac{125}{64}$
- (d) $\frac{64}{25}$
- 30. $(32)^{\frac{1}{5}} \times (125)^{-\frac{1}{3}}$ in its simplified form is equal to
 - (a) $\frac{16}{25}$ (b) $\frac{4}{5}$
- (c) $\frac{2}{5}$
- (d) $\frac{2}{25}$

- 31. $\frac{5^{n+2}-6.5^{n+1}}{13.5^n-2.5^{n+1}}$ equals

 - (a) $\frac{5}{2}$ (b) $-\frac{5}{3}$
- (c) $\frac{3}{5}$
- $(d) -\frac{3}{5}$

(d) 81

32.	The value of $\left[8^{-4}\right]$	$(3 \div 2^{-2})^{1/2}$ is		
	(a) $\frac{1}{2}$	(b) 2	(c) $\frac{1}{4}$	(d) 4
33.	If x is a positive re	eal number, then $\sqrt[4]{}$	$\sqrt[3]{x^2}$ is	
				(d) $x^{1/20}$

34. If
$$x = 2$$
 and $y = 3$, then the value of $x^y + y^x$ is

(a) 15
(b) 17
(c) 19
(d) 21

35. If
$$x = 9 - 4\sqrt{5}$$
, then $x + \frac{1}{x}$ is equal to

(a) $8\sqrt{5}$ (b) $-8\sqrt{5}$ (c) 18

36. Which of the following is equal to
$$a$$
?

(a) $a^{\frac{13}{7} - \frac{5}{7}}$ (b) $a^{\frac{12}{7} \left(a^4\right)^{\frac{1}{3}}}$ (c) $\left(\sqrt{a^5}\right)^{\frac{2}{5}}$ (d) $a^{\frac{13}{7}} \times a^{\frac{7}{13}}$

37. Decimal representation of
$$-\frac{17}{8}$$
 is

(a)
$$-2.125$$
 (b) -2.225 (c) 2.125 (d) -1.175
38. If $\frac{3}{7} = 0.\overline{428571}$, then $\frac{5}{7}$ is equal to

39. If
$$\sqrt{3} = 1.732$$
, then the value of $\frac{1}{\sqrt{3}}$ approximately is

40. If $\sqrt{2} = 1.414$, then the value of $\sqrt{3} \div \sqrt{6}$ up to three places of decimal is

Chapter 2: **Polynomials**

- MULTIPLE-CHOICE QUESTIONS ----

Choose the correct answer from the given four options in the following questions:

1. Which one of the following is a polynomial?

(a)
$$\frac{x^2}{3} - \frac{2}{x^2}$$

(a)
$$\frac{x^2}{3} - \frac{2}{x^2}$$
 (b) $x^3 + \frac{4x^{3/2}}{\sqrt{x}}$ (c) $\sqrt{3y} + 5$ (d) $\frac{x^2 - 1}{x^2 + 1}$

(c)
$$\sqrt{3y} + 5$$

(d)
$$\frac{x^2-1}{x^2+1}$$

2. The coefficient of x^2 in $(2x^2 - 5)(4 + 3x^2)$ is

$$(a)$$
 2

(d) -7 [CBSE SP 2010]

3. $\sqrt{2}$ is a polynomial of degree

(d) $\frac{1}{2}$ [CBSE SP 2012]

4. Degree of polynomial $(x^3 - 2)(x^2 + 11)$ is

(d) 2 [CBSE SP 2012]

5. Degree of zero polynomial is

(a) 0

(b) any natural number

(c) 1

(d) not defined

6. Standard form of the polynomial $\frac{1}{x^{-3}} + \frac{x}{8} + 6x^5 + \frac{\sqrt{3}}{5}$ is

(a)
$$x^3 + \frac{x}{8} + 6x^5 + \frac{\sqrt{3}}{5}$$

(b)
$$6x^5 + x^3 + \frac{x}{8} + \frac{\sqrt{3}}{5}$$

(c)
$$6x^5 + \frac{\sqrt{3}}{5} + \frac{x}{8} + x^3$$

(d)
$$x^3 + 6x^5 + \frac{\sqrt{3}}{5} + \frac{x}{8}$$

7. $x^2 + 5x - \frac{1}{2}$ is a

- (a) quadratic polynomial in x
- (b) binomial

(c) monomial

(*d*) cubic polynomial in *x*

8. The value of $p\left(\frac{1}{2}\right)$ for $p(z) = z^4 - z^2 + z$ is

(a)
$$\frac{7}{16}$$

(b)
$$\frac{5}{16}$$

(c)
$$\frac{3}{16}$$

(d) $\frac{1}{16}$

9. If $p(x) = 2x^2 - 3x + 5$, then the value of $\frac{p(0) + p(1)}{p(-1)}$ is

(a)
$$\frac{1}{10}$$

(b)
$$\frac{4}{11}$$

(c)
$$\frac{9}{10}$$

(d) $\frac{4}{5}$

10.	0. A polynomial of degree 5 in x has at most				
	(a) 5 terms	(b) 10 terms	(c) 6 terms	(d) 4 terms	
11.	Zero of the polynomial	omial $p(x)$, where p	$(x) = ax + 1, a \neq 0 \text{ is}$		
	(a) 1		(b) - a		
	(c) 0		$(d) -\frac{1}{a}$	[CBSE SP 2010]	
12.	Zeroes of the poly	y = (x + 1)	2) $(x + 5)$ are		
	(a) 2, 5	(b) -2, -5	(c) $\frac{1}{2}$, $\frac{1}{5}$	$(d) - \frac{1}{2}, -\frac{1}{5}$	
13.		y = x (x - x) = x (x - x)			
		(b) $0, -1, -2$			
14.	Which of the follo	owing is a zero of th	ne polynomial $x^3 + 3$	$3x^2 - 3x - 1$?	
	(a) -1	(<i>b</i>) −2	(c) 1	(<i>d</i>) 2 [CBSE SP 2011]	
15.	The number to be zero, is	e added to the poly	$rnomial x^2 - 5x + 4,$, so that 3 becomes its	
	(a) 4	(b) - 4	(c) - 2	(d) 2	
16.	The number to be 15 becomes its zer	subtracted from the	te polynomial $x^2 - 1$	16x + 30, so that	
	(a) 15	(b) 16	(c) 30	(d) 0	
17.	A polynomial wh	ose zeroes are $\sqrt{2}$	and $-\sqrt{2}$ is		
	(a) $x^2 + 2$	(b) $x - 2$	(c) $x^2 - 2$	(d) $x + 2$	
18.	If $x = 2$ is a zero o	of the polynomial x^2	-2k + 2, then the v	alue of <i>k</i> is	
	(a) 1	(b) 2	(c) 3	(d) 4	
19.				k has -3 as its zero, is	
	(a) - 9	(b) -3	` '	(<i>d</i>) 12 [CBSE SP 2011]	
20.		$hen p(x) = x^3 + 1 is c$	•		
	(a) - 6	(b) 0	(c) 1	(d) 6	
21.		hen $x^{51} + 51$ is divid	•	(1) 0	
	(a) 51	(b) 50	(c) - 1	(d) 0	
22.		hen $x^2 + 2x + 1$ is di	•	(d) 2 [CPCE CD 2011]	
22	(a) 4	(b) 0 hen $f(x) = x^3 + 4x^2 - $	(c) 1	(d) -2 [CBSE SP 2011]	
23.	(a) 16	(b) 12	(c) 17	(d) 19	
24.		of the polynomial 2	` '	` '	
	(a) - 2	(b) -3	(c) 4	(d) 2	
25.	` '	of $x^4 - a^2x^2 + 3x - 6$	` '	` '	
	(a) 0		(c) - 1	(d) 2	
26.	(x + 1) is a factor of	` '			
	(a) $x^3 + x^2 - x + 1$		(b) $x^3 + x^2 + x + 1$		
	(c) $x^4 + x^3 + x^2 + x^2$	1	$(d) \ x^4 + 3x^3 + 3x^2 - $	+ x + 1	

27.	The common factor in $x^2 - 1$, $x^4 - 1$ and $(x - 1)^2$ is						
	(a) :	x-1	(b) $x + 1$	(c)	$x^2 - 1$	(<i>d</i>) x^2	+ 1
28.	The	factorisation of	of $-x^2 + 5x - 6$ yield	ds			
	(a) ·	-(x-2)(3-x)		(b)	-(2-x)(3-x)		
	(c)	(x-2)(x-3)		(<i>d</i>)	(2+x)(3-x)		[CBSE SP 2011]
29.	The	value of (348)	$^2 - (347)^2$ is				
	(a)	$(1)^2$	(b) 685	(c)	695	(d) 70)5
30.	The	expansion of	$(x+y+z)^2$ is				
	(a) :	$x^2 + y^2 + z^2 - 2$	2xy - 2yz - 2zx	(b)	$x^2 + y^2 + z^2 + 2$	xy + 2y	yz + 2zx
	(c) :	$x^2 + y^2 + z^2 - x$	zy - yz - zx	(<i>d</i>)	$x^2 + y^2 + z^2 + x$	y + yz	+zx
31.	The	expansion of	$(x-y)^3$ is				
	(a) :	$x^3 + y^3 + 3x^2y$	$+3xy^2$	(b)	$x^3 + y^3 - 3x^2y +$	$-3xy^2$	
	(c) :	$x^3 - y^3 - 3x^2y +$	+ 3 <i>xy</i> ²	(<i>d</i>)	$x^3 - y^3 + 3x^2y -$	$-3xy^2$	
22	Th.	x = x + x + x	$(2x)(2x+x)(x^2+$	02) is a small to		
32.	me	product $(\frac{1}{2})$	$(3y)\left(3y+\frac{x}{2}\right)\left(\frac{x^2}{4}+\frac{x}{2}\right)$	99) is equal to		
		χ^4	χ^4		χ^4	r	4
	<i>(a)</i>	$\frac{x}{16} + 81y^4$	(b) $\frac{x^4}{81} + 16y^4$	(c)	$\frac{x}{81} - 16y^4$	$(d) \frac{x}{1}$	$\frac{1}{6} - 81y^4$
33.	75 ×	× 75 + 2 × 75 ×	$25 + 25 \times 25 \text{ in sim}$	plifi	ied form is equa	al to	
		10000	(b) 6250	_	7500	(d) 37	750
			× 2.17	· 1	ć · 1.		
34.		6.66	$\times 2.17$ in its simplif	nea	form is equal to)	
	(a) ⁹	9	(b) 10	(c)	11	(d) 12	2
35.	If x	+ y + z = 0, the	en $x^3 + y^3 + z^3$ is eq	ual 1	to		
	(a) :	$x^2 + y^2 + z^2 + 3$	Bxyz	(b)	3xyz		
	(c) 3	$3x^2y^2z^2$		(<i>d</i>)	$x^2 + y^2 + z^2 - x_1$	y - yz -	-zx
36.	If 49	$9x^2 - y = (7x +$	$\left(-\frac{1}{2}\right)\left(7x-\frac{1}{2}\right)$, then	the	value of <i>u</i> is		
		3 (2)(2)/		i i i i g		
	(a)	0	(b) $\frac{1}{4}$	(c)	$\frac{1}{\sqrt{2}}$	(d) $\frac{1}{2}$	
		4	4		٧Z	2	
37.			tangle is $4x^2 + 4x -$			dimer	nsions are
	` '	2x - 3, $2x + 1$		` '	2x - 1, $2x + 3$		
	` '	3x + 1, 2x - 3	2	<i>(a)</i>	3x - 1, $2x + 3$		
38.		factors of 12y	· ·	(1)	(10 . 1) (
		(12y - 1)(y + 6)			(12y + 1) (y - 6)		
	` '	(3y-2)(4y+3)	•	<i>(a)</i>	(3y + 2)(4y - 3))	
39.	The	factors of $\frac{1}{2}$	$\frac{x^2}{50}$ are				
		-			1 (1) (1)	
	(a)	$\frac{1}{2}\left(1-\frac{x}{5}\right)\left(1-\frac{x}{5}\right)$	$\left(\frac{2}{5}\right)$	(b)	$\frac{1}{2}\left(\frac{1}{5}+x\right)\left(\frac{1}{5}-\right)$	x	

(c)
$$\frac{1}{2} \left(1 + \frac{x}{5} \right) \left(1 - \frac{x}{5} \right)$$
 (d) $\frac{1}{2} \left(1 + \frac{x}{5} \right) \left(1 + \frac{x}{5} \right)$

- **40.** The factors of $a^3 + 27$ are
 - (a) $(a + 3) (a^2 + 3a + 9)$
- (b) $(a + 3) (a^2 3a + 9)$
- (c) $(a-3)(a^2-3a+9)$
- (d) $(a-3)(a^2+3a+9)$
- 41. $\sqrt{2a^2 + 2\sqrt{6} ab + 3b^2}$ in its simplified form is equal to
 - (a) $(\sqrt{2}a \sqrt{3}b)$

(b) $\left(\sqrt{2}a + \sqrt{3}b\right)$

(c) $\left(\sqrt{3}a + \sqrt{2}b\right)$

- (d) $(\sqrt{3}a \sqrt{2}b)$
- **42.** For the polynomial (x + 2)(x 2), the values of p(0), p(1), p(-2) respectively are
 - (a) 0, 3, -4

(b) - 1, 0, 3

(c) - 4, -3, 0

- (d) 1.4. 3
- **43.** If $p(x) = x^2 4x + 3$, then the value of $p(2) p(-1) + p(\frac{1}{2})$ is
 - (a) $\frac{31}{4}$
- $(b) \frac{31}{4}$
- (c) $\frac{21}{4}$
- $(d) \frac{21}{4}$
- 44. If polynomial $x^3 2mx^2 + 16$ is divisible by x + 2, then the value of m is

- (d) 1
- **45.** If 2x 1 is a factor of $8x^4 + 4x^3 16x^2 + 10x + a$, then the value of *a* is
- (c) 1
- (d) 1
- 46. $\left(2x+\frac{1}{3}\right)^2-\left(x-\frac{1}{2}\right)^2$ in its factorised form is equal to
 - (a) $\left(x \frac{1}{6}\right) \left(3x + \frac{5}{6}\right)$

(b) $\left(3x + \frac{1}{6}\right)\left(x - \frac{5}{6}\right)$

(c) $\left(x + \frac{1}{6}\right) \left(3x - \frac{5}{6}\right)$

- (d) $\left(3x \frac{1}{6}\right)\left(x + \frac{5}{6}\right)$
- 47. The expanded form of $(3a 5b c)^2$ is
 - (a) $9a^2 + 25b^2 + c^2 30ab + 10bc 6ac$
 - (b) $9a^2 + 25b^2 + c^2 + 30ab 10bc + 6ac$
 - (c) $9a^2 + 25b^2 + c^2 30ab 10bc + 6ac$
 - (d) $9a^2 + 25b^2 + c^2 + 30ab + 10bc 6ac$
- 48. The product of $\left(\frac{x}{2} + 2y\right) \left(\frac{x^2}{4} xy + 4y^2\right)$ is equal to
 - (a) $\frac{x^3}{6} + 6y^3$ (b) $\frac{x^3}{8} + 8y^3$ (c) $\frac{x^3}{8} 8y^3$ (d) $\frac{x^3}{6} 6y^3$

- **49.** Factors of $a^3 2\sqrt{2}$ b^3 are
 - (a) $(a \sqrt{2}b)(a^2 + \sqrt{2}ab + 2b^2)$
- (b) $(a-2\sqrt{2}b)(a^2-\sqrt{2}ab+2b^2)$

(c)
$$(a + \sqrt{2}b)(a^2 - \sqrt{2}ab + 2b^2)$$
 (d) $(a + \sqrt{2}b)(a^2 + \sqrt{2}ab + 2b^2)$

50. The expanded form of $\left(x+\frac{1}{3}\right)^3$ is

(a)
$$x^3 + \frac{1}{27} + 3x^2 + \frac{1}{3}x$$

(b)
$$x^3 + \frac{1}{27} + x^2 + \frac{1}{3}x$$

(c)
$$x^3 + \frac{1}{9} + 3x^2 + 3x$$

(d)
$$x^3 + \frac{1}{27} + 3x^2 + \frac{1}{3}x$$

51. The value of $10^3 - (5)^3 - (5)^3$ is

52. If $x + \frac{1}{x} = 8$, then the value of $x^2 + \frac{1}{x^2}$ is

53. The value of $p^3 - q^3$ if p - q = -8, pq = -12 is

$$(a) - 244$$

$$(b) - 240$$

$$(a) - 244$$
 $(b) - 240$ $(c) - 224$

$$(d) - 260$$

54. If $9x^2 - 30x + k$ is a perfect square then the value of k is

55. The value of $a^2 + b^2 + c^2$, if a + b + c = 13 and ab + bc + ca = 27 is

Chapter 3: Coordinate Geometry

MULTIPLE-CHO	ICE QUESTIONS ——
Choose the correct answer from the give	en four options in the following questions:
1. The measure of angle between the t	wo coordinate axes is
(a) 180° (b) 0°	(c) 90° (d) 360°
2. Points (0, 3) and (0, – 7) lie	
(a) on the x-axis	(b) in the first quadrant
(c) on the <i>y</i> -axis	(<i>d</i>) in the second quadrant
3. Point (– 3, 0) lies	
(a) in the third quadrant	(b) on the negative direction of y-axis
(c) in the fourth quadrant	(<i>d</i>) on the negative direction of <i>x</i> -axis
4. If <i>y</i> -coordinate of a point is zero, the	en this point always lies
(a) in the second quadrant	(<i>b</i>) on the <i>x</i> -axis
(c) in the first quadrant	(<i>d</i>) on the <i>y</i> -axis
5. Signs of the abscissa and ordinal respectively	te of a point in the third quadrant are
(a) -, - (b) +, +	(c) +, - $(d) -, +$
6. A point both of whose coordinates a	are positive will lie in the
(a) first quadrant	(b) second quadrant
(c) third quadrant	(d) fourth quadrant
7. The points (2, -3) and (-3, 2) lie in the	ne
(a) first and second quadrants respe	ectively
(b) fourth and second quadrants res	spectively
(c) second and third quadrants resp	pectively
(d) second and fourth quadrants res	spectively
	(-3, -4), and T $(-6, 3)$ are plotted on the
graph paper, then the point(s) in the	_
(a) P and R (b) only T	(c) Q and R (d) P and T
9. Ordinate of a point is positive in the	
(a) first and second quadrants	(b) first and third quadrants
-	(d) third and fourth quadrants
10. A point with abscissa – 3 and ordinate	ate 5 lies in the
(a) first quadrant	(b) second quadrant
(c) third quadrant	(d) fourth quadrant
11. The abscissa and ordinate of the ori	gin are

Mathematics - Class	s 9			11
(a) (0, 0)	(<i>b</i>) (1, 1)	(c) $(-1, -1)$	(<i>d</i>) (2, 2)	
	f a point which is 8 tion of the <i>y</i> -axis are	•	he x -axis and lies on t	he
(a) (-8, 0)	(<i>b</i>) (8, 0)	(c) $(0, -8)$	(<i>d</i>) (0, 8)	
13. The perpendic	cular distance of the	point P (3, 4) from	the <i>x</i> -axis is	
(a) 3 units	(b) 4 units	(c) 1 unit	(d) 7 units	
14. If two points h them is paralle		a but different ordin	ates, then the line joini	ng
(a) both x -axis	s and <i>y</i> -axis	(b) neither x-axi	is nor <i>y</i> -axis	
(c) y-axis		(d) x -axis		
15. The points have	ving same signs of a	bscissa and ordinat	e lie in	
(a) first or sec	ond quadrants	(b) first or third	quadrants	
(c) second or	fourth quadrants	(d) second or th	ird quadrants	
16. A point lies on the positive direction of <i>x</i> -axis at a distance of 3 units from the <i>y</i> -axis. It is made to slide along the <i>x</i> -axis and its new position is on the negative direction of <i>x</i> -axis, at the same distance from the <i>y</i> -axis, as it was in the original position. Then, the coordinates of its new position are				
(a) (3, 3)	(b) (-3,3)	(c) $(-3, 0)$	(d) (3, 0)	
17. Coordinates o	f four points lying or	n the coordinate axe	es at a distance of 5 un	its

18. The verbal sentence 'The difference of the ordinate and abscissa of a point is 1'

19. Coordinates of the point lying on the y-axis satisfying the equation

20. Coordinates of the point at which the line 5x + 3y = 15 intersects the x-axis are

(c) x + y = 1

(c) (0, -2)

(c) (-3, 0)

(b) (5, 5), (-5, -5), (5, -5), (-5, 5)

(*d*) (0, 5), (0, -5), (5, -5), (-5, -5)

(*d*) y - x = 1

(d) (-2, 0)

(d) (0, -3)

from the origin are

(a) x - y = 0

(*a*) (2, 0)

(a) (0,3)

2x - 5y = 10 are

(a) (5, 0), (0, 5), (-5, 0), (0, -5) (c) (5, 0), (5, 5), (-5, 0), (-5, -5)

is represented by the equation

(b) x - y = 1

(*b*) (0, 2)

(*b*) (3, 0)

Chapter 4: Linear Equations in Two Variables

MULTIPLE-CHOICE QUESTIONS
MOLIN EL CHOIGE QUEUNONO

Choose the correct answer from the given four options in the following questions:

1. 'Twice the ordinate of a point decreased by three times the abscissa is 6.' The

given sentence ex	xpressed in the form	n of an equation is		
(a) 2x - 3y = 6		(b) $2y - 3x = 6$		
(c) 3x - 2y = 6		(d) 3y - 2x = 6		
2. The condition th	at the equation ax -	+by + c = 0 represe	ents the	linear equation
in two variables	is			
(a) $a \neq 0, b = 0$		(b) $b \neq 0$, $a = 0$		
(c) $a = 0, b = 0$		$(d) \ a \neq 0, b \neq 0$		[CBSE SP 2011]
3. The linear equati	on of the type $y = r$	$nx, m \neq 0$ has		
(a) infinitely man	ny solutions.	(b) a unique solu	tion.	
(c) only solution	x=0,y=0.	(d) solution $m = 0$).	[CBSE SP 2011]
4. $x - 4 = \sqrt{3} y \exp(x)$	ressed in the form a	ax + by + c = 0 is		
(a) $x - \sqrt{3} y - 4 =$	= 0	(b) $x + \sqrt{3} y + 4 =$	= 0	
(c) $x - \sqrt{3} y + 4 =$	= 0	(d) $x + \sqrt{3} y - 4 =$	= 0	
5. $\frac{y}{5} = 1$, expressed	l as an equation in	two variables in sta	ndard f	form is
(a) $x + y + 5 = 0$		(b) $x - y - 5 = 0$		
(c) $0 \cdot x + 1 \cdot y - 5 =$	= 0	$(d) \ x - y + 5 = 0$		
6. The coefficients of	of x and y respective	ely in the equation	5x - y =	: 10 are
(a) 5, 1	(b) $1, \frac{1}{5}$	(c) 1, 5	(d) 5,	- 1
7. The equation $x =$	9, in two variables	, can be written as		
$(a) \ 1 \cdot x + 1 \cdot y = 9$	$(b) \ 1 \cdot x + 0 \cdot y = 9$	$(c) \ 0 \cdot x + 1 \cdot y = 9$	(d) 0:	$x + 0 \cdot y = 9$
8. If (4, 19) is a solu	tion of the equation	y = px + 3, then th	e value	of p is
(a) 3	(b) 4	(c) 5	(<i>d</i>) 6	
9. If (0, <i>y</i>) is a soluti	ion of the equation	6x - y = 0, then the	graph	of this equation
(a) passes through	gh the origin			

(*d*) is neither parallel to any of the coordinate axes nor passes through the origin **10.** If (2, 0) is a solution of the linear equation 2x + 3y - k = 0, then the value of k is

(c) 2

(d) 5

(*b*) is parallel to the *x*-axis(*c*) is parallel to the *y*-axis

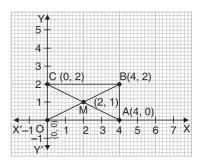
(b) 4

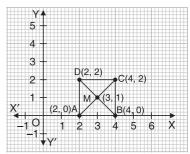
(a) 6

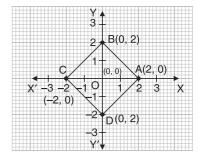
11.	Any point on the line $y = x$ is of the	form			
	(a) (a, a) $(b) (0, a)$	(c) $(a, 0)$	(d) (a, -a)		
12.	Any solution of the linear equation form	3x + 0y + 7 = 0 in	two variables is of the		
	(a) $\left(n, \frac{-7}{3}\right)$ (b) $\left(\frac{-7}{3}, m\right)$	$(c) \left(0, \frac{-7}{3}\right)$	(<i>d</i>) (-7, 0)		
	where n and m are real numbers.				
13.	The equation of <i>x</i> -axis is of the form				
	(a) x = 0	$(b) \ x + y = 0$			
	$(c) \ y = 0$	$(d) \ \ x = y$	[CBSE SP 2010]		
14.	Which statement is true about the gr	aph y = 5?			
	(a) It goes through the origin	(b) It is parallel to	x-axis		
	(c) It is parallel to <i>y</i> -axis	(d) It has an x-inte	ercept		
15.	The graph of $x = 5$ is a line				
	(a) parallel to x-axis at a distance of	5 units from the or	igin		
	(b) parallel to y-axis at a distance of	5 units from the or	igin		
	(c) making an intercept of 5 on the y	-axis			
	(d) making an intercept of 5 on both	the axes			
16.	The measure of angle between the gra	aph lines of the equ	ations $y = 3$ and $x = 7$ is		
	(a) 0° (b) 45°	(c) 90°	(<i>d</i>) 75°		
17.	If a linear equation has solutions (0, 0	(-3, 3) and $(3, -3)$	3), then it is of the form		
	$(a) \ y - 2x = 0$	(b) x + y = 0			
	$(c) \ y - x = 0$	$(d) \ x - y = 0$			
18.	The negative solutions of the equation	on ax + by + c = 0 al	ways lie in the		
	(a) 1st quadrant	(b) 2nd quadrant			
	(c) 3rd quadrant	(d) 4th quadrant			
19.	The point of the form (a, a) always lie	es on the			
	(a) x-axis	(b) y-axis			
	(c) line $y = x$	(<i>d</i>) line $x + y = 0$			
20.	Which of the following is a solution	of the equation x +	2y = 7?		
	(a) $x = 3, y = -5$	(b) $x = 3, y = 5$			
	(c) $x = 0, y = 7$	(d) $x = 3, y = 2$			
			[CBSE SP 2011]		
21.	If we multiply or divide both sides of	•	ith a non-zero number,		
	then the solution of the linear equati	on			
	(a) changes				
	(b) remains the same				
	(c) changes in case of multiplication	only			
	(d) changes in case of division only				

(b) Two

(d) Infinitely many


22. How many linear equations in x and y can be satisfied by x = 3 and y = 1?


(a) Only one


(c) Three

23. The graph of $2x =$	= 1 is parallel to the		
(a) x-axis at a dis	tance of 1 unit	(b) y-axis at a dis-	tance of 1 unit
(c) x -axis at a dis	stance of $\frac{1}{2}$ unit	(d) y-axis at a dis-	tance of $\frac{1}{2}$ unit
24. The graph of the	linear equation $3x$	-y = 2 cuts the <i>y</i> -ax	kis at the point
(a) (0, 2)		(b) $(0, -2)$	
(c) (-2, 0)		(d) $(2,0)$	
25. The graph of the the point	linear equation <i>x</i> –	2y = 3 is a line wh	nich meets the <i>x</i> -axis at
(a) (3, 0)	(<i>b</i>) (0, 3)	(c) (-3, 0)	(d) (0, -3)
26. The distance bety	ween the graph line	s of the equations	x = 5 and $x = -7$ is
(a) 2 units	(b) 5 units	(c) 7 units	(d) 12 units
27. The <i>y</i> -intercept of	f the line $y = x + 5$ i	s	
(a) 0	(b) 5	(c) 2	(d) 3
28. The linear equation	on $2x + cy = 8$ has ea	qual values of x and	y for its solution when
c is equal to			
(a) $\frac{8+2x}{y}$, $y \neq 0$		$(b) \ \frac{8-2x}{y}, y \neq 0$	
$(c) \ \frac{2-8x}{y}, y \neq 0$		$(d) \ \frac{2+8x}{y} , y \neq 0$	
29. The number of so	olution(s) of the equa	ation 2x + 1 = x - 3	on the number line and
cartesian plane re	-		
(a) infinitely mar	ny solutions, one		
(b) one, two			
(c) two, one	1		
(d) one, infinitely	•		
30. Linear equation s its abscissa is	uch that each point	on its graph has its	ordinate equal to twice
(a) x + y = 2	$(b) \ y = 2x$	(c) $x = 2y$	(d) x - y = 2
_		_	ion $2x + 5y = 19$, whose
ordinate is $1\frac{1}{2}$ ti	mes its abscissa is		
(a) (3, 2)	(<i>b</i>) (2, 3)	$(c) \left(2, \frac{5}{2}\right)$	$(d) \left(\frac{5}{2},2\right)$
	x and y intercepts x and y -axis x		of the linear equation
(a) 2:3	(b) 1:3	(c) 3:2	(d) 3:1

- 33. In the given figure, if OABC is a rectangle whose diagonals BO and CA intersect at M (2, 1), then the equations of the diagonals BO and CA respectively are
 - (a) x = 2y, x + 2y = 4
 - (b) x = y, x + y = 0
 - (c) 2x = y, 2x + y = 0
 - (d) x = 3y, x + 3y = 0
- **34.** In the given figure, if ABCD is a square whose diagonals AC and BD intersect at M(3, 1) then the equations of the diagonals AC and BD respectively are
 - (a) x + y = 2, x y = 4
 - (b) x = 2y, x + y = 3
 - (c) 2x = y, x y = 3
 - (d) x y = 2, x + y = 4
- **35.** In the given figure, if ABCD is a square, then the diagonal AC divides it into two congruent triangles each of area
 - (a) 2 sq units
 - (b) 3 sq units
 - (c) 4 sq units
 - (d) 5 sq units

Chapter 5: Introduction to Euclid's Geometry

		MULTIPLE-CHOI	CE	QUESTIONS -	
Cho	ose the correct and	swer from the giver	n foi	ar options in the	e following questions:
1.	A pyramid is a so	olid figure, the base	of v	vhich is	
	(a) only a square	-	(b)	only a triangle	
	(c) only a rectang	gle	(<i>d</i>)	any polygon	
2.	The side faces of	a pyramid are			
	(a) squares	(b) triangles	(c)	polygons	(d) trapeziums
3.	In ancient India, t	the shapes of altars	use	d for household	rituals were
	(a) square and re	ctangular	(b)	square and circ	cular
	(c) triangular and	l rectangular	(<i>d</i>)	square and tria	ingular
4.	In ancient India, the	he shapes of altars u	sed	for public worsl	nip were combinations
	(a) circles, square	es and rectangles	(b)	triangles, circle	es and rectangles
	(c) circles, trapez	iums and squares	(<i>d</i>)	rectangles, tria	ngles and trapeziums
5.	The number of in	terwoven isosceles	tria	ngles in <i>sriyanti</i>	ra (in the Atharvaveda)
	is				
	(a) seven	(b) eight	` '	nine	(d) ten
6.	,	Civilisation, the bric gth : breadth : thick			ections were kiln fired was found to be
	(<i>a</i>) 4:3:2	(<i>b</i>) 4:4:1	(c)	4:2:1	(<i>d</i>) 1:2:3
7.	Euclid divided hi	s famous treatise "7	The I	Elements" into	
	(a) 9 chapters	(b) 11 chapters	(c)	12 chapters	(d) 13 chapters
8.	Which of the follo	owing are known as	s the	boundaries of	solids?
	(a) curves	(b) lines	(c)	points	(d) surfaces
9.	The three steps fr	om solids to points	are	:	
	(a) Solids-surface	es-lines-points	(b)	Solids-lines-su	ırfaces–points
	(c) Lines-points-	surfaces–solids	(<i>d</i>)	Lines-surfaces	-points-solids
10.	The number of di	mensions, a solid h	as:		
	(a) 0	(b) 1	(c)	2	(d) 3
11.	The number of di	mensions, a surface	has	s:	
	(a) 1	(<i>b</i>) 2	(c)	3	(d) 0
12.	The number of di	mensions, a point h	nas:		
	(a) none	(b) 1	(c)	2	(d) 3

20. The interwoven isosceles triangles in *sriyantra* are arranged in such a way that

(c) 45

(b) second Axiom(d) fourth Axiom

(d) 50

that illustrates the relative ages of X and Z is the

the number of subsidiary triangles they produce are

(b) 43

(a) first Axiom

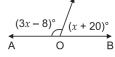
(c) third Axiom

(a) 40

Chapter 6: Lines and Angles

MILLTIDLE	CHOICE	QUESTIONS	
 MULTIPLE	-CHUICE	COLESTIONS	

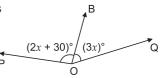
Choose the correct answer	from the given four o	pptions in the following questions:


Cho	ose the correct an	swer from the give	n four options in th	e following questions:	
1.	The measure of a	n angle which is 24	° more than its com	nplement is	
	(a) 66°	(b) 57°	(c) 156°	(d) 114°	
2.	The measure of a	n angle which is 32	° less than its supp	lement is	
	(a) 148°	(<i>b</i>) 58°	(c) 74°	(<i>d</i>) 122°	
3.	The measure of a	n angle which is fo	ur times its comple	ment is	
	(a) 78°	(b) 76°	(c) 72°	(d) 74°	
4.	If the supplemen	t of an angle is 4 tin	nes of its compleme	ent, then the angle is	
	(a) 60°	(b) 40°	(c) 50°	(<i>d</i>) 70°	
5.	If two compleme	ntary angles are in	the ratio 2 : 3, then	the angles are	
	(a) 58°, 32°	(b) 50°, 40°	(c) 56°, 34°	(<i>d</i>) 36°, 54°	
6.	6. $\angle P$ and $\angle Q$ are complementary angles. If they are represented by the expressions				
	-	$\Delta P = 2y + 30^{\circ}$, then t	-	•	
	(a) 70°, 20°	(<i>b</i>) 20°, 70°	(c) 10°, 80°	(<i>d</i>) 80°, 10°	
7.	7. In the given figures, which pairs of angles represent a linear pair?				
•	<i>y x</i>	$ \downarrow^{x}_{y} $		x y	
	(<i>i</i>)	(ii)	(iii) (iv	,	
	(a) (i) and (iii)	(b) (iii) and (iv)	(c) (iii) and (v)	(d) (i), (ii) and (v)	
				[CBSE SP 2010]	
8.	If in the given fig	ure, OA and OB are	e opposite rays, the	n C	

tne value of x is

(b) 44

(d) 42

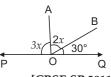

9. The value of *x* that will make POQ a straight line is

(a) 30

(b) 25

(c) 35

(d) 40

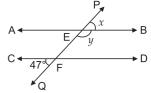

10. In the given figure, if POQ is a straight line, then the value of x is

(a) 20°

(b) 30°

(c) 40°

(d) 50°

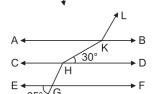

[CBSE SP 2011]

- 11. In the given figure, $\angle AOC = 50^{\circ}$, then $\angle AOD + \angle COB$ is equal to
 - (a) 100°
 - (b) 140°
 - (c) 260°
 - (d) 130°
- **12.** In the given figure AB \parallel CD. Transversal PQ intersects AB at E and CD at F. Given, \angle CFQ = 47°, the measure of x and y respectively are
 - (a) 30°, 150°

(b) 37°, 143°

(c) 47°, 133°

(d) 39°, 141°



- **13.** In the given figure, $l \parallel m \parallel n$. If x : y = 5 : 4, then the measure of angle z is
 - (a) 40°

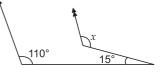
(b) 50°

(c) 90°

(d) 80°

- 14. In the given figure, AB \parallel CD \parallel EF and GH \parallel KL. The measure of angle HKL is
 - (a) 95°

(b) 145°

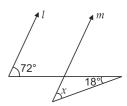

(c) 130°

- (d) 135°
- **15.** The measure of x in the given figure is
 - (a) 125°

(b) 70°

(c) 105°

(d) 100°

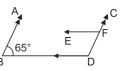


- **16.** In the given figure, if $l \parallel m$, then the value of x is
 - (a) 18°

(b) 72°

(c) 54°

(d) 100°



- 17. In the given figure, AB \parallel CD and EF \parallel BD. If \angle ABD = 65°, then the measure of \angle CFE is
 - (a) 120°

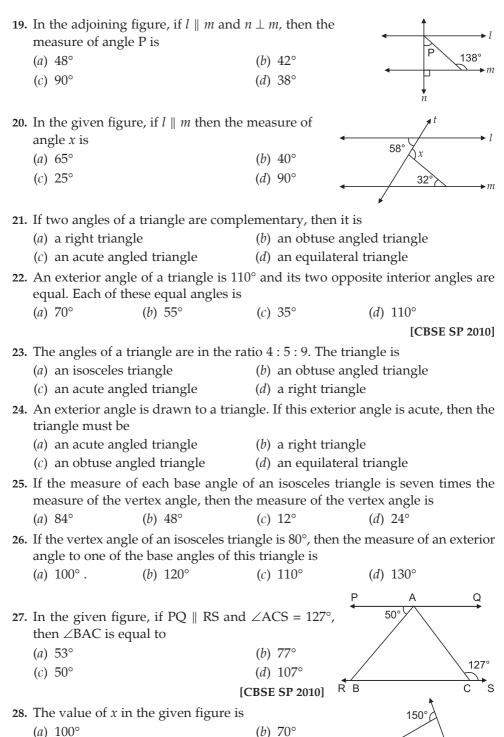
(b) 115°

(c) 65°

(d) 165°

- **18.** In the given figure, if $l \parallel m$, then the measure of x is
 - (a) 70°

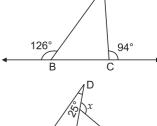
(b) 100°


(c) 40°

(d) 30°

(c) 110°

110°

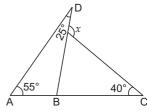

(d) 150°

- **29.** The base BC of triangle ABC is produced both ways and the measures of exterior angles formed are 94° and 126° . Then, the measure of \angle BAC is
 - (a) 94°

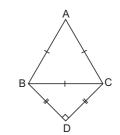
(b) 54°

(c) 40°

(d) 44°



- **30.** The value of x in the given figure is
 - (a) 65°


(b) 95°

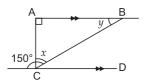
(c) 80°

(d) 120°

- **31.** If one of the angles of an isosceles triangle is 125°, then the angle between the bisectors of the other two angles is
 - (a) 125.5°
- (b) 152.5°
- (c) 152°
- (d) 125°
- **32.** \triangle ABC is a right triangle in which \angle A is a right angle. AL is drawn perpendicular to BC. If \angle BAL is 35°, then the measure of \angle ACB is
 - (a) 70°
- (b) 17.5°
- (c) 35°
- (d) 105°
- 33. ABC is an equilateral triangle and BDC is an isosceles triangle right angled at D. ∠ABD is equal to
 - (a) 45°
- (b) 60°
- (c) 105°
- (d) 120°
- [CBSE SP 2011]

- 34. The side BC of \triangle ABC is produced to point D. The bisectors of \angle ABC and \angle ACD meet at a point E. If \angle BAC = 68°, then the measure of \angle BEC is
 - (a) 30°

(b) 32°

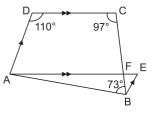

(c) 36°

- (d) 34°
- **35.** In the given figure, if AB \parallel CD, then the values of x and y respectively are
 - (a) 25° , 65°

(b) 60°, 30°

(c) 65°, 25°

(d) 40°, 50°



- 36. In the given figure, ABCD is a quadrilateral in which \angle ABC = 73°, \angle C = 97° and \angle D = 110°. If AE \parallel DC and BE \parallel AD and AE intersects BC at F, then the measure of \angle EBF is
 - (a) 23°

(b) 70°

(c) 10°

(d) 27°

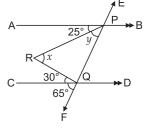
- 37. The angle between the bisectors of two acute angles of a right triangle is
 - (a) 135°
- (b) 120°
- (c) 90°
- (d) 150°

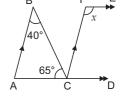
- **38.** The measure of x in the given figure is
 - (a) 35°

(b) 25°

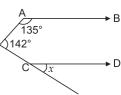
(c) 30°

(d) 20°


39. In the given figure, AB \parallel CD. Transversal EF intersects AB at P and CD at Q. \angle PRQ = x, \angle RPQ = y. If \angle APR = 25°, \angle RQC = 30° and \angle CQF = 65°, then the measures of angle x and y respectively are


(b) 50°, 45°

(c) 60°, 35°


(*d*) 35°, 60°

- **40.** If the bisectors of base angles of a triangle enclose an angle of 135°, then the triangle is
 - (a) an acute angled triangle
- (b) an obtuse angled triangle
- (c) an equilateral triangle
- (d) a right triangle
- **41.** In the figure given alongside, if AB \parallel CF and CD \parallel FE, then the value of x is
 - (a) 40°
 - (b) 65°
 - (c) 75°
 - (d) 105°

- **42.** In the given figure, if AB \parallel CD, then the value of x is
 - (a) 97°
 - (b) 100°
 - (c) 107°
 - $(d)~45^{\circ}$

- **43.** BO and CO, the bisectors of $\angle B$ and $\angle C$ respectively, of $\triangle ABC$, meet at O. If $\angle A = 60^{\circ}$, then the measure of $\angle BOC$ is
 - (a) 100°
 - (b) 90°
 - (c) 120°
 - (d) 150°

- 60°
- **44.** If two parallel lines are cut by a transversal, then the bisectors of the interior angles on the same side of the transversal intersect each other at
 - (a) 60°
- (b) 90°
- (c) 100°
- (d) 120°
- **45.** If two parallel lines are intersected by a transversal, then the bisectors of the interior angles form a
 - (a) kite
- (b) rhombus
- (c) rectangle
- (d) trapezium

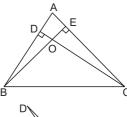
- 46. ABC is a triangle in which BE \perp AC and CD \perp AB. BE and CD intersect at O. If \angle BAC=75°, then the measure of \angle BOC is
 - (a) 100°

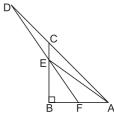
(b) 105°

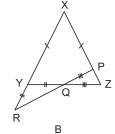
(c) 75°

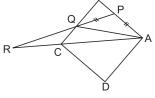
- (d) 115°
- 47. ABC is a right triangle, right angled at B. BC = BA. D is a point on AC produced and a line DEF cuts CB at E, AB at F. If \angle D = 13° and \angle FAE = 29°, then the measure of \angle FEA is
 - (a) 31°

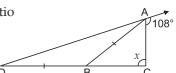
(b) 42°


(c) 29°


- (d) 16°
- 48. In \triangle XYZ, XY = XZ. A straight line cuts XZ at P, YZ at Q and XY produced at R. If YQ = YR and QP = QZ, then the measure of \angle PQY is
 - (a) 100°
 - (b) 124°
 - (c) 144°
 - (d) 140°
- **49.** ABCD is a square. If AP = PQ and \angle QRC = 35°, then the measure of \angle PAQ is
 - (a) 40°
 - (b) 35°
 - (c) 30°
 - (d) 25°
- **50.** In the given figure, if AB divides ∠DAC in the ratio
 - 1:3, then the measure of angle marked x is
 - (a) 108°


(b) 100°


(c) 80°


(d) 90°

Chapter 7: **Triangles**

MULTIPI	LE-CHOICE QUESTIONS —	
Choose the correct answer from	the given four options in the fo	ollowing questions:
1. In $\triangle ABC$, if $BC = AB$ and \triangle	$\Delta B = 80^{\circ}$ then $\angle A$ will be equal to	to
(a) 80°	(b) 40°	
(c) 50°	(d) 100°	[CBSE SP 2012]
2. Two angles measure $(30 - a)$ other then the value of a is	° and $(125 + 2a)$ °. If each one is a	a supplement of the
(a) 45°	(<i>b</i>) 25°	
(c) 35°	(d) 65°	[CBSE SP 2012]
3. Choose the correct option:		
(a) A triangle has two right	angles.	
(b) All angles of a triangle a	are more than 60°.	
(c) An exterior angle of a angle.	triangle is always greater than	n opposite interior
(d) All the angles of a triang	gle are less than 60°.	[CBSE SP 2010]
4. Which of the following is no	ot a criterion for congruence of	triangles?
(a) SAS	(b) SSA	
(c) ASA	(d) SSS	[CBSE SP 2010]
O	$\angle A = \angle D$, $\angle B = \angle E$ and $AB = E$ by which congruency criterion?	
(a) yes by AAS	(b) no	
(c) yes by ASA	(d) yes by RHS	[CBSE SP 2010]
6. In ΔABC and ΔPQR, AB = A The two triangles are	AC , $\angle C = \angle P$ and $\angle B = \angle Q$.	
(a) isosceles but not necessa	arily congruent.	
(b) neither congruent nor is		
(c) isosceles and congruent		
(d) congruent but not isosce	eles.	
7. The sides of a triangle are of side cannot be	of length 7 cm and 3.5 cm. The	length of the third
(a) 3.6 cm	(b) 4.1 cm	

(*d*) 3.8 cm

(b) AC = EF

(d) AC = DE

8. In triangles ABC and DEF, AB = DF and \angle A = \angle D. The two triangles will be

[CBSE SP 2010]

[CBSE SP 2011]

(c) 3.4 cm

(a) BC = DE

(c) BC = EF

congruent by SAS axiom if

- 9. It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then which of the following is true?
 - (a) DF = 5 cm, \angle F = 60°
- (b) DE = 5 cm, \angle E = 60°
- (c) DF = 5 cm, \angle E = 60°
- (*d*) DE = 5 cm, \angle D = 40°
- 10. In the given figure, if AB = 7.5 cm, BC = 5 cm and CA = 6.3 cm, then x, y, z arranged in ascending order are
 - (a) x < z < y.

(b) y < x < z.

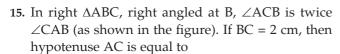
(c) x < y < z.

- (*d*) z < y < x.
- 11. In $\triangle PQR$ if $\angle R > \angle Q$ then
 - (a) QR > PR

(b) PQ > PR

(c) PQ < PR

(d) QR < PR

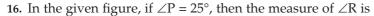

[CBSE SP 2010]

- **12.** In the given figure, $\angle B < \angle A$ and $\angle D > \angle C$, then
 - (a) AD > BC
 - (b) AD = BC
 - (c) AD < BC
 - (d) AD = 2BC
- 13. In the given figure, if AB = 3 cm and AC = 5 cm, then CD is equal to
 - (a) 4 cm
 - (b) 2 cm
 - (c) 3 cm
 - (*d*) 5 cm
- 14. In the given figure, DE \parallel BC, BP and CP are bisectors of \angle B and \angle C respectively. If BD = 2 cm and CE = 3 cm, then DE is equal to
 - (a) 3 cm

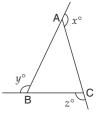
(b) 2 cm

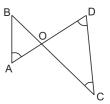
(c) 5 cm

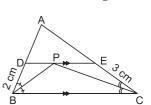
(d) 7 cm

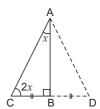


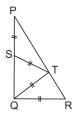
(a) 3 cm


(b) 4 cm


(c) 5 cm


(*d*) 6 cm




- (a) 25°
- (b) 50°
- (c) 75°
- (d) 60°

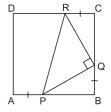


- 17. ABC is a triangle in which AB = AC. D is any point on AB. Through D, a line parallel to AC intersects BC at E. If DB=1.5 cm, then DE is equal to
 - (a) 3 cm

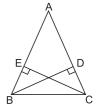
(*b*) 2 cm

(c) 2.5 cm

(d) 1.5 cm



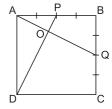
- **18.** ABCD is a square. P, Q and R are points on the sides AB, BC and CD such that AP = BQ = CR and \angle PQR = 90°. Then, the measure of \angle RPQ is
 - (a) 60°


(b) 30°

(c) 45°

(d) 75°

- 19. In the given figure, BD \perp AC and CE \perp AB. If BD=CE=3.5 cm and AB = 5 cm, then the measure of AC is
 - (a) 3.5 cm
 - (b) 4.5 cm
 - (c) 5 cm
 - (*d*) 5.5 cm



- **20.** ABCD is a square. P is the mid-point of AB and Q is the mid-point of BC. If PD and AQ intersect at O, then the measure of ∠POQ is
 - (a) 100°

(b) 90°

(c) 75°

(d) 60°

Chapter 8: **Quadrilaterals**

WIOLTIFLE-CHOI	CE QUESTIONS ——
Choose the correct answer from the giver	n four options in the following questions:
1. Three angles of a quadrilateral are 60	9°, 86° and 110°. The fourth angle is
(a) 104°	(b) 124°
(c) 94°	(d) 84° [CBSE SP 2011]
2. The value of x in the given figure is	7x $5x$
(a) 10°	(b) 20°
(c) 30°	(d) 40° [CBSE SP 2010] $\sqrt{3x}$ $3x$
3. In a quadrilateral, three angles are in	
the fourth angle is 80°, then the other	
(a) 100°, 100°, 80°	(b) 120°, 120°, 40°
(c) 100°, 110°, 70°	(d) 110°, 110°, 60°
*	dAD = BC = 5.5 cm, and one of the angles
is 80°, then the other angles are	
(a) 90°, 90°, 100°	(b) 120°, 80°, 80°
(c) 80°, 100°, 100°	(<i>d</i>) 110°, 85°, 85°
-	ended in order to form exterior angles.
The sum of these exterior angles is	
(a) 360° (b) 270°	(c) 90° (d) 180°
6. Which of the following is not true for	r a parallelogram?
(a) Opposite sides are equal.	
(b) Opposite angles are equal.	
(c) Opposite angles are always bisec	ted by the diagonals.
(d) Diagonals bisect each other.	
7. In a quadrilateral ABCD, if AB = BC is a	and CD = DA, then quadrilateral ABCD
(a) trapezium (b) rhombus	(c) kite (d) parallelogram
• • • • • • • • • • • • • • • • • • • •	t $\angle C = 90^{\circ}$ and diagonal AC and BD bisect
each other at right angles, then the q	uadrilateral is a
(a) trapezium (b) kite	(c) rectangle (d) square
P and Q are the mid-points of the s point on side BC. O is joined to A. If respectively, then PQRS is	ides AB and AC of \triangle ABC and O is any S and R are the mid-points of OB and OC
~ ~	o and it are the find points of obtaine oc
(a) a square	(b) a rectangle
-	-

10.		and $\angle Q$ of a quadr of $\angle R$ and $\angle S$ at C				
	(a) rectangle	(b) rhombus	(c) para	llelogram		
	(d) quadrilateral	whose opposite ang	gles are sı	upplemen	tary	
11.	ABCD is a rhomb	ous in which ∠BCD	$= 100^{\circ}, t$	hen (x + y)) equals	A B
	(a) 40°		(b) 60°			x y
	(c) 80°		(<i>d</i>) 70°	[CBSE SF	' 2011]	100°
						D C
12.	ABCD is a paralle of <i>x</i> is	elogram. If $\angle A = (3x)$	x – 20)° aı	$nd \angle C = (x + 1)$	$(x + 40)^{\circ}$, th	nen the value
	(a) 30	(b) 40	(c) 50		(d) 60	
13	` _	mid-points of the	` '	and AC	` '	elv of AABC
10.		o F. To prove that D			-	•
	(a) $\angle DAE = \angle EF$		(b) AE =	= EF		
	(c) $DE = EF$		(d) ∠AI	DE = ∠EC	F	
14.	ABCD is a parallel	logram. If its diagon	als are eq	ual, then t	he measur	re of ∠ABC is
	(a) 60°	(b) 90°	(c) 75°		(d) 120°	
15.	Diagonals AC an	nd BD of a parallel	ogram A	BCD inte	rsect eacl	n other at O.
	If $OA = 5$ cm and	OD = 4 cm, then the	ne lengths	s of AC ar	nd BD resp	pectively are
	(a) 5 cm, 4 cm		(b) 10 cm	m, 8 cm		
	(c) 2.5 cm, 2 cm		(d) 15 cm	m, 12 cm		
16.	-	een two altitudes of e parallelogram is 6	_	-	_	
	(a) 105°, 75°, 105°	, 75°	(b) 115°	, 65°, 115°	, 65°	
	(c) 120°, 60°, 120°	°, 60°	(d) 110°	, 70°, 110°	, 70°	
17.	In a parallelogran	n, if $\angle A = 60^{\circ}$, then	∠D is eq	ual to		
	(a) 110°		(b) 140°			
	(c) 120°		(d) 130°		[(CBSE SP 2011]
18.	One angle of a qu	adrilateral is 114° a	and the r	emaining	three ang	les are equal.
	Then, the measur	e of each of the thre	ee equal a	angles is		_
	(a) 82°	(b) 84°	(c) 86°		(d) 92°	
19.	Given a trapeziu	um PQRS such the	at PQ =	12 cm, F	RS = 5 cr	n, PQ SR,
	PS = QR = 8 cm. 1	If $\angle R = 130^{\circ}$, then \angle	(P is			
	(a) 130°	(<i>b</i>) 50°	(c) 150°		(d) 120°	
20.	In parallelogram	ABCD, $AB = 3$ cm	and the o	diagonals	AC and B	D are 5.8 cm
	_	ctively. If the diago	onals AC	and BD i	ntersect a	t O, then the
	perimeter of ΔAC	OB is	(1) 2.2			
	(a) 10 cm		(b) 8.8 c			
	(c) 7.2 cm		(<i>d</i>) 8 cm	ı		

21.	f an angle of a parallelogram is four-fifths of its adjacent angle, then the angles of the parallelograms are			
	(a) 70°, 110°, 70°,		(b) 80°, 100°, 80°,	100°
	(c) 72°, 108°, 72°,		(d) 60°, 120°, 60°, 1	
22				+ 10)° and $(2x)$ °. Value
•	of x is	dadiliateral are (2)	1 20) , (01 00) , (1	10) and (2x) . Value
	(a) 40	(b) 45	(c) 50	(d) 55
23.	ABCD is a rectang	gle where BC = $(4x)$	-5) cm and AD = (2x + 3) cm. Then, BC is
	(a) 11 cm		(b) 12 cm	
	(c) 10 cm		(<i>d</i>) 15 cm	
24.	In rhombus PQRS	S, $PQ = 3x$ cm, $QR =$	= 2(x + 3) cm. Each	side of the rhombus is
	(a) 17 cm	(b) 19 cm	(c) 18 cm	(d) 28 cm
25.	ABCD is a rhomb	ous in which altitud	e from D to side A	B bisects AB. Then the
	angles of the rhor	nbus are		
	(a) 100°, 80°, 100°	°, 80°	(b) 110°, 70°, 110°,	
	(c) 120°, 60°, 120°	°, 60°	(<i>d</i>) 130°, 50°, 130°,	. 50°
26.		t of side BC of a par	0	such that
		f AD = 10 cm, then	· ·	
	(a) 10 cm	(<i>b</i>) 5 cm	(c) 6 cm	(d) 8 cm
27.	•	0		mid-points of AB and
	diagonal AC is	gonal AC intersect	at M. If $AM = 3$ c	m, then the length of
	(a) 3 cm	(b) 4.5 cm	(c) 6 cm	(<i>d</i>) 7.5 cm
28.	. ,	` '	* *	ntersect each other at
_0.	~	$a = 68^{\circ}$ and \angle CAD =	~	
	(a) 40°	(b) 43°	(c) 68°	(d) 25°
29.	In a parallelogran	n PQRS, PQ = 9 cm	and PS = 5 cm. The	e bisector of ∠P meets
	SR in A. PA and 0	QR produced meet	at B. Then, the leng	th of RB is
	(a) 5 cm	(b) 4 cm	(c) 9 cm	(d) 6 cm
30.	M is the mid-po	int of side CD of	a parallelogram A	BCD. A line through
	C parallel to MA intersects AB at P and DA produced at R. If DA = 3.5			at R. If $DA = 3.5$ cm,
	then the length of		-	(1) 10 =
	(a) 3.5 cm	(<i>b</i>) 5 cm	(c) 7 cm	(d) 10.5 cm
31.		tium in which AB \parallel ely. If AB = 12 cm, \blacksquare		the mid-points of AD he length of CD is
	(a) 16 cm	(b) 14 cm	(c) 12 cm	(<i>d</i>) 10 cm
32.	PQRS is a paralle	elogram. A and B	are respectively th	e mid-points of sides
	PQ and SR. AS and BQ meet the diagonal PR of length 12 cm at C and I			gth 12 cm at C and D
	-	n, the length of CD		(1)
	(a) 6 cm	(<i>b</i>) 3 cm	(c) 4 cm	(<i>d</i>) 5 cm

33.	The side AB of the parallelogram A	ABCD is produced to X and the bisector
	of ∠CBX meets DA produced and I	DC produced at E and F respectively. If
	DE=10 cm, then the length of DF is	
	(a) 5 cm	(b) 10 cm
	(c) 7.5 cm	(d) 15 cm

34. If the diagonals of a rhombus are 18 cm and 24 cm respectively, then its side is equal to

(c) 20 cm

(d) 17 cm

35. In $\triangle ABC$, $\angle A=30^\circ$, $\angle B=40^\circ$ and $\angle C=110^\circ$. Then, the angles of the triangle formed by joining the mid-point of the sides of this triangle are

(a) 70°, 70°, 40° (b) 60°, 40°, 80° (c) 30°, 40°, 110° (d) 60°, 70°, 50°

(*b*) 15 cm

(a) 16 cm

Chapter 10: Circles

MULTIPLE-CHOICE	ALIECTIONS
MULTIPLE-CHOICE	QUESTIONS ——

Choose the correct answer from the given four options in the following questions:

1.	Then, the measure of $\angle APD$ is	AB = arc BC = arc CD.	
	(a) 38°	(b) 59°	
	(c) 57°	(d) 76°	A
2.	The given figures show two congrue with centre O and O'. Arc AXB surangle of 75° at the centre and arc A'YI an angle of 25° at the centre O'. Then, arcs AXB to A'YB' is (a) 3:1	ubtends an B' subtends A 75°	B C
	(a) 3 · 1 (c) 2 : 1	(d) 1:2	
		(<i>u</i>) 1.2	
3.	Greatest chord of a circle is called its		
	(a) radius	(b) diameter	
	(c) chord	(d) secant	
4.	Angle formed in minor segment of a	circle is	
	(a) an acute angle	(b) an obtuse angle	
	(c) a right angle	(d) a straight angle	
5.	Number of circles that can be drawn	through three non-coll	inear points is
	(a) 1 (b) 0	(c) 2 (d)	3
6.	In the given figure, O is the centre of AC is a diameter of the circle. The management (a) 22° (b) 33° (c) 44°		A 68° O C
	(d) 68°		[CBSE SP 2012]
7	AB is a chord of a circle with radius '	r' If P is any point on t	
/ •	AD is a criora of a cricle with faulus	7. II I is any point on t	iic ciicie sucii iliai

∠APB is a right angle, then AB is equal to

(a) r

(b) 2r

(c) 3r

(*d*) r^2

8. Chords AB and CD intersect at right angles. If \angle BAC = 40°, then ∠ABD is equal to

(a) 45°

(b) 60°

(c) 50°

(d) 40°

- 9. In the given figure, if OA = 5 cm, AB = 8 cm and OD is perpendicular to AB, then CD is equal to
 - (a) 2 cm
 - (b) 3 cm
 - (c) 4 cm
 - (d) 5 cm
- 10. If ABCD is a cyclic trapezium in which AD \parallel BC and \angle B = 60°, then \angle BCD is equal to
 - (a) 120°

(b) 100°

(c) 80°

- (d) 60°
- 11. If a straight line APQB is drawn to cut two concentric circles, then
 - (a) AP > BQ

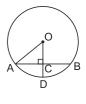
(b) AP = BQ

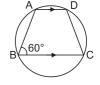
(c) AP < BQ

- (d) AQ > PB
- 12. If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is
 - (a) 8 cm

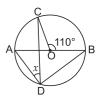
(b) 6 cm

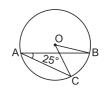
(c) 12 cm

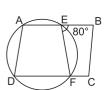

- (d) 10 cm
- **13.** The value of x in the given figure is
 - (a) 35°
 - (b) 45°
 - (c) 25°
 - (d) 30°
- 14. In the given figure, if $\angle BAC = 25^{\circ}$, then $\angle BOC$ is equal to
 - (a) 25°
 - (b) 50°
 - (c) 60°
 - (d) 125°
- **15.** In the given figure, if $\angle ADC = 118^{\circ}$, then the measure of $\angle BDC$ is

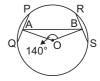


- (b) 28°
- (c) 32°
- (d) 38°
- 16. ABCD is a parallelogram. A circle passes through A and D and cuts AB at E and DC at F. If \angle BEF = 80°, then \angle ABC is equal to




- (b) 120°
- (c) 100°
- (d) 80°





- 17. If a chord of a circle is equal to its radius, then the angle subtended by this chord in major segment is
 - (a) 90°

(b) 60°

(c) 45°

- (d) 30°
- 18. In the given figure, PQ and RS are two equal chords of a circle with centre O. OA and OB are perpendiculars on chords PQ and RS, respectively. If ∠AOB = 140°, then ∠PAB is equal to

(a) 50°

(b) 70°

(c) 60°

- (d) 40°
- 19. In the given figure, AD is the diameter of the circle and AE = DE. If \angle ABC = 115°, then the measure of \angle CAE is
 - (a) 60°

(b) 80°

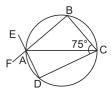
(c) 70°

- (d) 90°
- **20.** In the given figure, if $\angle ABC = 50^{\circ}$ and $\angle BDC = 40^{\circ}$, then $\angle BCA$ is equal to
 - (a) 100°

(b) 40°

(c) 90°

(d) 50°

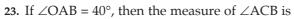


- **21.** In the given figure, AC is a diameter of the given circle and $\angle BCD = 75^{\circ}$. Then, $\angle EAF \angle ABC$ is equal to
 - (a) 10°

(b) 15°

(c) 20°

(d) 25°

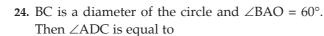


- **22.** In the given figure, O is the centre of the circle. ∠OAB and ∠OCB are 40° and 30° respectively. Then, the measure of ∠AOC is
 - (a) 120°

(b) 140°

(c) 170°

(*d*) 110° [CBSE SP 2010]

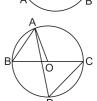


(a) 40°

(b) 80°

(c) 50°

(d) 20°



(a) 60°

(b) 45°

(c) 30°

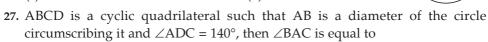
(d) 90°

- **25.** In the given figure, O is the centre of the circle and \angle CBE = 25° and $\angle DEA = 60^{\circ}$. The measure of $\angle ADB$ is
 - (a) 90°

(b) 85°

(c) 95°

(*d*) 120° [CBSE SP 2010]


70

- **26.** In the given figure, if $\angle CAB = 50^{\circ}$ and $\angle CBA = 70^{\circ}$, then ∠ADB is equal to
 - (a) 80°

(b) 60°

(c) 50°

(d) 70°

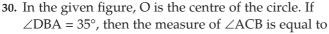
(a) 30°

(b) 50°

(c) 40°

- (d) 60°
- 28. In the given figure, $\angle ABC = 45^{\circ}$, then the measure of ∠AOC is

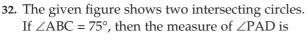
 - (d) 75°

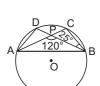


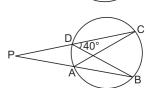
- 29. O is the centre of the given circle. If $\angle APB = 120^{\circ}$ and $\angle DBC = 25^{\circ}$, then the measure of $\angle ADB$ is equal to
 - (a) 120°

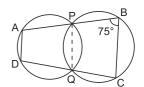
(b) 60°

(c) 100°


(d) 95°


- (a) 35°
- (b) 45°
- (c) 55°
- (d) 65°




- (a) 160°
- (b) 120°
- (c) 100°
- (d) 140°

- (a) 125°
- (b) 150°
- (c) 75°
- (d) 105°

- 33. In the given figure, chords AB and CD intersect at P. If $\angle DPB = 88^{\circ}$ and $\angle DAP = 46^{\circ}$, then the measure of $\angle ABC$ is
 - (a) 48°
 - (b) 42°
 - (c) 46°
 - (d) 44°
- 34. In the given figure, O is the centre of the circle. ABE is a straight line. If $\angle DBE = 95^{\circ}$, then $\angle AOD$ is equal to
 - (a) 170°
 - (b) 190°
 - (c) 180°
 - (d) 175°
- 35. AOB is the diameter of the circle. If \angle AOE = 150°, then the measure of \angle CBE is
 - (a) 105°

(b) 120°

(c) 125°

- (d) 115°
- 36. The region between a chord and either of the arc is called
 - (a) a segment

(b) a semicircle

(c) a quarter circle

- (d) a sector
- 37. In the given figure, AB is a side of a regular five sided polygon and AC is a side of a regular six sided polygon inscribed in the circle with centre O. AO and CB intersect at P, then ∠APB is equal to

(b) 72°

(c) 96°

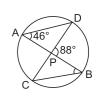
- (d) 90°
- **38.** AOB is a diameter of the circle and C, D, E are any three points on the semicircle. Then, \angle AED + \angle BCD is equal to
 - (a) 25°

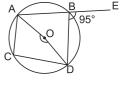
(b) 260°

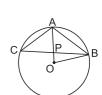
(c) 270°

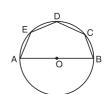
- (d) 280°
- **39.** What fraction of the whole circle is minor arc RP in the given figure?
 - (a) $\frac{1}{2}$ of the circle

(b) $\frac{1}{4}$ of the circle


(c) $\frac{1}{3}$ of the circle


- (d) $\frac{1}{5}$ of the circle
- **40.** In the given circle, O is the centre and $\angle BDC = 42^{\circ}$. Then, $\angle ACB$ is equal to
 - (a) 42°


(b) 48°


(c) 58°

(d) 52°

- **41.** In the given figure, AB \parallel CD and O is the centre of the circle. If \angle ADC = 25°, then the measure of \angle AEB is
 - (a) 80°

(b) 50°

(c) 25°

- (d) 40°
- **42.** In the given figure, $\angle OPQ = 30^{\circ}$ and $\angle ORQ = 57^{\circ}$. Then, the measure of $\angle POR$ is
 - (a) 33°

(b) 57°

(c) 66°

(d) 54°

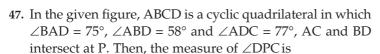
- **43.** In the given figure, O is the centre of the circle and $\angle SPQ = 50^{\circ}$. Then, the measure of $\angle SRQ$ is
 - (a) 100°

(b) 130°

(c) 120°

(d) 110°

- 44. In the given figure, M, A, B and N are points on a circle having centre O. AN and MB cut at Y. If \angle NYB = 50° and \angle YNB = 20°, then reflex \angle MON is equal to
 - (a) 200°
- (b) 220°
- (c) 240°
- (d) 260°


- **45.** In the given figure, ABCD is a cyclic quadrilateral, \angle CBQ = 48° and a = 2b. Then, b is equal to
 - (a) 48°
 - (b) 38°
 - (c) 28°
 - (d) 18°
- **46.** In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E. If \angle ADE = 95° and \angle OBA = 30°, then \angle OAC is equal to

(b) 5°

(c) 15°

(d) 20°

(a) 94°

(b) 90°

(c) 92°

(d) 105°

- **48.** AD is a diameter of a circle and AB is a chord. If AD = 50 cm, AB = 48 cm, then the distance of AB from the centre of the circle is
 - (a) 5 cm

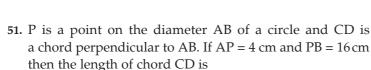
(b) 6 cm

(c) 7 cm

(d) 8 cm

- **49.** The given figure shows two congruent circles with centre O and O' intersecting at A and B. If $\angle AO'B = 50^{\circ}$, then the measure of $\angle APB$ is
 - (a) 50°

(b) 40°

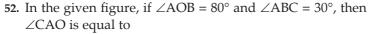

(c) 25°

- (d) 45°
- 50. In the given figure, if $\angle CAB = 49^{\circ}$ and $\angle ADC = 43^{\circ}$, then the measure of $\angle ACB$ is
 - (a) 96°

(b) 74°

(c) 92°

(d) 88°

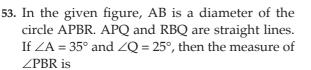


(a) 20 cm

(b) 10 cm

(c) 8 cm

(d) 16 cm

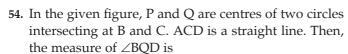


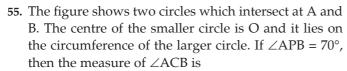
(a) 30°

(b) 80°

(c) 60°

(d) 40°

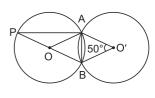


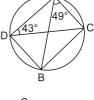

(b) 115°

(c) 155°

(d) 165°

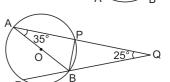
- (a) 115°
- (b) 150°
- (c) 105°
- (d) 130°

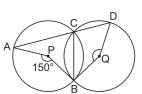


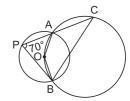


(b) 60°

(c) 70°


(d) 40°





80°

Chapter 12: **Heron's Formula**

Choose the correct answer from the given four options in the following questions:

- MULTIPLE-CHOICE QUESTIONS ----

1.	The area of a trian	ngle with base 8 cm	and height 10 cm	is
	(a) 80 cm^2	(b) 40 cm^2	(c) 20 cm^2	(<i>d</i>) 18 cm^2
2.	The sides of a tria	ingle are 12 cm, 16 c	cm and 20 cm. Its a	area is
	(a) 48 cm^2	(b) 120 cm^2	(c) 96 cm^2	(<i>d</i>) 160 cm^2
				[CBSE SP 2012]
3.		ngle whose sides ar		
	(a) 42 cm^2	(b) 6 cm ²	(c) 84 cm ²	(d) 100 cm^2
				[CBSE SP 2012]
4.		f an equilateral tria		
		(b) $16\sqrt{3} \text{ m}^2$		
5.	If the area of an triangle is	equilateral triangle	is $16\sqrt{3}$ cm ² , the	n the perimeter of the
	(a) 12 cm	(b) 24 cm	(c) 48 cm	(d) 36 cm
				[CBSE SP 2013]
6.		_	cm, 8 cm and 10 cm	m. The cost of painting
	it at the rate of 70		() T 4 F	(1) 746
	(a) ₹7		(c) ₹ 17	(d) ₹ 16
7.	The perimeter of area is			gonals is 6 cm, then its
	(a) 28 cm^2	(b) 36 cm^2	(c) 24 cm ²	(d) 20 cm^2
8.	An isosceles right	triangle has area 8	cm ² . The length of	f the hypotenuse is
	(a) 6 cm	(<i>b</i>) $\sqrt{32}$ cm	(c) 8 cm	(d) 4 cm
9.		-	ring base 24 cm an	nd length of one of the
	equal sides 20 cm		2	2
	(a) 480 cm^2	(b) 196 cm ²	` '	(d) 192 cm^2
10.				of the equal side to its
		area of the triangle		(D 16 2
	(a) $32\sqrt{2}$ cm ²		(c) $16\sqrt{2} \text{ cm}^2$	
11.	then its area is		-	n and 5 cm respectively,
	(a) $5\sqrt{11} \text{ cm}^2$	(b) $\frac{5}{2}\sqrt{11}$ cm ²	(c) $\frac{5}{8}\sqrt{11}$ cm ²	(d) $\frac{5}{4}\sqrt{11}$ cm ²
12.		etween the semi-pe cm and 6 cm respe		e sides ' a' , ' b' and ' c' of ABC) is

(d) 24.00 cm

	(a) 63 cm ²	(b) 42 cm^2	(c) 84 cm^2	(d) 168 cm^2
13.	The sides of a tria	angle are 13 cm, 14	cm and 15 cm. The	length of the shortest
	altitude is			
	(a) 12 cm	(b) 11.2 cm	(c) 12.9 cm	(d) 11.9 cm
14.	The sides of a tria	angle are 17 cm, 25	cm and 26 cm. The	length of the altitude
	to the longest side	e correct up to two	places of decimals i	e e

to the longest side correct up to two places of decimals is (a) 16.32 cm (b) 34.00 cm

(c) 15.69 cm 15. If the perimeter of a rhombus whose diagonals measure 12 cm and 16 cm is equal to the perimeter of an isosceles triangle having its equal side and the base in the ratio 3:2, then the area of the isosceles triangle is

(a) $50\sqrt{2}$ cm² (b) $25\sqrt{2}$ cm² (c) $75\sqrt{2}$ cm² (d) $100\sqrt{2}$ cm²

Chapter 13: Surface Areas and Volumes

		MULTIPLE-CHO	CE QUESTIONS	
Cho	oose the correct an	swer from the giver	n four options in the	e following questions:
1.	The total surface	area of a cube is 96	cm ² . The volume o	f the cube is
	(a) 27 cm^3	(b) 64 cm^3	(c) 8 cm^3	(d) 512 cm^3
2.		bes whose edge mea netal of edge 15 cm		n be formed by melting
	(a) 125	(b) 45	(c) 75	(d) 135
3.	lateral surface are	ea is		e of side 4 cm and its
	(a) 16 cm^2	(b) 20 cm^2	(c) 32 cm^2	(<i>d</i>) 24 cm^2
4.	The volume of a	cube whose diagona	al is $2\sqrt{3}$ cm is	
	(a) 8 cm^3		(b) 4 cm^3	
	(c) $8\sqrt{3} \text{ cm}^3$		(<i>d</i>) $4\sqrt{3}$ cm ³	
5.		anks of dimensions 20 m long, 6 m wide		cm) that can be placed
	(a) 764	(b) 840	(c) 768	(d) 960
6.	The number of 6 $18 \text{ m} \times 12 \text{ m} \times 9 \text{ r}$		e formed from anot	her cuboid measuring
	(a) 9	(b) 10	(c) 12	(d) 15
7.	The length of the and 8 m high is	longest rod that can	be placed in a roon	n 12 m long, 9 m broad
	(a) 15 m	(b) 20 m	(c) 18 m	(d) 17 m
8.	-	ube whose volume n × 75 cm × 80 cm is	_	olume of a cuboid of
	(a) 48 cm	(b) 60 cm	(c) 36 cm	(d) 42 cm
9.	out is disposed o	f in a carrier which	can carry a maxim	ug and the earth taken num load of 540 m ³ of nake to dispose of the
	(a) 20	(<i>b</i>) 10	(c) 15	(d) 12
10.		space of 0.48 m ³ , the		2 m × 9 m. If a bag of amber of bags that can

(c) 2400

(d) 3000

(a) 1800

(b) 3600

11.		dimensions 30 cm > 2 cm, then the nur		melted and converted ed is
	_		(c) 1420	(d) 710
12.	The volume of a 17 cm, then its height	-	ler is 2310 cm ³ . If the	ne radius of its base is
	(a) 7.5 cm	(b) 22.5 cm	(c) 15 cm	(d) 30 cm
13.	If a square paper surface area is	of side 25 cm is ro	olled to form a cyl	inder, then its curved
	(a) 625 cm^2	(b) 500 cm^2	(c) 250 cm^2	(d) 1000 cm^2
14.	The curved surface	ce area of a well of o	diameter 3.5 m and	depth 10 m is
	(a) 135 m^2	(b) 35 m^2	(c) 70 m^2	(d) 110 m^2
15.	The curved surface and height 3 m is	ce area of a cylinder	whose circumfere	nce of the base is 22 m
	(a) 66 m^2	(b) 132 m^2	(c) 33 m^2	$(d) 99 \text{ m}^2$
16.	area is			s outer curved surface
	(a) 21 m^2	(b) 63 m^2	(c) 66 m^2	(d) 42 m^2
17.	The cost of cemer 2 m at the rate of	· ·	red surface of a 14 i	m deep well of radius
	(a) ₹ 352	(<i>b</i>) ₹ 56	(c) ₹ 112	(<i>d</i>) ₹ 176
18.	The diameter of the 14 cm is	ne base of a cylinder	of curved surface a	area 88 cm ² and height
	(a) 1 cm	(b) 2 cm	(c) 1.5 cm	(<i>d</i>) 2.5 cm
19.	The total surface a is	rea of a right circula	ar cylinder of heigh	t 4 cm and radius 3 cm
	(a) 132 cm^2	(b) 66 cm ²	(c) 198 cm^2	(d) 99 cm^2
20.	If the lateral surfabase diameter is	ce area of a cylinder	r is 132 cm ² and its	height is 7 cm, then its
	(a) 5 cm	(b) 3 cm	(c) 6 cm	(d) 4 cm
21.		e of the base of a rig 3 cm ² , then the sum	•	r is 44 cm. If its whole adius is
	(a) 16 cm	(b) 18 cm	(c) 20 cm	(d) 22 cm
22.		ace area of a righ its base is 110 cm, th	•	r is 4400 cm^2 . If the
	(a) 36 cm	(b) 38 cm	(c) 40 cm	(d) 42 cm
23.		re of maximum voluthe maximum volut		out of an iron cube of oder is
	(a) $32\pi \text{ cm}^3$	(b) $24\pi \text{ cm}^3$	(c) $16\pi \text{ cm}^3$	(d) $28\pi \text{ cm}^3$

50

24.	0		-	and height 3.5 m is
	(a) 69	(b) 46	(c) 92	(d) 138
25.	If the radius of the	atio of the volume	ular cylinder is hal	ved, keeping the same nder to the volume of
	(a) 1:4	(b) 4:1	(c) 1:2	(<i>d</i>) 2:1
26.	•	orass is dropped int	o it and the water i	a depth of 30 cm. If a rises by 9 cm, then the
	(a) 12 cm	(b) 15 cm	(c) 8 cm	(<i>d</i>) 18 cm
27.	of 5 : 3. The ratio	of their volumes is	atio 2:3 and their	heights are in the ratio
	(a) 20:27	(b) 20:37	(c) 17:27	(d) 10:17
28.	The volume of a s (a) 38000 cm ³ (c) 30000 cm ³	sphere of diameter 4	42 cm is (b) 34000 cm ³ (d) 38808 cm ³	
29.	The surface area of	of a sphere of radius	s 3.5 cm is	
	(a) 77 cm^2	(b) 154 cm ³	(c) 154 cm^2	(<i>d</i>) 120 cm^2
30.	The volume of a diameter is	sphere is numeri	cally equal to its	surface area, then its
	(a) 6 units	(b) 3 units	(c) 1 unit	(d) 2 units [CBSE SP 2011]
31.	A cube of side 4 co	-	e touching its sides.	Find the approximate
	(a) 33 cm^3	(b) 30.48 cm^3	(c) 33.52 cm^3	(<i>d</i>) 34 cm^3
32.	The ratio of the ra	ndii of two spheres	whose volumes are	e in the ratio 64 : 27 is
	(a) 16:9	(<i>b</i>) 8:3	(c) 10:7	(d) 4:3
33.	Given that the sur	rface area of a sphe	rical shot-put is 616	6 cm ² , its diameter is
	(a) 12 cm	(b) 14 cm	(c) 16 cm	(d) 18 cm
34.	_	us 3 cm is melted an lius of the base of tl	_	circular cone of height
	(a) 27 cm	(<i>b</i>) 3 cm	(c) 6 cm	(<i>d</i>) 9 cm
35.	-	oon grows to twice inflated balloon to		lated, then the ratio of n is
	(a) 8:1	(b) 4:1	(c) 6:1	(<i>d</i>) 5:1
36.	If the total surface	e area of a hemisph	ere is 1848 cm², the	n its diameter is
	(a) 22 cm	(b) 26 cm	(c) 28 cm	(d) 24 cm

(a) $2\pi r(l+r)$ (b) $\pi r\left(l+\frac{r}{4}\right)$ (c) $\pi r(4r+l)$ (d) $2\pi r$ [CBSE SP 2010]

37. The total surface area of a cone of radius 2r and slant height $\frac{l}{2}$ is

38. The total surface area of a cone of radius 7 m and slant height 10 m is

	(a) 374 m^2	(b) 598.4 m^2	(c) 561 m^2	(d) 280.5 m^2
39.	The volume of a c	one is 1570 cm^3 . If i	t is 15 cm high the	n its base area is
	(a) 415 cm^2	(b) 413 cm ²	(c) 314 cm^2	(<i>d</i>) 514 cm ²
40.	If the slant height	of a cone of base ra	dius 7 cm is 25 cm	, then its height is
	(a) 32 cm	(b) 24 cm	(c) 18 cm	(d) 36 cm
41.	The diameter of the	ne base of a cone of	height 15 cm and v	volume 770 cm ³ is
	(a) 7 cm	(b) 14 cm	(c) 21 cm	(d) 10.5 cm
42.		-		is 4 m. If 10 men sleep
	in it, then the aver	rage number of cub	ic dm of air space p	per man is
	(a) 4400	(b) 8800	(c) 8400	(d) 4800
43.	•		0	ade of cloth which is
		n, the length of clot	h used to make the	e pandal is
	(a) 625 m	(b) 676 m	(c) 600 m	(d) 624 m
44.		•	•	al. If their base radius
	is same, then the ra	atio of the slant heig	ht of the cone to the	e height of the cylinder
	is			
	(a) 2:3	(b) 1:1	(c) 2:1	(d) 1:2
45.				e ratio of their heights
		ntio of their volume		(7)
	(a) 1:2	(<i>b</i>) 2:1	(c) 1:3	(d) 3:1
46.		~ .	ons $4.5 \text{ m} \times 2.5 \text{ m}$	\times 2.5 m at the rate of
	₹ 20 per cubic met		() T 110 T	(D. T. 1 () T. 1
	(a) ₹ 281.25	(<i>b</i>) ₹ 562.50	(c) ₹ 1125	(<i>d</i>) ₹ 1687.50
47.		· ·	ed when two cubes	s each of side 6 cm are
	joined end to end		() 400 3	(1) 41 (3
		` '	(c) 432 cm^3	(d) 416 cm^3
48.	The number of litro	es that a cuboidal w	ater tank of dimensi	ions $6 \text{ m} \times 5 \text{ m} \times 4.5 \text{ m}$
	(a) 135000 L	(b) 135 L	(c) 270 L	(d) 270000 L
49.	The surface area o	f a cuboid whose le	ngth, breadth and h	neight are 15 cm, 10 cm
	and 20 cm respect	ively is		
	(a) 1300 cm ²	(b) 650 cm^2	(c) 1950 cm ²	(d) 2600 cm^2

cuboid of length 20 cm, breadth 10 cm and height 40 cm is

	(a) 400 cm^2	(b) 800 cm^2	(c) 200 cm^2	(d) 600 cm^2
51.	The volume of a	cylinder whose ci	rcumference of th	e base is 132 cm and
	height 25 cm is			
	(a) 3300 cm^3	(b) 34650 cm^3	(c) 9900 cm^3	(d) 19800 cm^3
52.	A cylinder and a	cone have equal bas	se radius. If their v	olumes are same, then
	the ratio of the he	ight of the cylinder	to the height of the	e cone is
	(a) 1:3	(<i>b</i>) 1:2	(c) 2:1	(<i>d</i>) 3:1
53.		-	•	00 cm ² and its volume
		its curved surface		
	(a) 2880 cm ²		(b) 2760 cm ²	
	(c) 2640 cm^2		(<i>d</i>) 2600 cm^2	
54.	The total surface a	area of a 7 cm high	cylinder having a v	volume of 448π cm ³ is
	(a) $\frac{5110}{7}$ cm ²		(b) $\frac{5280}{7}$ cm ²	
	(c) $\frac{5287}{7}$ cm ²		(d) 755 cm^2	
	,	and of the base of a	0 m high comical	tont is 11 m than the
55.	volume of air con		1 9 III mgn comcar	tent is 44 m, then the
	(a) 693 m^3		(c) 1386 m ³	(d) 462 m^3
56				en its capacity in litres
50.	is	3 33 cm in diameter	and 12 cm deep, in	cir its capacity in intres
	(a) 1.155 L	(b) 3.85 L	(c) 0.5775 L	(d) 7.7 L
57.	To make a closed	hollow cone of bas	se radius 7 cm and	height 24 cm, the area
	of metal sheet req			
	(a) 550 cm^2	(b) 704 cm ²	(c) 825 cm^2	(d) 1100 cm^2
58.	The area of canva	s required for a con	nical tent of height	24 m and base radius
	7 m is			
	(a) 550 m^2	(b) 1100 m^2	(c) 275 m^2	(d) 825 m^2
59.	A conical vessel w	hose internal depth	is 42 cm and interr	nal diameter is 48 cm is
	full of water. If 1	cubic dm of water	weighs 1 kg-wt, the	en the weight of water
	in the conical vess			
	(a) 26.5 kg-wt	(b) 25.344 kg-wt	_	(d) 25.65 kg-wt
60.	0		m. If its capacity is	3.3 litres of milk, then
	the diameter of its			(1)
	(a) 30 cm	(b) 60 cm	(c) 15 cm	(d) 35 cm
61.		sphere is 4851 cm ³		
	(a) 693 cm^2	(b) 1386 cm^2	(c) 2079 cm^2	(d) 1039.5 cm^2

62.	_	bowl is made of st then the outer curv					the
		(b) 154 cm ²					
63.	` '	ea of a solid sphere	. ,		` '		a of
		here of the same ra					
	(a) 693 cm ²	(b) 1039.5 cm ²			(d)	1559.25 cm ²	
64.	The number of sp	pherical bullets eac	h 5 di	m in diameter	which	n can be cast f	rom
	a rectangular blo	ock of lead 11 m lor	ng, 10	m broad and	5 m h	igh is	
	(a) 8400		(b)	4200			
	(c) 6300		(<i>d</i>)	5600			
65.	The number of s	solid spheres each	6 cm	in diameter,	which	can be moul	ded
	from a solid cylin	nder of height 45 ca	m and	l diameter 4 c	m witl	hout any loss	is
	(a) 7		(b)	12			
	(c) 10		(<i>d</i>)	5			
66.	If a hollow sphere	e of internal and ex	ternal	diameters 4 cr	n and	8 cm respectiv	vely
	melted into a cor	ne of base diameter	8 cm,	then the heigh	ht of t	he cone forme	ed is
	(a) 14 cm		(b)	12 cm			
	(c) 16 cm		(<i>d</i>)	8 cm			
67.	If a sphere of rac	dius $2r$ has the sam	ne vol	ume as that o	f a coi	ne with a circ	ular
	base of radius r ,	then the height of t	the co	ne is			
	(a) 32r		(b)	30 <i>r</i>			
	(c) 28r		<i>(d)</i>	24 <i>r</i>			
68.		l slant height of a		are in the rati	o 7 : 1	13 and its cur	ved
		36 cm ² , then its rad					
	(a) 7 cm		. ,	10 cm			
	(c) 10.5 cm		` '	7.5 cm			
69.		ce area of a right ci	rcular	cylinder which	:h just	encloses a spl	nere
	of radius <i>r</i> is			. 2			
	(a) $2\pi r^2$			$4\pi r^2$			
	(c) $8\pi r^2$		` '	$6\pi r^2$			
70.	If the radius (r) of	of a sphere is reduc			new vo	olume would	be
	$(a) \frac{1}{2} \left(\frac{4}{3} \pi r^3 \right)$		(b)	$\frac{4}{3}\pi\left(\frac{r^3}{2}\right)$			
	$(c) \frac{4}{3}\pi \left(\frac{r^3}{8}\right)$		(<i>d</i>)	$\frac{4}{6}\pi\bigg(\frac{r^3}{8}\bigg)$		[CBSE SP 2	010]

Chapter 14: **Statistics**

		MULTIPLE-CHOI	ICE Q	UESTIONS -	
Cho	ose the correct ans	swer from the giver	n four	options in the	following questions:
1.		s information about g of a hundred hous			ol going children in a llected by him is
	(a) primary data		(b) se	econdary data	
	(c) grouped data		(d) ar	rayed data	
2.	To analyse the ele thus collected is k		ıta is co	ollected from 1	newspapers. The data
	(a) primary data		(b) se	econdary data	
	(c) raw data		(d) g1	rouped data	
3.	Which of the follo	owing variables are	discre	ete?	
	1. Size of shoes		2. N	umber of pag	es in a book
	3. Distance trave	elled by a train	4. Ti		
	(a) 1 and 4	(b) 1 and 3	(c) 1	and 2	(d) 2 and 4
4.	For a given date observations is kr		betwe	en the maxir	num and minimum
	(a) class		(b) ra	inge	
	(c) class mark			ass limit	
5.	A data is such that value is	t its maximum valu	ie is 75	and range is 2	20, then the minimum
	(a) 95	(b) 55	(c) 20)	(d) 75
6.	In a grouped fre 20–30,, then the		n, the	e class interva	als are 0–10, 10–20
	(a) 20	(<i>b</i>) 15	(c) 10)	(d) 30
7.	In a grouped fre 41–60,, then the		on, the	class interva	als are 1–20, 21–40
	(a) 10.5	(<i>b</i>) 30	(c) 10)	(d) 20
8.	Class size of a dis	stribution having 28	34, 40	0, 46 and 52 as	s its class marks is
	(a) 3	(b) 4	(c) 5		(d) 6
9.	Given the class in	tervals 0-10, 10-20	0, 20-3	30,, then 10	is considered in class
	(a) $0-10$	(<i>b</i>) 10–20	(c) 0-		(<i>d</i>) 10-30
10.	The class mark of	the class interval 2	.4–6.6	is	
	(a) 2.4	(b) 4.5	(c) 6.	6	(d) 4.2
11.	The class marks o	of a frequency distri	bution	are as given	below:
		38, 43, 4		_	
		, , ,			

(a) 38-48

(a) 212, 237

(c) 212, 262

Column

(a) 50

Marks scored

Number of students

(i) The class mark of R is

The class corresponding to the class mark 43 is

the class marks of first two class intervals are

Р

30 - 40

4

(b) 60

(b) 38.5-48.5 (c) 35.5-45.5

12. The class size of a distribution is 25 and the first class interval is 200–224. Then,

13. Observe the table given below and choose the correct alternative in each case.

Q

40 - 50

8

(b) 237, 262

(d) 237, 287

R

50 - 60

12

(c) 55

S

60 - 70

10

(*d*) 40.5-45.5

Τ

70 - 80

7

(d) 12

U

80 - 90

4

(ii)	The cla	ass wi	dth of	Tis									
	(a) 70			(b) 10		(0	c) 8	30		(d)	7		
(iii)	The fre	equen	cy of (Q is									
	(a) 50			(b) 40		(0	c) 4	15		(d)	8 (
(iv)	The cla	ass siz	e of P	is									
	(a) 80			(b) 10		(0	c) 9	90		(d)) 4		
14.	_	uded i	n this			vith cla one of t				-			_
	1	4	7	2	0	3 9)	2	3	7	6	3	5
	2	5	5	6	2	3 5	5	1	0	4	6	4	
	The fre	equen	cy of t	he clas	s 3–5	is							
	(a) 8			(b) 11		(0	c) 5	5		(d)) 3		
15.	_					y distrib uencies.		on sho	ows t	he class	s inter	vals aı	nd their
	Class					10-	-20			20-30		30-	40
	Сити	lative fi	requenc	cy		į	5			14		25	5
		the fre	•	•	ass int	erval 20)–3() is					
	(<i>a</i>) 5			(b) 9		`	c) 1			, ,) 20		
16.	'Less t	han' c	umula	ative fre	equen	cy table	for	a giv	zen d	ata is a	s follo	ws:	
	Marks	3			Less	than 10	Le	ss tha	n 20	Less th	nan 30	Less	than 40
	Сити	lative fi	requenc	су		3		17		3	7	9	92

(a) 20

Then, the frequency of class interval 20–30 is

	(c) 55	(4	d) 34		
17.	'More than' cumulative f	requency table	e for a given	data is as foll	ows:
	Marks	More than 89	More than 79	More than 69	More than 59
	Cumulative frequency	8	18	30	65
	The one the of the owner are of the	l : t	170 00:		
	Then, the frequency of th (a) 10 (b) 35		c) 12	(d) 22	
10	In a bar graph, 0.25 cm le	`	,		on the length
10.	of bar which represents 2	-	represents 10	o people. The	en, me lengu
	(a) 4 cm (b) 4.5		c) 5 cm	(d) 3.5 c	m
19.	In a bar graph, the width	`	,	()	
	(a) have no significance				
	(b) are proportional to th	e correspondi	ng heights		
	(c) are proportional to th	•	0 0	es	
	(d) are proportional to th	•	0 1		
20.	For drawing a frequency	polygon of a	continuous f	requency dis	tribution, we
	plot the points whose or				
	abscissa are respectively				
	(a) lower limits of the cla	sses			
	(b) upper limits of the cla	isses			
	(c) class marks of the class	sses			
	(d) upper limits of precee	eding classes			
21.	One of the sides of a freq	uency polygo	n is		
	(a) the x-axis		b) the <i>y</i> -axis		
	(c) either of the coordina	te axes (d) neither of	the coordinat	e axes
22.	Which of the following is	not a measur	e of central to	endency?	
	(a) Mean	(1	b) Median		
	(c) Mode	(1	d) Standard o	leviation	
23.	The mean for counting no	umbers throu	gh 100 is		
	(a) 50 (b) 49.5	5 (c) 50.5	(<i>d</i>) 51	
24.	The mean of first four pri	me numbers	is		
	(a) 4 (b) 4.5	(c) 3.75	(d) 4.25	
25.	The smallest of three cor	nsecutive ever	n integers is	32. Then, the	mean of the
	three integers is				
	(a) 34 (b) 36	(c) 33	(d) 35	

(b) 14

Mat	hematics - Class 9					57
26.	If each observation of (a) becomes 3 times to (b) is decreased by 3 (c) is increased by 3 (d) remains the same			ed by 3, then th	eir mea	n
27.	The mean of 30 obs		. If	25 is subtrac	ted from	m the sum of
	observations, then re	maining sum is	(1)	225		
	(a) 375		. ,	335		
•	(c) 385		. ,	365		
28.	The mean of prime no	ambers between				
	(a) 37 (c) 34		(<i>b</i>) (<i>d</i>)			
20	` '		` '		alue of	v ic
29.	The mean of x_1 , x_2 is (a) 2		$(b)^{1, x_2}$		arue or	13 15
	(c) 5		(d)			[CBSE SP 2010]
30.	Sheila received <i>x</i> mark average score in all the	ks in two of her the five tests in te	test	s and y marks in s of x and y is		
	$(a) \frac{3x + 2y}{5}$			$\frac{2x+3y}{5}$		
	$(c) \frac{3x+2y}{3}$		(d)	$\frac{2x+3y}{2}$		
31.	The marks obtained b 50, 75, 90, 70 and 75.	•			st are 75	, 90, 70, 50, 70,
	(a) 70			71.5		
	(c) 72.5		(<i>d</i>)	75		
32.	Out of sixteen observations are 25 ar	_		_	order, tl	ne 8th and 9th
	(a) 25 (b)	27	(c)	26.5	(d) 26	
33.	The following observ	ations have been .8, 20, 25, 26, 30,		-	scending	g order:
	If the median of the d					
	(a) 35 (b)	40	(c)	45	(d) 50	
34.	Mode of a set of obse (a) occurs most frequ (b) divides the observ (c) is the mean of the (d) is the sum of the	ently vations into two middle two obs	eqı	ıal parts		

(b) 4

(*d*) 2

[CBSE SP 2010]

35. The mode of 4, 6, 7, 6, 4, 2, 4, 8, 6, 4, 3, 4, 6 is

(a) 6

(c) 3

36.	The given data is 3, 5, 6, 7, 5, 4, 7, 5, 6, <i>x</i> , 8 and 7. Then, the value of <i>x</i> for	or which
	he mode of the above data will be 7, is	

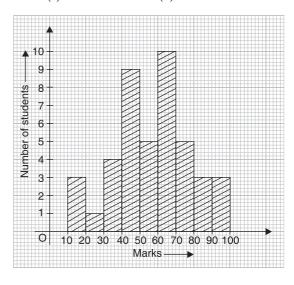
- (a) 5
- (b) 6
- (c) 8
- (d) 7
- 37. A set of data consists of six numbers: 7, 8, 8, 9, 9 and x

The difference between the modes when x = 9 and x = 8 is

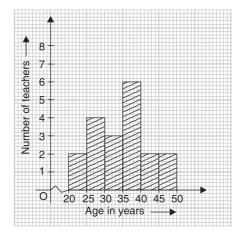
- (a) 4
- (b) 1
- (c) 2
- (d) 3
- **38.** For a frequency distribution, mean, median and mode are connected by the relation:
 - (a) Mode = 3 Median 2 Mean
 - (b) Mode = 3 Median + 2 Mean
 - (c) Mode = 3 Mean 2 Median
 - (d) Mode = 2 Median 3 Mean
- 39. Median of the following observations, arranged in an ascending order is 22.

$$8, 11, 13, 15, x + 1, x + 3, 30, 35, 40, 43$$

Then, the value of x is


- (a) 16
- (b) 18
- (c) 19
- (d) 20
- 40. For which set of data does the median equal the mode?
 - (a) 3, 3, 4, 5
- (*b*) 3, 3, 4, 5, 6
- (c) 3, 3, 4
- (*d*) 3, 4, 5, 6, 6
- **41.** A grouped frequency distribution table with classes of equal sizes using 105–120 (120 not included) as one of the class interval is constructed for the following data:

125	126	140	98	128	78	108	67
87	149	102	136	145	112	103	84
123	130	120	89	103	65	96	65


The number of classes in the distribution will be

- (a) 7
- (*b*) 6
- (c) 5
- (d) 4

- **42.** In the graph given alongside, the number of students who scored 60 or more marks is
 - (a) 19
 - (b) 20
 - (c) 22
 - (d) 21

- 43. The graph given alongside shows the frequency distribution of the age of 22 teachers in a school. The number of teachers whose age is less than 40 years is
 - (a) 15
 - (b) 14
 - (c) 16
 - (d) 17

44.	Class interval	5-10	10-15	15-25	25-45	45-75
	Frequency	6	12	10	8	15

For the frequency distribution given above, the adjusted frequency for the class 25 – 45 is:

- (a) 6
- (b) 5
- (c) 3
- (d) 2
- 45. The average of three consecutive even integers is 20. Then, the integers are
 - (a) 14, 16, 18

(b) 20, 22, 24

(c) 16, 18, 20

- (d) 18, 20, 22
- **46.** Vihaan has marks of 92, 85 and 78 in three mathematics tests. In order to have an average of exactly 87 for the four math tests, he should obtain
 - (a) 90 marks

(b) 92 marks

(c) 93 marks

- (d) 91 marks
- **47.** If the mean of x and $\frac{1}{x}$ is M, then the mean of x^2 and $\frac{1}{x^2}$ is
 - (a) $2M^2 + 1$
- (b) 2M + 1
- (c) 2M 1
- (d) $2M^2 1$
- **48.** The mean of six numbers is 23. If one of the numbers is excluded, the mean of the remaining numbers becomes 20. The excluded number is
 - (a) 36
- (b) 38
- (c) 39
- (d) 37
- **49.** The mean of five observations is 15. If the mean of first three observations is 14 and that of last three is 17, then the third observation is
 - (a) 29
- (b) 18
- (c) 31
- (d) 32
- **50.** The mean of n observations is \overline{x} . If the first item is increased by 1, second by 2, third by 3 and so on, then the new mean is
 - (a) $\overline{x} + \frac{n+1}{2}$

(b) $\overline{x} + \frac{n}{2}$

(c) $\overline{x} + n$

(d) $\overline{x} + \frac{n(n+1)}{2}$

51.

Variable	1	2	x	4	5
Frequency	2	3	4	5	6

The mean of the above frequency distribution is 3.5, then the value of x is

- (a) 4
- (b) 3
- (c) 2
- (d) 5

52. If the mean of the observations:

x, x + 3, x + 5, x + 7, x + 10 is 9, the mean of last three observations is

- (a) $11\frac{2}{3}$
- (b) $11\frac{1}{3}$
- (c) $10\frac{1}{3}$
- (d) $10\frac{2}{3}$
- 53. The traffic police recorded the speed (in km/h) of 10 motorists as 48, 52, 57, 55, 42, 39, 60, 49, 53 and 47. Later an error in recording instrument was found. If the instrument had recorded the speed 5 km/h less in each case, then the correct average speed of the motorists is
 - (a) 50.2 km/h
- (b) 52.5 km/h
- (c) 55.2 km/h
- (d) 54.5 km/h
- 54. The difference between the mean and median of first five prime numbers is
 - (a) 1
- (b) 0.4
- (c) 0.6
- (d) 0.8
- 55. When the data consists of 3, 4, 5, 4, 3, 4, 5, which statement is true?
 - (a) mean > median

(b) mean > mode

(c) median < mode

(d) mean = mode

A	Ν	S	W	Ε	R	S	

ANSWERS									
		——— СН	APTER 1						
1. (c)	2. (<i>d</i>)	3. (<i>d</i>)	4. (a)	5. (<i>a</i>)	6. (<i>d</i>)				
7. (<i>b</i>)	8. (<i>c</i>)	9. (a)	10. (<i>a</i>)	11. (<i>c</i>)	12. (<i>b</i>)				
13. (<i>d</i>)	14. (a)	15. (<i>c</i>)	16. (<i>b</i>)	17. (a)	18. (<i>c</i>)				
19. (<i>a</i>)	20. (<i>c</i>)	21. (c)	22. (<i>b</i>)	23. (<i>a</i>)	24. (c)				
25. (<i>c</i>)	26. (a)	27. (<i>d</i>)	28. (<i>d</i>)	29. (<i>c</i>)	30. (<i>c</i>)				
31. (<i>b</i>)	32. (a)	33. (b)	34. (b)	35. (<i>c</i>)	36. (<i>c</i>)				
37. (<i>a</i>)	38. (<i>b</i>)	39. (<i>d</i>)	40. (<i>b</i>)						
		—— сн	APTER 2 ——						
1. (b)	2. (<i>d</i>)	3. (<i>b</i>)	4. (<i>b</i>)	5. (<i>d</i>)	6. (<i>b</i>)				
7. <i>(a)</i>	8. (<i>b</i>)	9. (c)	10. (<i>c</i>)	11. (<i>d</i>)	12. (<i>b</i>)				
13. (<i>d</i>)	14. (c)	15. (<i>d</i>)	16. (<i>a</i>)	17. (<i>c</i>)	18. (c)				
19. (a)	20. (<i>b</i>)	21. (<i>b</i>)	22. (<i>b</i>)	23. (<i>d</i>)	24. (<i>d</i>)				
25. (<i>a</i>)	26. (<i>b</i>)	27. (<i>a</i>)	28. (<i>b</i>)	29. (<i>c</i>)	30. (<i>b</i>)				
31. (c)	32. (<i>d</i>)	33. (<i>a</i>)	34. (<i>c</i>)	35. (<i>b</i>)	36. (<i>b</i>)				
37. (<i>b</i>)	38. (<i>d</i>)	39. (c)	40. (<i>b</i>)	41. (<i>b</i>)	42. (<i>c</i>)				
43. (<i>b</i>)	44. (c)	45. (<i>a</i>)	46. (<i>d</i>)	47. (<i>a</i>)	48. (<i>b</i>)				
49. (<i>a</i>)	50. (<i>b</i>)	51. (<i>a</i>)	52. (<i>a</i>)	53. (<i>c</i>)	54. (<i>a</i>)				
55. (<i>c</i>)									
		—— сн	APTER 3 ——						
1. (c)	2. (c)	3. (<i>d</i>)	4. (<i>b</i>)	5. (<i>a</i>)	6. (<i>a</i>)				
7. (b)	8. (c)	9. (a)	10. (<i>b</i>)	11. (a)	12. (<i>c</i>)				
13. (<i>b</i>)	14. (c)	15. (<i>b</i>)	16. (<i>c</i>)	17. (a)	18. (<i>d</i>)				
19. (<i>c</i>)	20. (<i>b</i>)								
		—— сн	APTER 4						
1. (b)	2. (<i>d</i>)	3. (a)	4. (a)	5. (<i>c</i>)	6. (<i>d</i>)				
7. (b)	8. (b)	9. (a)	10. (<i>b</i>)	11. (a)	12. (<i>b</i>)				
13. (<i>c</i>)	14. (b)	15. (<i>b</i>)	16. (c)	17. (<i>b</i>)	18. (c)				
19. (c)	20. (<i>d</i>)		22. (<i>d</i>)	23. (<i>d</i>)	24. (b)				
25. (<i>a</i>)	26. (<i>d</i>)	27. (<i>b</i>)	28. (<i>b</i>)	29. (<i>d</i>)	30. (<i>b</i>)				
31. (<i>b</i>)	32. (c)	33. (a)	34. (<i>d</i>)	35. (<i>c</i>)	, ,				
	——— CHAPTER 5 ———								
1. (<i>d</i>)	2. (<i>b</i>)	3. (b)	4. (d)	5. (<i>c</i>)	6. (<i>c</i>)				
7. (d)	8. (d)	9. (a)	10. (d)	11. (b)	12. (a)				
13. (c)	14. (c)	15. (<i>b</i>)	16. (a)	17. (c)	18. (a)				
19. (a)	20. (b)	10. (0)	10. (n)	11. (0)	10. (n)				
19. (u)	20. (0)								

		—— СН	APTER 6 ——		
1. (<i>b</i>)	2. (c)	3. (<i>c</i>)	4. (a)	5. (<i>d</i>)	6. (a)
7. (<i>d</i>)	8. (<i>d</i>)	9. (a)	10. (<i>b</i>)	11. (c)	12. (c)
13. (<i>d</i>)	14. (<i>b</i>)	15. (<i>a</i>)	16. (<i>c</i>)	17. (<i>b</i>)	18. (c)
19. (<i>a</i>)	20. (<i>d</i>)	21. (<i>a</i>)	22. (<i>b</i>)	23. (<i>d</i>)	24. (c)
25. (<i>c</i>)	26. (<i>d</i>)	27. (<i>b</i>)	28. (a)	29. (<i>c</i>)	30. (<i>d</i>)
31. (<i>b</i>)	32. (<i>c</i>)	33. (<i>c</i>)	34. (<i>d</i>)	35. (<i>b</i>)	36. (<i>d</i>)
37. (<i>a</i>)	38. (<i>c</i>)	39. (<i>a</i>)	40. (<i>d</i>)	41. (<i>d</i>)	42. (a)
43. (<i>c</i>)	44. (b)	45. (c)	46. (<i>b</i>)	47. (c)	48. (c)
49. (<i>a</i>)	50. (<i>d</i>)				
		—— сн	APTER 7 ——		
1 (c)	2 (b)			5 (h)	6 (a)
1. (c) 7. (c)	2. (b)	3. (c)	4. (b) 10. (d)	5. (b)	6. (a)
	8. (<i>d</i>) 14. (<i>c</i>)	9. (c)		11. (b) 17. (d)	12. (c)
13. (<i>a</i>) 19. (<i>c</i>)	20. (b)	15. (<i>b</i>)	16. (c)	17. (<i>u</i>)	18. (<i>c</i>)
19. (0)	20. (0)				
		—— СН	APTER 8 ——	<u> </u>	
1. (a)	2. (<i>b</i>)	3. (<i>b</i>)	4. (c)	5. (<i>a</i>)	6. (c)
7. (<i>c</i>)	8. (<i>d</i>)	9. (<i>d</i>)	10. (<i>d</i>)	11. (c)	12. (a)
13. (<i>c</i>)	14. (<i>b</i>)	15. (<i>b</i>)	16. (<i>c</i>)	17. (<i>c</i>)	18. (<i>a</i>)
19. (<i>b</i>)	20. (d)	21. (b)	22. (b)	23. (a)	24. (c)
25. (c)	26. (b)	27. (c)	28. (b)	29. (b)	30. (<i>c</i>)
31. (<i>a</i>)	32. (<i>c</i>)	33. (<i>b</i>)	34. (<i>b</i>)	35. (<i>c</i>)	
		—— СН	APTER 9 ——	_	
1. (<i>d</i>)	2. (<i>d</i>)	3. (c)	4. (b)	5. (<i>d</i>)	6. (<i>d</i>)
7. (<i>d</i>)	8. (<i>b</i>)	9. (a)	10. (<i>b</i>)	11. (<i>d</i>)	12. (<i>c</i>)
13. (<i>b</i>)	14. (a)	15. (<i>b</i>)	16. (<i>a</i>)	17. (<i>c</i>)	18. (<i>b</i>)
19. (<i>c</i>)	20. (<i>b</i>)	21. (c)	22. (<i>a</i>)	23. (<i>a</i>)	24. (<i>b</i>)
25. (<i>c</i>)	26. (<i>c</i>)	27. (<i>d</i>)	28. (<i>d</i>)	29. (<i>b</i>)	30. (<i>a</i>)
31. (a)	32. (<i>c</i>)	33. (<i>c</i>)	34. (<i>b</i>)	35. (<i>c</i>)	36. (<i>b</i>)
37. (<i>d</i>)	38. (<i>b</i>)	39. (<i>a</i>)	40. (c)	41. (<i>b</i>)	42. (<i>a</i>)
43. (c)	44. (<i>d</i>)	45. (<i>a</i>)			
		——— СНА	APTER 10 ——		
1 (a)	2 (a)			F (a)	6 (a)
1. (c)	2. (a)	3. (b)	4. (b)	5. (a)	6. (a)
7. (b)	8. (c)	9. (a)	10. (d)	11. (b)	12. (d)
13. (a)	14. (<i>b</i>) 20. (<i>c</i>)	15. (b)	16. (d)	17. (<i>d</i>)	18. (b) 24. (a)
19. (<i>c</i>) 25. (<i>c</i>)	26. (<i>t</i>)	21. (<i>b</i>) 27. (<i>b</i>)	22. (<i>b</i>) 28. (<i>b</i>)	23. (c) 29. (d)	30. (c)
31. (<i>d</i>)	32. (<i>d</i>)	33. (b)	34. (a)	29. (<i>d</i>)	36. (<i>a</i>)
37. (<i>c</i>)		39. (c)	40. (b)	35. (a) 41 (d)	
31. (c)	38. (<i>c</i>)	39. (c)	±0. (<i>v</i>)	41. (<i>d</i>)	42. (<i>d</i>)

43. (<i>b</i>)	44. (<i>b</i>)	45. (c)	46. (<i>b</i>)	47. (c)	48. (c)
49. (c)	50. (<i>d</i>)	51. (<i>d</i>)	52. (c)	53. (<i>b</i>)	54. (b)
55. (<i>d</i>)	00. (11)	51. (ii)	02. (0)	55. (0)	01. (0)
001 (11)					
		—— СН	APTER 11 ——		
1. (c)	2. (c)	3. (<i>b</i>)	4. (<i>d</i>)	5. (<i>c</i>)	
		—— сн	APTER 12		
1. (<i>b</i>)	2. (c)	3. (<i>b</i>)	4. (b)	5. (<i>b</i>)	6. (<i>b</i>)
7. (c)	8. (b)	9. (<i>d</i>)	10. (a)	11. (<i>d</i>)	12. (c)
13. (<i>b</i>)	14. (c)	15. (<i>a</i>)			
		—— сн	APTER 13 ——		
1. (b)	2. (a)	3. (<i>c</i>)	4. (a)	5. (c)	6. (a)
7. (<i>d</i>)	8. (<i>b</i>)	9. (<i>b</i>)	10. (<i>b</i>)	11. (c)	12. (<i>c</i>)
13. (a)	14. (<i>d</i>)	15. (<i>a</i>)	16. (<i>c</i>)	17. (a)	18. (<i>b</i>)
19. (a)	20. (c)	21. (<i>d</i>)	22. (c)	23. (c)	24. (c)
25. (<i>a</i>)	26. (<i>a</i>)	27. (<i>a</i>)	28. (<i>d</i>)	29. (c)	30. (<i>a</i>)
31. (<i>b</i>)	32. (<i>d</i>)	33. (<i>b</i>)	34. (c)	35. (<i>a</i>)	36. (<i>c</i>)
37. (<i>c</i>)	38. (a)	39. (<i>c</i>)	40. (<i>b</i>)	41. (<i>b</i>)	42. (<i>b</i>)
43. (<i>d</i>)	44. (c)	45. (<i>d</i>)	46. (<i>b</i>)	47. (c)	48. (<i>a</i>)
49. (a)	50. (<i>a</i>)	51. (<i>b</i>)	52. (<i>a</i>)	53. (<i>c</i>)	54. (<i>b</i>)
55. (<i>d</i>)	56. (<i>b</i>)	57. (<i>b</i>)	58. (<i>a</i>)	59. (<i>b</i>)	60. (<i>b</i>)
61. (<i>b</i>)	62. (a)	63. (<i>b</i>)	64. (<i>a</i>)	65. (<i>d</i>)	66. (<i>a</i>)
67. (<i>a</i>)	68. (<i>a</i>)	69. (<i>b</i>)	70. (c)		
		—— сн	APTER 14		
1. (a)	2. (<i>b</i>)	3. (c)	4. (<i>b</i>)	5. (<i>b</i>)	6. (<i>c</i>)
7. (<i>d</i>)	8. (<i>d</i>)	9. (<i>b</i>)	10. (<i>b</i>)	11. (<i>d</i>)	12. (a)
13. (<i>i</i>) (<i>c</i>)	(ii) (b) (iii) (d)	(iv) (b)	14. (<i>b</i>)	15. (<i>b</i>)	16. (<i>a</i>)
17. (<i>c</i>)	18. (<i>c</i>)	19. (<i>a</i>)	20. (<i>c</i>)	21. (<i>a</i>)	22. (<i>d</i>)
23. (<i>c</i>)	24. (<i>d</i>)	25. (a)	26. (c)	27. (<i>b</i>)	28. (c)
29. (<i>b</i>)	30. (b)	31. (c)	32. (<i>d</i>)	33. (<i>b</i>)	34. (a)
35. (b)	36. (<i>d</i>)	37. (b)	38. (a)	39. (<i>d</i>)	40. (c)
41. (b)	42. (d)	43. (a)	44. (d)	45. (d)	46. (c)
47. (<i>d</i>) 53. (<i>c</i>)	48. (<i>b</i>) 54. (<i>c</i>)	49. (<i>b</i>) 55. (<i>d</i>)	50. (<i>a</i>)	51. (<i>b</i>)	52. (<i>b</i>)
55. (c)	J4. (c)	55. (u)			