

OBJECTIVE SECTION

[BASIC/STANDARD]

I. MULTIPLE CHOICE QUESTIONS

1.	Construction	of a	cumulative	frequency	table	is	useful	in	determining	the	:

(a) mean

(b) median

(c) mode

(d) all the above three measures

2. In the following distribution.

Monthly income (in ₹)	more than ₹ 10000	more than ₹ 13000	more than ₹ 16000	more than ₹ 19000	more than ₹ 22000	more than ₹ 25000
Number of families	100	85	69	50	33	15

Find the number of families having income range (in ₹) 16000 – 19000.

(a)

15 (b)

16 (c)

17 (d)

19

3. Consider the following frequency distribution of the heights of 60 students of a class.

Height (in cm)	150-155	155-160	160-165	165-170	170-175	175-180
No. of	15	13	10	8	9	5
students						

The sum of the lower limit of the modal class and upper limit of the median class is :

(*a*)

310 (b)

315 (c)

320 (*d*)

330

4. Consider the data.

Class	65-85	85-105	105-125	125-145	145-165	165-185	185-205
Frequency	4	5	13	20	14	7	4

The difference of the upper limit of the median class and the lower limit to the modal class is :

(*a*)

0 (b)

19 (c)

20 (d)

38

5. The times in seconds, taken by 150 athletes to run a 110 m hurdle race are tabulated below:

Real Numbers — 75

Class	13.8-14	14-14.2	14.2-14.4	14.4-14.6	14.6-14.8	14.8-15
Frequency	2	4	5	71	48	20

The number of athletes who completed the race in or equal to 14.6 seconds is :

(a)

11 (b)

71 (c)

82 (*d*)

130

6. The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its:

(a) mean

(b) median

(c) mode

(d) all the above

7. For the following distribution the sum of lower limit of the median class and modal class is:

Class	0-5	5-10	10-15	15-20	20-25
Frequency	10	15	12	20	9
(a)	15 <i>(b)</i>	25 (c)	30 (<i>d</i>)	35

8. Consider the following frequency distribution.

Class	0-5	6-11	12-17	18-23	24-29
Frequency	13	10	15	8	11

The upper limit of the median class is

(a)

17 (b)

17.5 (c)

18 (*d*)

18.5

9. For the following distribution, the modal class is.

Marks	Below 10	Below 20	Below 30	Below 40	Below 50	Below 60
Number of students	3	12	27	57	75	80

(a)

10-20 (*b*)

20-30 *(c)*

30-40 (*d*)

50-60

10. In the formula $\overline{x} = A + \frac{\sum f_i d_i}{\sum f_i}$

for finding the mean of a grouped data, d_i 's are deviations from :

(a) lower limits of the classes

(b) upper limits of the classes

(c) mid points of the classes

(d) frequencies of the class marks

11. While computing mean of grouped data, we assume that the frequencies are :

(a) evenly distributed over all the classes

(b) centred at the classmarks of the classes

(c) centred at the upper limits of the classes

(d) centred at the lower limits of the classes

13.	In the formula distribution, u_i is	:	/	ne mean of a g	grouped frequency
	(a)	$\frac{x_i + a}{h}$ (b)	$h(x_i - A)$ (c)	$\frac{x_i - a}{h}$	$\frac{a-x_i}{h}$
14.	A student draws a a class as shown.	_	-		by 40 students of lass are :
		Y			
	. 40 ≥ 40			<i>/</i>	
	5-30 9-30				
	⊕				
	20 En 20 20 20 210				
	* 0,	, 10 20 3	0 40 50 60	70 80 → X	
		Upp	er limits or marks —	>	
	(a)	55 (b)	65 (c)	50	(d) 60
15.	Construction of a	_	-	_	
16	(a) The abscissa of the	mean (b)	mode (c)	median	* *
10.	cumulative freque	-		nan type and or t	ne more than type
	(a)	mode (b)	median (c)	mean	(d) None of
17	these	al along in the give	on table		
1/.	What is the Moda 0-10	10-20	20-30	30-40	40-50
	6	8	13	11	9
	(a)	0–10 (b)	20-30 (c)	30-40	
18.	What should be in	n the blank? 2 Me	ean = 3 Median –).
10	* *		$\mod(c)$	2 mode	* *
19.	If each observatio (a) is increase		-	n what happens to s increased by 5	o its mean?
	(c) is decrease	-		decreased by 5	
20.	What is the media				
21	(a)	54 (b)	53 (c)	55	` /
41.	If the mean of x ,	x + 3, x + 3, x +	- / and $x + 10 1s$	y, then find the	mean of last three

12. If x_i 's are the mid points of the class intervals of grouped data, f_i 's are the corresponding

1 (*d*)

2

frequencies and \overline{x} is the mean, then $\Sigma(f_ix_i-\overline{x})$ is equal to :

0 (b)

Real Numbers -

	observations is:		4			
	(a)	$9\frac{4}{5} (b)$ observations x_1, x_2	$10\frac{1}{2}$	(c)	$11\frac{1}{3}$ (d)	12
22.	If the mean of n	observations x_1, x_2	$x_3, \ldots x_n$	is \overline{x} , then wh	that is $\sum_{i=1}^{n} (x_i - \overline{x})$	=
	(a)	0 (b)	1	(c)	$\begin{array}{cc} & & \\ 2 & (d) \end{array}$	-1
23.	For a frequency d	listribution, mean,	median an	d mode are co	nnected by the re	lationship
	(a)2 Mean = 1	3 Median – Mode	(<i>b</i>)	2 Mode = Me	edian – Mean	
	(c)Mode = 2	Mean – 3 Median	(<i>d</i>)	3 Median = 2	2 Mode + Mean	
24.	The class mark of	f a class interval is	3			
	(a)Upper limit	t + Lower limit	(<i>b</i>)	Upper limit -	- Lower limit	
	(c) Upper lim	nit + Lower limit	(d)	Upper limit	Lower limit	
	(0)	2	(<i>a</i>)		2	

25. For the following distribution, the median class is

Mobility	Below	Below	Below	Below	Below	Below	Below
consumption	85	105	125	145	165	185	205
No. of consumers	4	9	22	42	56	64	68
(a)	85-105 ((b)	125-145	(c)	145-16	5 (<i>d</i>)	185-205

26. The wickets taken by a bowler in 12 cricket matches are as follows:

(a) 4 (b) 3 (c)

3 (c) 2 (d)

27. The modal class in the given frequency table is:

		1 2			
Class	0-10	10-20	20-30	30-40	40-50
Frequency	6	10	12	8	7
(a) these	0-10 (b)	20-30 (c)		30-40 (d)	none of

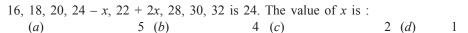
28. The mode of the following data is:

Marks	50-60	60-70	70-80	80-90	90-100
Frequency	3	12	32	20	6
(a)	73.25 (b)	75.25 (c)		76.25 (d)	78.25

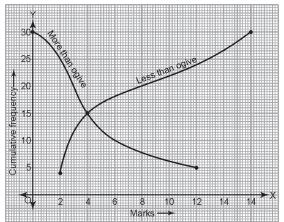
29. The median class of the following data is:

Marks	Below 20	Below 40	Below 60	Below 80	Below 100
No. of Students	17	22	29	37	50
(a)	20-40 (b)	40-60) (c)	60-80 (d)	80-100

30. The maximum bowling speeds, in km/hr of 33 players at a cricket coaching centre are given below:


NCERT(EP)

Speed (km/hr	85-100	100-115	115-130	130-145
No. of Players	11	9	8	3


The median bowling speed is:

78 — Mathematics - 10

	(a) 105 km/hr	5.5 km/hr	(b) 10	06.5 km/hr	(c)	107.5 km/l	$\operatorname{nr}(d)$	108.9
31.	The median of t	the followi	ng data i	s :				Ncert (ep)
	X	6	5	8	10	7	12	15
	f	4	2	6	5	8	3	9
	(a)	5	(b)	6	(c)		8 (<i>d</i>)	10
32.	If the mean of t	he followi	ng distrib	oution is 22,	then the v	value of f	is:	
	Class	0	-10	10-20	20-30	30	-40	40-50
	Frequency		12	16	6		f	9
	(a)	5	(b)	6	(c)		7 (<i>d</i>)	9
33.	The arithmetic r	nean of th	e followi			Γhe value	of p is	:
	Class	0)-10	10-20	20-30	30	-40	40-50
	Frequency		5	18	15		p	6
	(a)	9	(b)	13	(c)	1	5 (d)	16
34.	The mean of the following data is:							
	Class		1-3	3-5	5-7	7	'-9	9-11
	Frequency	,	7	8	2		2	1
	(a)	2.3	(b)	3.2	(c)	4	.1 (d)	4.2
35.	The mean of the following data is							
	Classes	0	-10	10-20	20-30	30	-40	40-50
	Frequency		7	8	15		9	10
	(a)	25.23	(b)	26.32	(c)	26.4	3 (d)	26.75
36.	If the median of <i>x</i> is:	f the data:	24, 25,	26, x + 2, x	+ 3, 30, 3	31, 34 is 2'	7.5, the	n the value of
	(a)	25	(b)	27	(c)	2	28 (d)	30
37.	The median of a	-	quency d	listribution i	_	-		help of
	• • •	icy curve				ncy polygo		
38	(c) h	nistogram	is 7 and	their mean	(d)	an ogiv hen their r		is ·
20.	(a)	10			(c)		8 (<i>d</i>)	7
39.	The mean of 11					st 6 observ	vations	is 28 and that
	of the last 6 obs	servations 29		en the 6th no		3	35 (<i>d</i>)	38
40.	The median of t		` /		` /		. /	
Real N	lumbers ———							79

41. Using the graph in the figure of 'less than ogive' and 'more than ogive', the median of the data is:

42. Weights of 40 eggs were recorded as given below:

Weights (in gms)	85-89	90-94	95-99	100-104	105-109
No. of eggs	10	12	12	4	2

The lower limit of the median class is:

43. Consider the following frequency distribution of the heights of 60 students of a class.

Height (in cm)	150-155	155-160	160-165	165-170	170-175
No. of students	15	10	8	9	5

The upper limit of the median class in the given data is

[CBSE(SP) 2019]

170

44. The frequency distribution table of agricultural holdings in a village is given below:

Area of land (hectares)	1-3	3-5	5-7	7-9	9-11	11-13
No. of families	20	45	80	55	40	12

The modal agricultural holdings of the village is:

(a)

5.8 *(b)*

4.7 *(c)*

6.2 *(d)*

75[Norri(er)]

45. The daily income of a sample of 50 employees are tabulated as follows:

Income (in ₹)	1-200	201-400	401-600	601-800
---------------	-------	---------	---------	---------

80 — Mathematics - 10

No. of employees	14	15	14	7

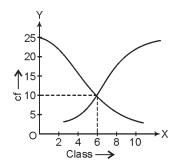
The means daily income of employees =

(a) ₹ 356 (b) ₹ 456.8 (c) ₹ 259.8 (d) ₹ 532.7 [NCERT (EP)]

46. The mean of 10 numbers is 30. If every number is multiplied by 2, then the new mean =

(a) 72 (b) 69 (c) 60 (d) 76

47. In a class of 25 students, 15 are boys. The mean weight of boys is 50 kg and that of girls is 45 kg. The mean weight of the class is


(a) 356 kg (b) 40 kg (c) 52 kg (d) 56 kg

48. The mean of first n natural numbers is :

(a) $\frac{n(n+1)}{2}$ (b) n(n+1) (c) $\frac{n+1}{2}$ (d) n+1

II. FILL IN THE BLANKS

- 1. The median of the following data: 13, 15, 11, 12, 14, 16, 10, 12, 12, 13 is ______
- 2. Measures of central tendency that can be determined graphically is ______.
- **3.** Empirical relation between mean, mode and median is
- **4.** The value of the median of the data using the following graph is _____.

- 5. The median of first 10 prime numbers is ______.
- **6.** If the mode of the data: 16, 15, 17, 16, 15, x, 19, 17, 14 is 15, then x =_____.
- 7. The median of first 3 composite numbers is ______.
- **8.** If the mean of 3, 4, x, 7, 8, y is 10, then x + y =_____.
- **9.** If 35 is removed from the data : 30, 34, 35, 36, 37, 38, 39, 40, then the median increases by ______.
- 10. We can draw _____ types of ogives.

III. VERY SHORT ANSWER QUESTIONS

1. The mean of a set of numbers is \bar{x} . If each number is divided by 3, then find the new

Real Numbers 81

mean.

- 2. The mean of 8 observations is 10 and 4 is the mean of a set of 7 observations. Find the mean of the combined set.
- **3.** What is the most frequent value of a data called?
- **4.** Find the class mark of a class interval a b.
- 5. In the formula $\bar{x} = a + h \left(\frac{\sum f_i u_i}{\sum f_i} \right)$, for finding the mean, of grouped frequency distribution, what is u_i ?
- 6. Write the formula for finding the mode of a grouped frequency distribution.
- 7. If mode = 80, and median = 110, then find the median.
- 8. A data has 25 observations (arranged in descending order. Which observation represents the median?
- 9. Which measure of central tendency is given by the x-coordinate of the point of intersection of the more than ogive and less than ogive?
- 10. A less than ogive is an upward curve and a more than ogive is a downward curve. Is it true?

ANSWERS								
l. Multiple	Choice Ques	tions :						
1. (b)	2. (<i>d</i>)	3. (<i>b</i>)	4. (c)	5. (c)	6. (<i>b</i>)			
7. (b)	8. (<i>b</i>)	9. (c)	10. (c)	11. (<i>b</i>)	12. (a)			
1 3. (<i>c</i>)	1 4. (a)	15. (<i>c</i>)	16. (<i>b</i>)	17. (<i>b</i>)	18. (<i>b</i>)			
19. (<i>b</i>)	20. (<i>a</i>)	21. (<i>c</i>)	22. (<i>a</i>)	23. (<i>a</i>)	24. (c)			
25. (b)	26. (<i>b</i>)	27. (<i>b</i>)	28. (c)	29. (<i>b</i>)	30. (<i>c</i>)			
31. (c)	32. (<i>c</i>)	33. (<i>d</i>)	34. (<i>d</i>)	35. (<i>c</i>)	36. (<i>a</i>)			
37. (<i>d</i>)	38. (<i>d</i>)	39. (<i>a</i>)	40. (<i>c</i>)	41. (<i>c</i>)	42. (<i>a</i>)			
43. (<i>a</i>)	44. <i>(c)</i>	45. (<i>a</i>)	46. (<i>c</i>)	47. (<i>a</i>)	48. (c)			

II. Fill in the Blanks:

- 2. Median 1. 12.5 3. Mode = 3 Median - 2 Mean**4.** 6 **5.** 12 **7.** 6 6. 15 9. 0.5 **8.** 38 **10.** 2
- III. Very Short Answer Quustions.
 - 1. $\frac{\overline{x}}{3}$ 2. 7.2 6. $l + \left(\frac{f_1 f_0}{2f_1 f_0 f_2}\right) \times h$ 4. $\frac{a+b}{2}$ 5. $\frac{x_i - a}{h}$ **3.** Mode 7. 125 **8.** 13th 9. Median