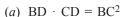
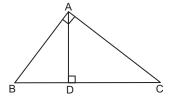
### **OBJECTIVE SECTION**

[BASIC/STANDARD]


# I. MULTIPLE CHOICE QUESTIONS

1. In the figure, O is the point of intersection of two chords AB and CD such that OB = OD. Then triangles OAC and ODB are:




- (b) isosceles but not similar
- (c) equilateral and similar
- (d) isosceles and similar
- 2. D and E are respectively the points on the sides AB and AC of a triangle ABC such that AD = 2 cm, BD = 3 cm, BC = 7.5 cm and  $DE \parallel BC$ . Then, length of DE (in cm) is:
  - (a) 2.5

- (*b*) 3
- (c) 5
- (d) 6
- **3.** In the figure,  $\angle BAC = 90^{\circ}$  and  $AD \perp BC$ . Then :

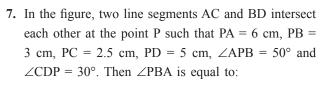


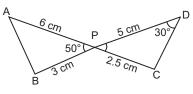
- (b)  $AB \cdot AC = BC^2$
- (c) BD  $\cdot$  CD = AD<sup>2</sup>
- (d)  $AB \cdot AC = AD^2$



- **4.** If the lengths of the diagonals of a rhombus are 16 cm and 12 cm, then, the length of the side of the rhombus is :
  - (a) 9 cm
- (b) 10 cm
- (c) 8 cm
- (d) 20 cm
- 5. If  $\triangle ABC \sim \triangle EDF$  and  $\triangle ABC$  is not similar to  $\triangle DEF$ , then which of the following is not true?
  - (a) BC  $\cdot$  EF = AC  $\cdot$  FD

(b)  $AB \cdot EF = AC \cdot DE$ 


(c) BC  $\cdot$  DE = AB  $\cdot$  EF


- (d) BC  $\cdot$  DE = AB  $\cdot$  FD
- **6.** If in two triangles ABC and PQR,  $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$ , then :
  - (a)  $\triangle PQR \sim \triangle CAB$

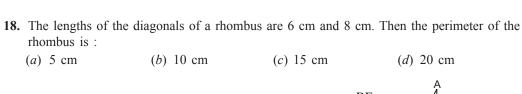
(b)  $\triangle PQR \sim \triangle ABC$ 

(c)  $\triangle CBA \sim \triangle PQR$ 

(d)  $\triangle BCA \sim \triangle PQR$ 

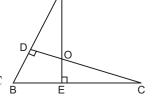





- (a)  $50^{\circ}$
- (b) 30°
- (c)  $60^{\circ}$
- (d) 100°
- 8. If in triangles DEF and PQR,  $\angle D = \angle Q$  and  $\angle R = \angle E$ , then which of the following is
  - (a)  $\frac{EF}{PR} = \frac{DE}{OR}$  (b)  $\frac{DE}{PO} = \frac{EF}{RP}$  (c)  $\frac{DE}{OR} = \frac{DF}{PO}$  (d)  $\frac{EF}{RP} = \frac{DE}{OR}$

- **9.** If in triangles ABC and DEF,  $\angle B = \angle E$ ,  $\angle F = \angle C$  and AB = 3 DE, then the two triangles
  - (a) congruent but not similar
- (b) similar but not congruent
- (c) neither congruent nor similar
- (d) congruent as well as similar
- 10. If it is given that  $\triangle ABC \sim \triangle PQR$ , with  $\frac{BC}{QR} = \frac{1}{3}$ , then  $\frac{ar(PRQ)}{ar(BCA)}$  is equal to:
  - (a) 9
- (*b*) 3
- (c)  $\frac{1}{3}$
- 11. It is given that  $\triangle ABC \sim \triangle DFE$ ,  $\angle A = 30^{\circ}$ ,  $\angle C = 50^{\circ}$ , AB = 5 cm, AC = 8 cm and DF= 7.5 cm. Then, which of the following is true?
  - (a) DE = 12 cm,  $\angle F = 50^{\circ}$
- (b) DE = 12 cm,  $\angle F = 100^{\circ}$
- (c) EF = 12 cm,  $\angle D = 100^{\circ}$
- (d) EF = 12 cm,  $\angle D = 30^{\circ}$
- 12. If in triangles ABC and DEF,  $\frac{AB}{DE} = \frac{BC}{FD}$ , then they will be similar, when:
  - (a)  $\angle B = \angle E$
- $(b) \angle A = \angle D$
- $(c) \angle B = \angle D$   $(d) \angle A = \angle F$
- 13. If  $\triangle ABC \sim \triangle QRP$ ,  $\frac{ar(ABC)}{ar(PQR)} = \frac{9}{4}$ , AB = 18 cm and BC = 15 cm, then PR is equal to:
  - (a) 10 cm
- (b) 12 cm
- (c)  $\frac{20}{2}$  cm
- 14. If S is a point on side PQ of a  $\triangle$ PQR such that PS = QS = RS, then:
  - (a)  $PR \cdot QR = RS^2$

 $(b) QS^2 + RS^2 = QR^2$ 


(c)  $PR^2 + QR^2 = PQ^2$ 

- (d)  $PS^2 + RS^2 = PR^2$
- 15. If it is given that  $\triangle ABC \sim \triangle PQR$ , with  $\frac{BC}{QR} = \frac{1}{4}$ , then  $\frac{ar(\triangle PQR)}{ar(\triangle ABC)}$  is equal to:
  - (a) 4
- (b) 16
- (c)  $\frac{1}{4}$
- 16. If P, Q, R are respectively the mid-points of the sides BC, CA, AB of a ΔABC, then the ratio of the areas of the  $\triangle PQR$  to the  $\triangle ABC$  is:
  - (a) 1:2
- (b) 2:1
- (c) 1 : 4
- (d) 4:1
- 17. If a chord of a circle of radius 8 cm subtends a right angle at the centre, then the length of the chord is:
  - (a) 8 cm
- (b) 16 cm
- (c)  $16\sqrt{2}$  cm (d)  $8\sqrt{2}$  cm





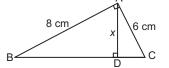
- (a)  $\frac{AD}{}$
- (b)  $\frac{AE}{CD}$  (c)  $\frac{BC}{AB}$



- **20.** D is a point on the side BC of a triangle ABC such that ∠ADC  $= \angle BAC$ , then:
  - (a)  $CA^2 = BC \cdot CD$

(b)  $BC^2 = CA \cdot CD$ 

(c)  $CD^2 = CA \cdot BC$ 


- (d) none of these
- 21. If in a triangle ABC, a line segment XY parallel to AC divides the triangle into two parts equal in area, then  $\frac{AX}{AB}$  is equal to :
  - (a)  $\frac{1}{\sqrt{2}}$
- (b) 2
- (c)  $1 \frac{1}{\sqrt{2}}$

- **22.** In the given figure, the value of x is :
  - (a) 6 cm

(b) 7 cm

(c) 4.8 cm

(d) 5.2 cm



- 23. A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time a tower casts a shadow 75 m long on the ground. The height of the tower is :
  - (a) 150 m
- (b) 130 m
- (c) 125 m
- (d) 120 m
- **24.** The length of altitude of an equilateral triangle of side a is :
  - (a)  $\frac{2a}{\sqrt{2}}$
- (b)  $\frac{\sqrt{3}}{2\pi}$  (c)  $\frac{a\sqrt{3}}{2}$
- (d)  $\frac{a}{2\sqrt{3}}$
- 25. The length of the hypotenuse of an isosecles right triangle whose one side is  $4\sqrt{2}$  cm, is:
  - (a) 11 cm
- (b) 9 cm
- (c) 8 cm
- (d)  $5\sqrt{2}$
- **26.** In an equilateral triangle ABC, if AD  $\perp$  BC, then :
  - (a)  $3AB^2 = 2AD^2$  (b)  $3AB^2 = 4AD^2$  (c)  $4AB^2 = 3AD^2$

- (d)  $2AB^2 = 3AD^2$
- 27.  $\triangle$ ABC is an isosceles triangle with AB = AC = 13 cm. The length of the altitude from A on BC is 5 cm. Then BC =
  - (a) 36 cm
- (b) 32 cm
- (c) 24 cm
- (d) 20 cm
- 28. In a rhombus of side 10 cm, one of the diagonals is 12 cm long. The length of the second diagonal is:
  - (a) 18 cm
- (b) 16 cm
- (c) 14 cm
- (d) 12 cm

| 30.                                                                                                                                                | 0. The hypotenuse of a right triangle is 25 cm and out of the remaining two sides, one is longer than the other by 5 cm. The length of the other two sides are:                                              |                                     |                                         |                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|------------------------|--|
|                                                                                                                                                    | (a) 10 cm, 15 cm                                                                                                                                                                                             | (b) 15 cm, 20 cm                    | (c) 15 cm, 18 cm                        | (d) 20 cm, 22 cm       |  |
| 31.                                                                                                                                                | If in $\triangle ABC$ , $\angle BCA$<br>AQ = 5 cm. Then Al                                                                                                                                                   | $B^2 =$                             | Q is the mid-point of                   | side BC, $AC = 4$ cm,  |  |
|                                                                                                                                                    | (a) $36 \text{ cm}^2$                                                                                                                                                                                        | (b) $42 \text{ cm}^2$               | (c) $50 \text{ cm}^2$                   | (d) $52 \text{ cm}^2$  |  |
| 32.                                                                                                                                                | 32. D is a point on the side BC of an equilateral $\triangle ABC$ such that $DC = \frac{1}{4}BC$ . Then $AD^2 =$                                                                                             |                                     |                                         |                        |  |
|                                                                                                                                                    | (a) $11 \text{ CD}^2$                                                                                                                                                                                        | (b) $12 \text{ CD}^2$               | (c) $13 \text{ CD}^2$                   | ( <i>d</i> ) 15 $CD^2$ |  |
| 33.                                                                                                                                                | 33. In an equilateral triangle ABC, D is a point on the side BC such that $4BD = BC$ . Then :                                                                                                                |                                     |                                         |                        |  |
|                                                                                                                                                    | (a) $11 \text{ AD}^2 = 13 \text{ BC}^2$                                                                                                                                                                      | 2                                   | (b) $16 \text{ AD}^2 = 13 \text{ BC}^2$ | 2                      |  |
|                                                                                                                                                    | (c) $15 \text{ AD}^2 = 13 \text{ BC}^2$                                                                                                                                                                      | 2                                   | $(d) 16 AD^2 = 11 BC^2$                 | 2                      |  |
| 34.                                                                                                                                                | <b>34.</b> In the given figure, ABC is a right triangle with $\angle B = 90^{\circ}$ . Meidan                                                                                                                |                                     |                                         |                        |  |
|                                                                                                                                                    | CD and AE are respectively of lengths $\sqrt{20}$ cm and 5 cm. The length of hypotenuse AC =                                                                                                                 |                                     |                                         |                        |  |
|                                                                                                                                                    | (a) 11 cm                                                                                                                                                                                                    | (b) 9 cm                            |                                         | ‡                      |  |
|                                                                                                                                                    | (c) 6 cm                                                                                                                                                                                                     | (d) 4 cm                            |                                         | В — C                  |  |
| 35.                                                                                                                                                | 35. The areas of two similar triangles are 121 cm <sup>2</sup> and 64 cm <sup>2</sup> respectively. If the medians of the first traingle is 12.1 cm, then the corresponding median of the other triangle is: |                                     |                                         |                        |  |
|                                                                                                                                                    | (a) 6.8 cm                                                                                                                                                                                                   | (b) 0.8 cm                          | (c) 11.2 cm                             | (d) 12.6 cm            |  |
| <b>36.</b> In the given figure, LM    NQ and LN    PQ. If MP = $\frac{1}{3}$ MN, then the ratio of the areas of $\Delta$ LMN and $\Delta$ QNP is : |                                                                                                                                                                                                              |                                     |                                         |                        |  |
|                                                                                                                                                    | (a) 9:4<br>(c) 25:16                                                                                                                                                                                         | ( <i>b</i> ) 16:4 ( <i>d</i> ) 64:9 |                                         | MZ P N                 |  |
| 37. In a trapezium ABCD, AB    CD and AB = 2CD. If the area of $\triangle$ AOB = 84 cm <sup>2</sup> , then the area of $\triangle$ COD =           |                                                                                                                                                                                                              |                                     |                                         | ΔAOB Q                 |  |
|                                                                                                                                                    | (a) $18 \text{ cm}^2$                                                                                                                                                                                        | (b) $20 \text{ cm}^2$               | (c) $20.5 \text{ cm}^2$                 | (d) $21 \text{ cm}^2$  |  |
| 38.                                                                                                                                                | In the given figure, DE $\parallel$ BC and AD : DB = 5 : 4. The ratio of ar ( $\triangle$ DFE) : ar( $\triangle$ CFB) is :                                                                                   |                                     |                                         |                        |  |
|                                                                                                                                                    | (a) 25 81                                                                                                                                                                                                    | (b) 16:9                            |                                         | D <b>∕ →</b> E         |  |

29. The diagonals of a rhombus are 15 cm and 36 cm long. Then its perimeter is :

(c) 78 cm

(b) 80 cm

(a) 82 cm

**40.** X and Y are points on the sides AB and BC respectively of  $\triangle$ ABC such that XY || AC and XY divides  $\triangle$ ABC into two parts equal in area. Then  $\frac{AX}{AB}$  is :

39. If the area of the equilateral triangle described on the side of a square is 48 cm<sup>2</sup>, then the

(c)  $76 \text{ cm}^2$ 

(d) 64: 25

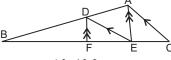
area of equilateral triangle described on its diagonal is :

(b)  $68 \text{ cm}^2$ 

(c) 9:16

(a)  $46 \text{ cm}^2$ 

(d)  $96 \text{ cm}^2$ 


| (a)        | $3-\sqrt{3}$ |  |
|------------|--------------|--|
| <i>(u)</i> | 3            |  |

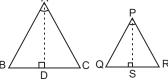
(b) 
$$\frac{2-\sqrt{2}}{2}$$
 (c)  $\frac{\sqrt{2}}{2}$ 

$$(c) \ \frac{\sqrt{2}}{2}$$

(d) 
$$\frac{\sqrt{3}}{3}$$

- **41.** D, E and F are the mid-points of the sides BC, CA and AB respectively of  $\triangle$ ABC. Then the ratio of the areas of  $\Delta DEF$  and  $\Delta ABC$  is :
  - (a) 1:4
- (b) 4:1
- (c) 1 : 3
- (d) 1:9
- **42.** In the given figure, DE  $\parallel$  AC and DF  $\parallel$  AE. If the lengths of BF and FE are 4 cm and 5 cm respectively, then the length of EC is:




- (a) 11.25 cm
- (b) 9.6 cm
- (c) 12.5 cm
- (d) 13.2 cm
- **43.** In  $\triangle ABC$ , D and E are points on the sides AB and AC respectively such that DE  $\parallel$  BC. If AD = 4x - 3, AE = 8x - 7, BD = 3x - 1 and CE = 5x - 3, then the value of x is :
  - (a) 3 cm
- (b) 2 cm
- (c) 1.5 cm
- (d) 1 cm
- **44.** In the given figure,  $\triangle ABC$  and  $\triangle PQR$  are isosceles triangles in which  $\angle A = \angle P$ . If  $\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \frac{9}{16}$ , then  $\frac{AD}{PS}$  is:







(d)  $\frac{7}{81}$ 



- **45.** In an equilateral  $\triangle ABC$ , D is a point on side BC such that BD =  $\frac{1}{3}$  BC. Then

- (a)  $9AD^2 = 7AB^2$  (b)  $7AD^2 = 9AB^2$  (c)  $13AD^2 = 11AB^2$  (d)  $17AB^2 = 13AD^2$

B

**46.** In the figure, DE  $\parallel$  BC, AD = 1 cm, BD = 2 cm. The ratio of the area ( $\triangle$ ABC) to the area ( $\triangle$ ADE) is :



(b) 16:1

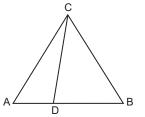
(c) 64:1

- (d) 1:81
- 47. The figure, BL and CM are medians of a  $\triangle$ ABC right angled of A.  $4(BL^2 + CM^2)$  is :



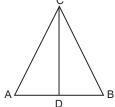
(b) 5 BC<sup>2</sup>

(c)  $13 \text{ BC}^2$ 


- (d)  $11 \text{ BC}^2$
- **48.** In the figure, if  $\angle ACB = \angle CDA$ , AC = 6 cm and AD = 3 cm, then the length of AB is:



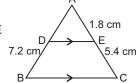
(b) 10 cm


(c) 12 cm

(d) 14 cm



**49.** In the given figure, if DE || BC, then length of EC is: 1 cm (a) 5 cm (b) 4 cm 3 cm (c) 3 cm (d) 2 cm 50. The sides of two similar triangles are in the ratio 2:3, then the areas of these triangles are in the ratio: (a) 4:9(c) 8:27(b) 2:3 (d) 16:81 II. FILL IN THE BLANKS 1. The areas of two similar triangles  $\triangle$ ABC and  $\triangle$ PQR are 25 cm<sup>2</sup> and 49 cm<sup>2</sup> respectively. If QR = 9.8 cm, then BC =2.  $\triangle PQR \sim \triangle ABC$  such that  $area(\triangle PQR) = 4 area(\triangle ABC)$ . The ratio of their perimeters 3. The areas of two similar triangles are 81 cm<sup>2</sup> and 49 cm<sup>2</sup> respectively. The ratio of their corresponding altitudes and medians are \_\_\_\_\_ 4. Hypotenuse of a right triangle is 25 cm and out of the remaining two sides, one is longer than the other by 5 cm. The lengths of the other two sides are 5. If the figure, the value of x for which DE  $\parallel$  AB = 6. Diagonals of a trapezium PQRS intersect each other at point O, PQ || RS and PQ = 3 RS. The ratio of the areas of triangle POQ and ROS is \_\_\_\_\_\_. 7. Altitudes of an equilateral triangle of side 8 cm is ... 6 cm **8.** In the given figure, if DE  $\parallel$  BC, then the ratio of area ( $\triangle$ ADE) and area (ECBD) = \_\_\_\_\_. 12 cm 9. ABCD is a trapezium in which AB || DC and P and Q are points on AD and BC respectively such that PQ || DC. If PD = 18 cm, BQ = 35 cm and QC = 15 cm, then AD 10. Corresponding sides of two similar triangles are in the ratio of 2:3. If the area of the smaller triangle is 48 cm<sup>2</sup>, then the area of the larger triangle is 11. Areas of two similar triangles are 36 cm<sup>2</sup> and 100 cm<sup>2</sup>. If the length of a side of the larger triangle is 20 cm, then the length of the corresponding side of the smaller triangle is \_\_\_\_\_.


12. In the given figure, if  $\angle ACB = \angle CDA$ , AC = 8 cm and AD = 3 cm; then length of  $BD = \underline{\hspace{1cm}}$ .



- 13. A a 15 metres high tower casts a shadow 24 metres long at a certain time and at the same time, a telephone pole casts a shadow 16 metres long. Then the height of the telephone pole = \_\_\_\_\_. [Ncert(ep)]
- **14.** Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Then the height of the point on the wall whose top of the ladder reaches = [Ncert(EP)]

# **III. VERY SHORT ANSWER QUESTIONS**

- 1. When do we say that two figures are congruent?
- 2. What are similar figures?
- **3.** Two polygons of the same number of sides are similar if their corresponding angles are equal. Is it true?
- 4. State Basic Proportionality Theorem.
- 5. State SAS similarity criterion for two triangles.
- 6. How the areas of two similar triangles are related to each other?
- 7. State Pythagoras Theorem.
- **8.** State the converse of Pythagoras Theorem.
- 9. In a triangle PQR,  $PQ^2 + QR^2 = PR^2$ . Which angle of  $\Delta PQR$  is right angled?
- 10. Is the triangle with sides 25 cm, 5 cm and 24 cm a right triangle?
- 11. D is a point on side QR of  $\triangle PQR$  such that PD  $\perp$  QR. Will it be correct to say that  $\triangle PQD \sim \triangle RPD$ ?
- 12. In the figure, DE || BC. Find the length of side AD given that AE = 1.8 cm, BD = 7.2 cm and CE = 5.4 cm. [CBSE 2019]



#### **ANSWER**

### I. Multiple Choice Questions:

- **1.** (d) **2.** (b) **3.** (c) **4.** (b) **5.** (c) **6.** (a) **7.** (d) **8.** (b) **9.** (b) **10.** (a) **11.** (b)
- 12. (c) 13. (a) 14. (c) 15. (b) 16. (c) 17. (d) 18. (d) 19. (b) 20. (a) 21. (c) 22. (c)
- 23. (b) 24. (c) 25. (c) 26. (b) 27. (c) 28. (b) 29. (c) 30. (b) 31. (d) 32. (c) 33. (b)
- **34.** (c) **35.** (b) **36.** (a) **37.** (d) **38.** (a) 39. (d) **40.** (b) **41.** (a) **42.** (a) **43.** (d) **44.** (b)
- **45.** (a) **46.** (a) **47.** (b) **48.** (c) **49.** (d) **50.** (a)

### II. Fill in the Blanks:

- **1.** 7 cm **2.** 2 : 1 **3.**  $\frac{9}{7}$  **4.** 15 cm, 20 cm **5.** x = 2 **6.** 9 : 1 **7.**  $4\sqrt{3}$  cm
- **8.** 1:3 **9.** 60 cm **10.** 108 cm<sup>2</sup> **11.** 12 m **12.**  $\frac{55}{3}$  m **13.** 10 m **14.** 8 m

## III. Very Short Answer Questions:

**9.** ∠Q **10.** No **11.** No **12.** 2.4 cm