(a) both positive

POLYNOMIALS

1. A quadratic polynomial, whose zeroes are -3 and 4, is :

2. The zeroes of the quadratic polynomial $x^2 + 99x + 127$ are :

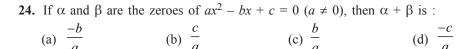
OBJECTIVE SECTION

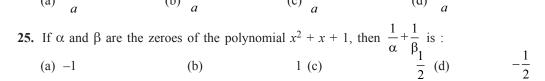
[BASIC/STANDARD]

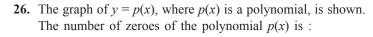
I. MULTIPLE CHOICE QUESTIONS

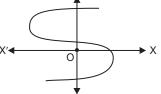
(a) $x^2 - x + 12$ (b) $x^2 + x + 12$ (c) $\frac{x^2}{2} - \frac{x}{2} - 6$ (d) $2x^2 + 2x - 24$

(b) both negative


[Ncert(ep)]


	(c) one positive and	one negative	(d) both equal		
3.	(a) c and a have opp	oosite signs	$ax^2 + bx + c$, $c \neq 0$ are (b) c and b have opp	posite signs	
	(c) c and a have the same sign		(d) c and b have the same sign		
4.	If the sum of the zero of k is:	pes of the polynomial	$p(x) = 2x^3 - 3kx^2 + 4x$	c - 5 is 6, then the	value
	(a) 2	(b)	4 (c)	-2 (d)	-4
5. If the product of the zeroes of the polynomial $p(x) = ax^3 - 6x^2 + 11x - 6$ is value of a is :					n the
	(a) $\frac{1}{2}$	(b)	$\frac{5}{3}$ (c)	$\frac{3}{2}$ (d)	$\frac{-1}{5}$
6.	If α and β are the zero	α and β are the zeroes of the polynomial $p(x) = x^2 + px + q$, then a polynomial having			
	$\frac{1}{\alpha}$ and $\frac{1}{\beta}$ as its zero	pes is :			
	(a) $x^2 + \frac{p}{q}x + \frac{1}{q}$	(b) $x^2 - \frac{p}{q}x + \frac{1}{q}$	(c) $x^2 - \frac{p}{q}x - \frac{1}{q}$	(d) $x^2 + \frac{p}{q}x + \frac{1}{q}$	
7.	If α , β are the zeroes	n <i>b</i> is :			
	(a) 1		6 (c)	4 (d)	0
8. Given that one of the zeroes of a cubic polynomial $3x^3 + 5x^2 - 9x + a$ is zero. The of a is :					
	(a) $\frac{-5}{3}$	(b) -3	(c) 3	(d) 0	
9.	If α and β are zeroes	s of $x^2 + 4x + 4$, then	n :		
			(b) $\alpha = -\beta$, $\alpha + \beta = 4$		
	(c) $\alpha = \beta$, $\alpha + \beta = 4$	1	(d) $\alpha = -\beta$, $\alpha + \beta =$	= -4	
6 —				——— Mathematic	s - 10


	(a) 0	(b)	1 (c)	2 (d) -1	
11.	If the graph of $y = p(x)$, where $p(x)$ is a quadratic polynomial cuts x-axis at different points, the $p(x)$ has:			cuts x-axis at different	
	(a) no zero		(b) exactly one zero		
	(c) exactly two zeroe	es	(d) none of these		
12.	If α , β and γ are zero is :	roes of a cubic polyno	omial $ax^3 + bx^2 + cx$	$+ d$, then $\alpha\beta + \beta\gamma + \gamma\alpha$	
	(a) $\frac{d}{a}$	(b) $\frac{-c}{a}$	(c) $\frac{c}{a}$	(d) $\frac{-a}{b}$	
13.			16x + 80 are equal in	magnitude but opposite	
	in sign, then its zero		() 2 2 5	(1) 1 1 7	
	(a) 4, –4, 5	(b) 3, -3, 5	(c) 2, -2, 5	(d) $1, -1, 5$	
14.	If α , β are the zeroes equals :	s of the quadratic poly	$p(x) = x^2 - 5x$	$+ 4$, then $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$	
	(a) $\frac{27}{4}$	(b) $\frac{-27}{4}$	(c) $\frac{4}{27}$	(d) $\frac{-4}{27}$	
15.	If two zeroes of the (a) -1	polynomial $x^3 + x^2 -$ (b)	9x - 9 are 3 and -3 , to 2 (c)	then its third zero is: -2 (d) 3	
16.	other zero is:			$3x^2 - 5x - 15$, then its	
	(a) 2	(b)	-3 (c)	4 (d) —4	
17.	the value of quotient	is:		$g(x) = x^2 + 3x + 1$, then	
	(a) $2x^2 - 4x + 2$	(b) $3x^2 - 4x + 2$	(c) $3x^2 + 4x + 2$	(d) $3x^2 - 4x - 2$	
18.	On dividing $2x^2 + 3x$ (a) $3x + 1$		notient is: (c) $2x - 1$	(d) $2x + 1$	
19.	On dividing $3x^3 + x^2$	$x^2 + 2x + 5$ by $1 + 2x$	$+ x^2$, the remainder is	:	
	(a) $9x - 10$	(b) $9x + 10$		(d) $8x - 5$	
20.	If zeroes of a polyno of $p(x)$ is :	omial $p(x)$ are $\sqrt{2}$ and	$1 - \sqrt{2}$, then the polyn	nomial which is a factor	
		(b) $x^2 - 2$	(c) $x - 2$	(d) $x + 2$	
21.	1. The graph of $y = p(x)$, where $p(x)$ is a polynomial in variable x is as follows. The number of zeroes of $p(x)$ is : [CBSE(SP) 2019]				
			X′ ∢	\	
	(a) 2	(b) 3			
	(c) 5	(d) 0		Y'	
Real N	lumbers —			7	


10. If the two zeroes of the cubic polynomial $x^3 + x^2$ are zero each, then the third zero is :

22.	The sum of the zeroes of	the polynomial $2x^2$	2 - 8x + 6 is:		
	(a) -3	(b)	3 (c)	[CBSE(SP) 20 -4 (d)	o19] 4
23.	If α and β are the zeroes	of the polynomial	$px^2 - 2x + 3p$ and $\alpha +$	$-\beta = \alpha\beta, \text{ then } p$	=
	(a) $\frac{3}{}$	(b)	$\frac{2}{2}$ (c)	3 (d)	2

- (a) 3 (b) 2 (c) 1 (d) no zero
- 27. If α and β are the zeroes of the polynomial $x^2 + 6x + 2$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is:

- **28.** A quadratic polynomial whose zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$ is :

 (a) $10x^2 + x + 3$ (b) $10x^2 + x 3$ (c) $10x^2 x + 3$ (d) $10x^2 x 3$
- **29.** If 1 is a zero of the polynomial $p(x) = ax^2 3(a 1)$, then the value of a is :

 (a) 3

 (b) 2 (c) $-\frac{2}{3}$ (d) $\frac{3}{3}$
- **30.** If one zero of the quadratic polynomial $2x^2 3x + p$ is 3, then its other zero is : (a) $\frac{-3}{2}$ (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) $-\frac{1}{2}$
- 31. If α , β are the zeroes of a polynomial such that $\alpha + \beta = 6$ and $\alpha\beta = 4$, then the polynomial is:
- is:
 (a) $x^2 6x + 4$ (b) $-x^2 + 6x 4$ (c) $x^2 6x 4$ (d) none of these
- **32.** If two zeroes of a quadratic polynomial are $5 3\sqrt{2}$ and $5 + 3\sqrt{2}$, then the quadratic polynomial is :

(a) $x^2 - 10x - 7$ (b) $x^2 - 10x + 6$ (c) $x^2 - 10x + 14$ (d) $x^2 - 10x + 7$

33. If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is:

35.	If α and β are the zero $\alpha^2 \beta^2 =$	oes of the quadration	e polynomial $p(x) = ax$	$^{2} + bx + c$, then $\alpha^{3}\beta^{2}$	² +
	(a) $\frac{-bc}{a^3}$	(b) $\frac{-bc^2}{a^3}$	(c) $\frac{-ac}{b^3}$	(d) $\frac{-a^2c}{b^3}$	
36.	If α and β are the zero then $k = 1$	oes of the quadration	c polynomial $x^2 - 5x +$	k such that $\alpha - \beta =$: 1,
	(a) 2	(b)	3 (c)	4 (d)	6
37.	If α , β and γ are the then :			and $\alpha^3 + \beta^3 + \gamma^3 = 1$	27,
	(a) $p = 0$	(b) $p = 1$	(c) $p = 2$	(d) $p = -1$	
38.	If α and β are the zer			k satisfying the relati	ion
	$\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}, t$	hen the value of k	is:		
	(a) 1	(b)	2 (c)	3 (d)	4
39.	The value of k such the product is:	$hat 3x^2 + 2kx - k$	- 5 has the sum of the	e zeores as half of th	eir
	(a) $\frac{2}{3}$	(b)	$\frac{5}{3}$ (c)	$\frac{7}{3}$ (d)	$\frac{8}{3}$
40.	If the sum and the pro		of the polynomial $p(x)$	$) = 4x^2 - 27x + 3k^2$	are
	equal, then the value of (a) ± 2	(b)	±3 (c)	±5 (d)	±1
41.	If α , β are the zeroes (a) 13	of $x^2 - 6x + k$, then (b)	the value of k when $3 - 14$ (c)		-16
42.	If the degree of polyn	omial $p(x)$ is n , the	en the maximum number	er of zeroes it can ha	ave
	is: (a) <i>n</i>	(b)	n^2 (c)	n^3 (d) none of the	ese
43.	The value of k , if -4 i	s a zero of polynor	mial $x^2 - x - (2k + 2)$ i	is:	
	(a) 5	(b)	6 (c)	7 (d)	9
44.	Zeroes of the polynom	•	5		
	(a) $\pm \frac{2}{3}$	(b) $\pm \frac{3}{2}$	$(c) \pm \frac{5}{2}$	(d) none of these	
45.	Sum of the zeroes of t	he polynomial x^3 –	4x is:		
	(a) $\frac{1}{2}$	(b)	$-\frac{1}{2}$ (c)	0 (d) –	$\frac{3}{2}$
Real N	lumbers —				9

(a) $\frac{-b}{a}$ (b) $\frac{b}{c}$ (c) $\frac{-b}{c}$ (d) $\frac{-a}{b}$

 $-2\alpha\beta$ is :

34. If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$, then $\frac{1}{\alpha} + \frac{1}{\beta}$

(a) $\frac{-ab-2c^2}{ac}$ (b) $\frac{ab+2c^2}{ac}$ (c) $\frac{ab+b^2}{2c}$ (d) $\frac{-c^2+ab}{2ac}$

46.	If p and q are the zeroes	of $ax^2 - bx + c$,	$a \neq 0$, then the va	lue of $p + q$ is:	
	(a) $\frac{b}{a}$ (b)	$\frac{c}{a}$	(c) $\frac{d}{a}$	(d) $-\frac{b}{a}$	
47.	If 2 and -3 are the zeroes of $a + b$ is:	s of the quadratic	polynomial $x^2 + 0$	(a + 1)x + b, then the va	lue
	(a) -5	(b)	0 (c)	6 (d)	-6
48.	On dividing $x^3 - 3x^2 + x - 4$ and $-2x + 4$ respectively, (a) $x^2 + x - 1$ (b)	then $g(x)$ is:			- 2
49.	If $p(x) = 3x^4 + 5x^3 - 7x^2$ (a) 1		$ ded by g(x) = x^2 + $	3x + 1, then reminder i -1 (d)	s :
50.	If 1 is a zero of the polyr (a) 1 and 2 (b)			es are : (d) -2 and -3	
		II. FILL IN TH	E BI ANKS		
		II. I ILL IIV IIII	L BLANKS		
1.	If one of the zeroes of the cubic polynomial $x^3 + ax^2 + bx + c$ is -1 , then the product of other two zeroes is				
2.	If two zeroes of the polynomial $p(x) = x^3 - 4x^2 - 3x + 12$ are $\sqrt{3}$ and $-\sqrt{3}$, then its third zero =				
3.	If one zero of the polynomial $ax^2 + bx + c$ is double the other, then $2b^2 =$				
4.	The value of p for which the polynomial $x^3 + 4x^2 - px + 8$ is exactly divisible by $(x-2)$ is				
5.	If $x^2 + x - 12$ divides $p(x) = x^3 + ax^2 + bx - 84$ exactly, then a and b are respectively and				ely
6.	On dividing the polynomial $p(x)$ by $g(x) = 4x^2 + 3x - 2$, the quotient $q(x) = 2x^2 + 2x - 1$ and remainder $r(x) = 14x - 10$, then $p(x) = $				
7.	If $(x + a)$ is a factor of t	wo polynomials :	$x^2 + px + q$ and x	$\frac{n-q}{m-p}$	- =
	If 2 and -2 are the zeroes of the polynomial $p(x) = x^4 + 2x^3 - 7x^2 - 8x + 12$, then its other zeroes are				its
9.	If 1 is a zero of the polynomial $7x - x^3 - 6$, then its other zeroes are				
10.	If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of $2x^2 - 5x - 3$, then the value of p and q are respectively and				- 5 <i>x</i>
11.	If α and β are the zeroes	of the polynomial	$2x^2 + 7x + 5$, the	$\alpha + \beta + \alpha\beta = $	·
12.	If the polynomial $6x^4 + 3x^2 + 4x + 1$, then the ren				
13.	If α and β are the zeroes of the quadratic polynomial $p(x) = kx^2 + 4x + 4$ such that $\alpha^2 + \beta^2 = 24$, then the value of $k = $				

10 —

– Mathematics - 10

- 14. If α and β are the zeroes of the quadratic polynomial $p(x) = x^2 5x + k$ such that $\alpha \beta = 1$, then the value of k =_____.
- 15. If α and β are the zeroes of the quadratic polynomial $p(x) = x^2 px + q$, then $\alpha^2 + \beta^2 = \underline{\hspace{1cm}}$.

III. VERY SHORT ANSWER QUESTIONS

- 1. What is the degree of a polynomial?
- 2. Write the quadratic polynomial with real co-efficients in standard form.
- **3.** What is the zero of a polynomial?
- **4.** What is the zero of the linear polynomial ax b?
- 5. Graph of a quadratic polynomial may be a straight line. Is it true?
- 6. A cubic polynomial can have at most how many zeroes?
- 7. Find the sum of the zeroes of the polynomial $2x^2 x + 4$.
- **8.** What is the product of zeroes of the polynomial $y^2 5y 3$?
- **9.** Write the polynomial whose zeroes are -1 and 2.
- 10. State division algorithm for polynomials.

ANSWERS

I. Multiple Choice Questions:

- 1. (c) 2. (b) 3. (c) 4. (b) 5. (c) 6. (d) 7. (b) 8. (d) 9. (a)
- 10. (d) 11. (c) 12. (c) 13. (a) 14. (b) 15. (a) 16. (b) 17. (b) 18. (c)
- 19. (b) 20. (b) 21. (c) 22. (d) 23. (b) 24. (c) 25. (a) 26. (c) 27. (b)
- 28. (d) 29. (d) 30. (a) 31. (a) 32. (d) 33. (c) 34. (a) 35. (b) 36. (d)
- 37. (d) 38. (b) **39.** (b) **40.** (b) **41.** (d) **42.** (a) **43.** (d) **44.** (b) **45.** (c)
- 46. (a) 47. (d) 48. (b) 49. (b) 50. (c)

II. Fill in the Blanks:

- 1. b a + 1 2. 4 3. 9ac 4. p = 16 5. 8, -5 6. $8x^4 + 14x^3 2x^2 + 7x 8$
- 7. a **8.** 1, -3 **9.** -3, 2 **10.** -5, -6 **11.** -1 **12.** 9 **13.** -1, $\frac{2}{3}$ **14.** 6 **15.** $p^2 2q$

III. Very Short Answer Questions:

2.
$$ax^2 + bx + c$$
, $b \ne 0$ 4. $\frac{b}{a}$ 5. no 6. 3 7. $\frac{1}{2}$ 8. -3 9. $x^2 - x - 2$