

AN EDUCATIONAL INSTITUTE

MIND CURVE Mid Term Maths Test Series 2025-26

Test 03

By Deepika Bhati Teaching Mathematics Passionately since 2009

S no	Syllabus Covered	Chapters(In Half Yearly)	Marking Scheme
1.	Chapter 5	continuity and differentiability	20
2	Chapter 6	Application of Derivates	20

Note: Students/Teachers can refer to this Sample Paper for practice purpose. However, students may find or experience different exam pattern as syllabus or marking scheme may vary school to school.

MM:40

GENERAL INSTRUCTIONS

Time1.5Hrs

READ CAREFULLY ALL INSTRUCTIONS

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 10 MCQs carrying 1 mark each
- 3. Section B has 3 questions carrying 02 marks each.
- 4. Section C has 2 questions carrying 03 marks each.
- 5. Section D has 2 case based integrated units of assessment (04 marks each) with sub parts of the values of 1, 1 and 2 marks each respectively.
- 6. Section E has 2 questions carrying 05 marks each
- 7. All Questions are compulsory.
- 8. This paper consists of 19 questions.
 - a. Write your answers neatly and legibly.
 - b. Ensure you have not left any question unanswered

SECTION - A

Questions 1 to 10 carry 1 mark each.

1.	The value of λ for	which $f(x) = \begin{cases} \lambda x^2 + 8x \\ 2x + 6 \end{cases}$	$x, x \leq 2$ x > 2	is continuous at x=2 s:
				1

(a)

(b)2

 $(c)^{\frac{1}{2}}$

(d) $-\frac{3}{2}$

2. If y = log(cos e^x), then $\frac{dy}{dx}$ is:

(a) $\cos e^{x-1}$

(b) $e^{-x} \cos e^x$

(c) $e^x \sin e^x$

(d) $-e^x \tan e^x$

3. If y (log_x). Then f '(x) at x= e is:

(a) e

(b) $\frac{1}{e}$

(c) –e

(d) $-\frac{1}{2}$

4. Radius of a sphere is increasing at the rate of 2cm/sec. The rate of change of its volume , when its radius is 6cm is :

(a) 288 $\pi cm^3 / sec$

(b) $8 \pi cm^3/sec$

(c) 12 $\pi cm^3/sec$

(d) None of these

5. The side of an equilateral triangle is increasing at the rate of 2 cm/s. The rate at which area increases when the side is 10 is

(a) $10 cm^2/s$

(b) $10/3 cm^2/s$

(c) $\sqrt{3}$ cm²/s

(d) $10\sqrt{3} \ cm^2/s$

- **6.** If $y = x^3 + x^2 + x + 1$, then y
 - (a) has a local minimum
 - (b) has a local maximum
 - (c) neither has a local minimum nor local maximum
 - (d) None of the above
- 7. The point(s) on the curve $y = x^2$, at which y-coordinate is changing six times as fast as x coordinate is are

(a) (6, 2)

- (b) (2, 4)
- (c)(3,9)

(d)(9,3)

- **8.** If $x \sin(a+y) = \sin y$, then $\frac{dy}{dx}$ is equal to
 - (a) [sin2(a+y)]/sin a
 - (b) sin a /[sin2(a+y)]
 - (c) [sin(a+y)]/sin a
 - (d) sin a /[sin(a+y)]
- **9. Assertion (A):** $f(x) : e^{-3x}$ always decreases

Reason (R): Any function f(x) is decreasing if $\frac{dy}{dx} < 0$

- (a) Both(A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both(A) and (R) are true and (R) is not the correct explanation of (A)
- (c) (A) is true and (R) is false
- (d) (A) is false and (R) is true
- **10**. Assertion(A): The function $f(x) = (x+2)e^{-x}$ is strictly increasing on $(-1, \infty)$

Reasoning (**R**): A function f(x) is strictly increasing if f'(x) > 0.

- (a) Both(A) and (R) are true and (R) is the correct explanation of (A)
- (b) Both(A) and (R) are true and (R) is not the correct explanation of (A)
- (c) (A) is true and (R) is false
- (d) (A) is false and (R) is true

SECTION - B

Questions 11 to 13 carry 2 mark each.

11.(A) Find
$$\frac{d^2y}{dx^2}$$
 at $\theta = \frac{\pi}{2}$, x =a (1-cos θ), y = a (θ + sin θ)

- (B) Differentiate : sin^2x w.r.t. e^{cosx} .
- 12.(A) Find the maximum and minimum values if any of the function given by $f(x)=\sin 2x+5$.

Or

- (B)The volume of a sphere is increasing at the rate of 8 cm³/s. Find the rate at which its surface area is increasing when the radius of sphere is 12 cm
- **13.** If $(\cos x)^y = (\sin y)^x$, find $\frac{dy}{dx}$.

SECTION - C

Questions 14 to 15 carry 3 mark each

14.(A) Find the intervals in which the function f given by $f(x) = \sin x + \cos x$, Where $0 \le x \le 2\pi$, is strictly increasing or strictly decreasing.

- (B) Find the intervals in which $f(x) = \sin^4 x + \cos^4 x$, $0 \le x \le \frac{\pi}{2}$ is increasing or decreasing
- **15.**If $x = a\cos\theta + b\sin\theta$, $y = a\sin\theta b\cos\theta$. Prove that $y^2y_2 xy_1 + y = 0$

SECTION - D

Questions 16 to 17 carry 4 mark each.

16. A function f(x) is said to be continuous in an open interval (a,b), if the continuous at every point in this interval . A function f(x) is said to be continuous in the closed interval [a,b], if f(x) is continuous in (a,b) and $\lim_{h\to 0} f(a+h) = f(a)$ and $\lim_{h\to 0} f(b-h) = f(b)$.

If function f(x) =
$$\begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0 \\ c, & x = 0 \text{ is continuous at } x = 0. \\ \frac{\sqrt{x + bx^2 - \sqrt{x}}}{bx^{3/2}}, & x > 0 \end{cases}$$

Based on the above information, give the answer of the following questions:

- (a) Find the value of b.
- (b) Find the value of (a + c)
- **17.** In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area . The sport field is given by the graph of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - (i) If the length and the breadth of the rectangular field be 2x and 2y respectively , then find the area function in term of x.
 - (ii) Find the critical point of the function
 - (iii)(a) Use first derivates Test to find the length 2x and width 2y of the soccer field (in terms of a & b) that maximize its area .

Or

(b)Use second derivates Test to find the length 2x and width 2y of the soccer field (in terms of a & b) that maximize its area.

SECTION – E

Questions 18 to 19 carry 5 mark each.

18 If
$$(x-a)^2 + (y-b)^2 = (c)^2$$
 for some c>0, prove that

$$\frac{\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2x}{dx^2}}$$
 is a constant independent of a and b.

19. If length of three sides of a trapezium other than base are equal to 10cm, then find the area of the trapezium when it is maximum.

OR

Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimeters, find the dimensions of the can which has the minimum surface area?

|--|

To get more sample papers , practice papers ,study material for Maths (only for CBSE XI-XII) join my whatsapp group at link shared below

https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF