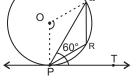
CIRCLES

OBJECTIVE SECTION

[BASIC/STANDARD]

I. MULTIPLE CHOICE QUESTIONS


1. In the figure, PQ is a chord of circle and PT is the tangent at P such that $\angle QPT = 60^\circ$, then $\angle POQ$ is equal to:

(b) 150°

(c) 120°

(d) 110°

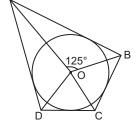
2. If the radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other circle is:

(a) 3 cm

(b) 6 cm

(c) 9 cm

(d) 1 cm


3. In the figure, if $\angle AOB = 125^{\circ}$, then $\angle COD$ is equal to :

(a) 62.5°

(b) 45°

(c) 35°

(*d*) 55°

50

0

4. In the figure, AB is a chord of circle and AOC is its diameter such that \angle ACB = 50°. If AT is the tangent to the circle at the point A, then \angle BAT is equal to

(b) 60°

(c) 50°

(d) 40°

- **5.** If the angle between two radii of a circle is 130°, then the angle between the tangents at the ends of the radii is :
 - (a) 90°
- (b) 50°
- (c) 70°
- (d) 40°
- **6.** In the figure, the pair of tangents AP and AQ drawn from an external point A to a circle with centre O are perpendicular to each other and length of each tangent is 5 cm. Then radius of the circle is:

(a) 10 cm

(b) 7.5 cm

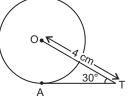
(c) 5 cm

- (d) 2.5 cm
- 7. If two tangents, inclined at an angle of 60° are drawn to a circle of radius 3 cm, then length of each tangent is equal to

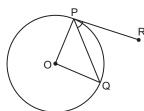
•0

- (a) $\frac{3}{2}\sqrt{3}$ cm
- (b) 6 cm (c) 3 cm
- (d) $3\sqrt{3}$ cm
- 8. In the figure, if PQR is the tangent to a circle at Q whose centre is O. AB is a chord parallel to PR and $\angle BQR = 70^{\circ}$, then ∠AQB is equal to:
 - (a) 20°

(b) 40°


(c) 35°

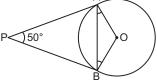
- (d) 45°
- 9. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is:
 - (a) 60 cm^2
- (b) 65 cm^2
- (c) 30 cm^2
- (d) 32 cm^2
- 10. At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is:
 - (a) 4 cm
- (b) 5 cm
- (c) 6 cm
- (d) 8 cm
- 11. In the figure, AT is a tangent to the circle with centre O such that OT = 4 cm and $\angle OTA = 30^{\circ}$. Then AT is equal to:
 - (a) 4 cm


(b) 2 cm

(c) $2\sqrt{3}$ cm

(d) $4\sqrt{3}$ cm

- 12. In the figure, if O is the centre of a circle. PQ is a chord and the tangent PR at P makes an angle of 50° with PQ, then ∠PQQ is equal to:
 - (a) 100°
- (b) 80°
- (c) 90°
- (d) 75°



- 13. In the figure, if PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$, then $\angle OAB$ is equal to:
 - (a) 25°

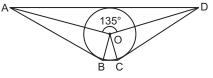
(b) 30°

(c) 40°

(d) 50°

- 14. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then ∠POA is equal to:
 - (a) 50°
- (b) 60°
- (c) 70°
- (d) 80°
- 15. In TP and TQ are two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to:
 - (a) 25°
- (b) 70°
- (c) 40°
- (d) 50°
- 16. PQ is a tangent to a circle with centre O at the point P. If $\angle OPQ$ is an isosceles triangle, then ∠OQP is equal to:
 - (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°
- 17. Two circles touch each other externally at C and AB is a common tangent to the circles. Then ∠APB is equal to
 - (a) 60°
- (*b*) 45°
- (c) 30°
- (d) 90°

- 18. ABC is a right triangle, right angled at B such that BC = 6 cm and AB = 8 cm. A circle with centre O is inscribed in \triangle ABC. The radius of the circle is:
 - (a) 1 cm
- (b) 2 cm
- (c) 3 cm
- (d) 4 cm
- 19. PQ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such that $\angle POR = 120^{\circ}$, then $\angle OPQ$ is:
 - (a) 60°
- (*b*) 45°
- $(c) 30^{\circ}$
- (d) 90°
- 20. If four sides of quadrilateral ABCD are tangential to a circle, then:
 - (a) AC + AD = BD + CD


(b) AB + CD = AC + BD

(c) AB + CD = AC + BC

- (d) AC + AD = BC + DB
- 21. In the figure, if O is the centre of the circle and △AOD = 135°, then ∠BOC =

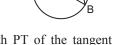
- (b) 55°
- (c) 50°
- (d) 45°

- 22. In the figure, O is the centre of a circle, PQ is a chord and PT is the tangent at P. If $\angle POQ = 70^{\circ}$, then $\angle TPQ =$
 - (a) 25°

(b) 30°

(c) 28.5°

(*d*) 35°

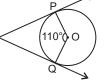


- 23. In the figure, O is the centre of the circle, AB is a chord and AT is the tangent at point A. If $\angle AOB = 100^{\circ}$, then $\angle BAT =$
 - (a) 30°

(b) 40°

(c) 50°

(d) 100°



- **24.** Point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. The radius of the circle is :
 - (a) 7 cm

(b) 9 cm

(c) 10 cm

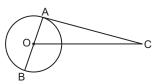
- (d) 12 cm
- 25. In the figure, TP and TQ are two tangents to a circle with centre O such that, $\angle POQ = 110^{\circ}$, the value of $\angle PTQ$ is : [CBSE (SP) 2019]

(a) 60°

(b) 65°

(c) 70°

- (d) 75°
- **26.** In the figure, AB is the diameter of a circle with centre O and AT is a tangent. If $\angle AOQ = 60^{\circ}$, then $\angle ATQ =$

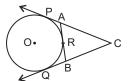


(a) 60°

(*b*) 50.5°

(c) 49°

- (*d*) 30°
- 27. In the figure, AOB is a diameter of a circle with centre O and AC is a tangent to the circle at A. If $\angle BOC = 130^{\circ}$, then $\angle ACO =$

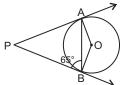

(a) 35°

(*b*) 38°

(c) 120°

(d) 40°

28. In the figure, CP and CO are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then the length of BR is:

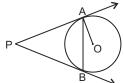


(a) 3.5 cm

(b) 4 cm

(c) 3 cm

- (d) 11 cm
- 29. In the figure, PA and PB are two tangents from an external point P to a circle with centre O. If $\angle PBA = 65^{\circ}$, then $\angle OAB$:



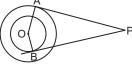
(a) 15°

(b) 25°

(c) 35°

- (d) 45°
- **30.** In the figure, PA and PB are tangents to the circle with centre O. If $\angle APB = 60^{\circ}$, then $\angle OAB$:

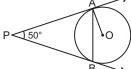
(a) 40°


(b) 30°

(c) 25°

- (d) 20°
- **31.** Two concentric circles are of radii 7 cm and r cm respectively, where r > 7. A chord of the larger circle of length 48 cm touches the smaller circle, then the value of r is :

- (a) 30 cm
- (b) 28 cm
- (c) 25 cm
- (d) 20 cm
- **32.** Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radii 8 cm and 5 cm respectively, as shown in the figure. If AP = 15 cm, then the length of BP is:

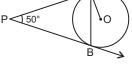


- (a) $2\sqrt{33}$
- (b) $2\sqrt{66}$
- (c) $2\sqrt{11}$
- (d) $2\sqrt{35}$
- 33. PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm. If PA \perp PB, then find the length of each tangent
 - (a) 4 cm

(b) 3 cm

(c) 3.5 cm

- (d) None of these
- 34. In the figure, PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$, then the measure of $\angle OAB =$

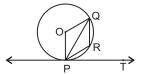


(a) 37°

(b) 36°

(c) 50°

- (d) 25°
- 35. Tangents PQ and PR are drawn from an external point P to a circle with centre O, such that $\angle RPQ = 30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. Then $\angle RQS =$



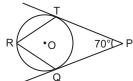
(a) 40°

(b) 30°

(c) 25°

- (d) 20°
- **36.** In the figure, PQ is a chord of a circle with centre O and PT is a tangent. If $\angle QPT = 60^{\circ}$, then $\angle PRQ =$

(a) 130°


(b) 120°

(c) 110°

(d) 100°

30%

37. In the figure, O is the centre of the circle. PT and PQ are tangents to the circle from an external point P. If $\angle TPQ = 70^{\circ}$, then $\angle TRQ$ is:

(a) 60°

(b) 58.5°

(c) 55°

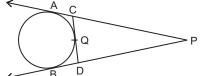
- (d) 50°
- 38. In the figure, PA and PB are tangents to a circle with centre O, such that AP = 5 cm and $\angle APB = 60^{\circ}$, then the length of chord AB is :

(a) 9 cm

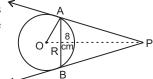
(b) 5 cm

(c) 4.5 cm

- (d) 4 cm
- **39.** In the figure, PQ is a tangent at a point C to a circle with centre O. If AB is a diameter and $\angle CAB = 30^{\circ}$, then $\angle PCA =$

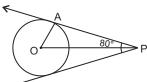


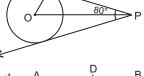
(a) 60°


(b) 58°

(c) 57°

- (d) 56°
- **40.** In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then PC + PD is :

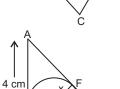

- (a) 22 cm
- (b) 20 cm
- (c) 19 cm
- (d) 18 cm
- **41.** In the figure, AB is a chord of length 8 cm of a circle of radius 5 cm. The tangents to the circle at A and B intersect at P. The length of AP is:


(a) $\frac{13}{20}$ cm

(b) $\frac{20}{3}$ cm

- (d) $\frac{3}{20}$ cm
- 42. In the figure, tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then $\angle POA$ is:

- (a) 30°
- (b) 40°
- (c) 50°
- (d) 60°
- 43. In the given figure, if AD = 16 cm, CF = 9 cm and BE = 8 cm, then A perimeter of the triangle is:



(a) 60 cm

(b) 62 cm

(c) 64 cm

- (d) 66 cm
- **44.** ABC is a right triangle right angled at B with BC = 3 cm and AB = 4 cm. A circle with centre O and radius x cm has been inscribed in $\triangle ABC$. The value of x is :

(a) 1 cm

(b) 2 cm

(c) 3 cm

(d) 4 cm

45.	The length of the tangent drawn to a circle of radius 7 cm from a point 25 cm away from the centre is :			
	(a) 22 cm	(b) 23 cm	(c) 24 cm	(d) 25 cm
46.	In a circle with centre C ∠APB is:	, PA and PB are the	tangents to the circle	. If $\angle AOB = 125^{\circ}$, then
	(a) 55°	(<i>b</i>) 60°	(c) 65°	(<i>d</i>) 65.5°
47.	If all the sides of a para (a) a rectangle	_		logram is a : (d) None
	In the given figure, O is the tangent to the circle = 30°, then ∠PAT is: (a) 80° (c) 120° If an external point of a the centre of the circle,	from an external po (b) 110° (d) 135° a circle is at a dista	oint T. If ∠PBT B ance equal to the diar	
50.	(a) 3r In the given figure, AB radius 10 cm. The tanger length of PA is:	(b) 4r is a chord of length	(c) 5r h 16 cm of a circle o	f $(d) \sqrt{3}r$
	II. FILL IN THE BLANKS			
1.	At most two circles can	intersect in	points.	
	The tangent of a circle			
	The tangent to a circle is a special case of the			
	At most, a circle can have parallel tangents.			
	The tangent of a circle is said to the circle at the point of contact.			
	The line containing the radius through the point of contact is also known as to the circle at the point.			
7.	There are	tangents to a circle	passing through a poir	nt lying inside the circle.
8.	The tangent at any point contact.	nt of a circle is	to the radio	us through the point of
9.	A circle can have	parallel sec	eants.	
10.	A line can intersect a ci	rcle at the most at	points.	
	III. VERY SHORT ANSWER QUESTIONS			
1.	If the angle between two radii of a circle is 130°, then find the angle between the tangents at the ends of the radii.			
2.	The pair of tangents AP and AQ are drawn from an external point A to a circle with centre			
	O. If AP \perp AQ and AP = 5 cm, find the radius of the circle.			
3.	The angle between two tangents to a circle may be 0°. Is it true?			

4. The tangents drawn at the ends of a diameter of a circle are parallel. Is it true?

----- Mathematics - 10

62 ----

- 5. In a circle of radius 7 cm, tangent PT is drawn from a point P such that PT = 24 cm. If O is the centre of the circle, then find the length of OP.
- **6.** A point P is 17 cm away from the centre of a circle and the length of tangent drawn from P to the circle is 15 cm. Find the radius of the circle.
- 7. Find the length of the tangent drawn from a point whose distance from the centre of a circle is 20 cm and the radius of the circle is 16 cm.
- **8.** If the angle between two tangents drawn from an external point P to a circle of radius a and centre O is 60° , then find the length of OP.

ANSWERS

I. Multiple Choice Questions:

- **1.** (c) **2.** (b) **3.** (d) **4.** (c) **5.** (b) **6.** (c) **7.** (d) **8.** (b) **9.** (a) **10.** (d) **11.** (c)
- **12.** (a) **13.** (a) **14.** (a) **15.** (b) **16.** (b) **17.** (d) **18.** (b) **19.** (c) **20.** (b) **21.** (d) **22.** (d)
- 23. (c) 24. (c) 25. (c) 26. (a) 27. (d) 28. (b) 29. (b) 30. (b) 31. (c) 32. (b) 33. (a)
- **34.** (d) **35.** (b) **36.** (b) **37.** (c) **38.** (b) **39.** (a) **40.** (d) **41.** (b) **42.** (c) **43.** (d) **44.** (a)
- **45.** (c) **46.** (a) **47.** (b) **48.** (c) **49.** (d) **50.** (c)

II. Fill in the Blanks:

- **1.** 2 **2.** only one **3.** secant **4.** 2 **5.** touch
- **6.** normal **7.** 0 **8.** perpendicular **9.** infinite **10.** 2

III. Very Short Answer Questions:

1. 50° **2.** 5 cm **3.** Yes **4.** Yes **5.** 25 cm **6.** 8 cm **7.** 12 cm **8.** 2a

Real Numbers 63