ANSWER KEY

1	(b)Injective
2	(c)106
3	(b) $-\frac{2\pi}{5}$
4	(b)4
5	(a) One-one but not onto
6	(a)-1
7	(b) y=cos ⁻¹ x
8	(d) Continuous as well as differentiable at x=2.
9	(d) A is false but R is true
10	(a) Both A and R are true and R is the correct explanation for A
11	
	tan-1 [2 sin (2 cos-1 $\sqrt{3}$)] tan-1 [2 sin (2 cos-1 cos $\frac{\pi}{6}$)] tan-1 [2 sin [2 $\times \frac{\pi}{6}$]) tan-1 [2 sin $\frac{\pi}{3}$] = tan-1 [2 $\times \frac{\pi}{3}$] = tan-1 [2 $\times \frac{\sqrt{3}}{2}$] = tan-1 $\frac{\pi}{3}$ = tan-1 $\frac{\pi}{3}$ = $\frac{\pi}{3}$ Sec-1 [1] [et $\frac{\pi}{3}$] [occos 0 c] 0 c cos 0 c]
	Sec-1 (200520-1) 2000 02
	2
	Sec-1 (1 cos 20)
	Sec-1 (Sec20)
	20 = 2 cos 7c
	<u> </u>

12	
	$\begin{bmatrix} \cos^{-1}\sqrt{3} & + \cos^{-1}(-1) \\ 2 & + \cos^{-1}(-1) \end{bmatrix}$
	$\frac{\left(\cos^{-1}\sqrt{3} + \pi - \cos^{-1}\frac{1}{2}\right)}{2}$
	(05-1 COS n + n - COS-1 COS n 3
	$\left[\begin{array}{c} \times & + \times - \times \\ 6 & 3 \end{array}\right]$
	$\frac{3x + 18x - 6x}{18} = \frac{15x}{18} = \frac{5x}{6}$
13	$\sin \left\{ 2(\pi - \cot^{-1} \frac{5}{12}) \right\}$
	$= -\sin\left(2tan^{-1}\frac{12}{5}\right)$ $= -\sin\left(\sin^{-1}\frac{120}{169}\right) = -\frac{120}{169}$
14	= -\$\frac{\sin}{169} - \frac{1}{169}
	Jon 1-1
	such that $j(x_1) = f(x_2)$
	$\frac{\chi_1 - 2}{\chi_1 - 3} = \frac{\chi_2 - 2}{\chi_2 - 3}$
	$\chi_{1}\chi_{2} - 3\chi_{1} - 2\chi_{2} + 6 = \chi_{2}\chi_{1} - 2\chi_{1} - 3\chi_{2} + 6$
	$-3x_{1}-2x_{2}=-2x_{1}-3x_{2}$ $-3x_{1}+2x_{1}=-3x_{2}+2x_{2}$
	$ \mathcal{X}_1 = + \mathcal{X}_2 $ $ \mathcal{X}_1 = \mathcal{X}_2 $
	-: fis 1-1

Onto
(et f(n) = y
$y = \chi - 2$ 0 0 0 0 0 0 0 0 0 0
yx - 3y = x - 2
yn -0 n = 3y -2
$\chi(y-1) = 3y-2$
x = 3y-2 $y-1$
Range = co domain y -1
Range - Codomain y E R & 1 }
-: fis onto
U
herefore f is bijective
let (n,) & (n2) eR
Y
$f(x_1) = f(x_2)$
$2\chi_1^2 + 3 = 2\chi_2^2 + 3$
$2\chi_1^2 - 2\chi_2^2 = 0$
$\chi_1^2 - \chi_2^2$ NSTITUTE
$(\gamma_1 - \gamma_2) \cdot (\gamma_1 + \gamma_2)$
72 2 N2 1 21 = -4.2

	$2\chi_{1}^{2}-2\chi_{2}^{2}=0$ $\chi_{1}^{2}-\chi_{2}^{2}=0$ $(\chi_{1}-\chi_{2})(\chi_{1}+\chi_{2})$ $\chi_{2}=\chi_{2}, \chi_{1}=-\chi_{2}$ But there exclude be no unique preimage for -ve no, lain the Co-domain Thus., f is not 1-1
	Onto $J(x) = y$ $y = 2x^{2} + 3$ $2x^{2} = 3 - y$ $\chi = \frac{3 - y}{2}$
15	Negative values of y excill give. in the Co-domain Thus j is not onto ISTITUTE
1.3	$\frac{\tan^{-1}\left(\frac{\cos 2\pi}{1+\sin 2\pi}\right)}{\left(\frac{\cos^{2}\pi/2-\sin^{2}\pi/2}{(\cos \pi/2+\sin \pi/2)^{2}}\right)} = \frac{\cos^{2}\theta-\sin^{2}\theta}{(\cos \pi/2+\sin \pi/2)^{2}}$ $\frac{\tan^{-1}\left(\frac{\cos \pi/2-\sin \pi/2}{(\cos \pi/2+\sin \pi/2)^{2}}\right)}{\left(\frac{\cos \pi/2+\sin \pi/2}{(\cos \pi/2+\sin \pi/2)^{2}}\right)}$ $\frac{\tan^{-1}\left(\frac{\cos \pi/2-\sin \pi/2}{(\cos \pi/2+\sin \pi/2)^{2}}\right)}{(\cos \pi/2+\sin \pi/2)}$

	divide by $\cos \pi/2$
16	(i) $l = S(1,1)(2,2)(3,3)(4,4)$ (5,5)(6,6)(2,4) (2,6)(3,6)
	Ris reflexion as (9,0) ER forall a EA. ii) Ris not symmetric as (2,4) ER but (4,2) ER
	iv) R is not an equivalence relation as R is not real lexine since (3,3) & R R is not transition since (1,3) (3,4) & R but (1,4) & R =) R is not an equivalence relation.
	(ii) No. of reflexine relation: 2 (n-1) = 26x5 = 20

 \therefore ad(b+c)=bc(a+d)

 \Rightarrow cb(d+a)=da(c+b)

 \Rightarrow (c,d)R(a,b)

 $(a, b)R(c, d) \Rightarrow (c, d)R(a, b)$ for all $(a, b), (c, d) \in N \times N$

Hence, R is symmetric.

iii) Transitivity:

Let (a, b), (c, d), (e, f) be an arbitrary element of N × N such that (a, b)R(c, d) and (c, d)R(e, f).

ad(b+c)=bc(a+d)

⇒adb+adc=abc+bcd

 \Rightarrow cd(a-b)=ab(c-d)(1)

Also,cf(d+e)=de(c+f)

⇒cfd+cfe=dec+def

 \Rightarrow cd(f-e)=ef(d-c)(2)

From (1) and (2), we have

$$\frac{a-b}{f-e}=-\frac{ab}{ef}$$

⇒aef-bef=-abf+aeb

⇒aef+abf=aeb+bef

 \Rightarrow af(b+e)=be(a+f)

 \Rightarrow (a, b)R(e, f)

 $\therefore (a,b) \\ R(c,d) \text{ and } (c,d) \\ R(e,f) \Rightarrow (a,b) \\ R(e,f) \text{ for all } (a,b), (c,d), (e,f) \in \\ \\ \mathbb{N} \times \\ \mathbb{N}$

Hence, R is transitive.

Thus, R being reflexive, symmetric and transitive, is an equivalence relation on $N \times N$.

19

one-one

Let
$$x_1, x_2 \in R+$$
 and $f(x_1)=f(x_2)$

$$9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$$

$$9{x_1}^2 + 6{x_1} = 9{x_2}^2 + 6{x_2}$$
 (removing -5 from both side)

$$3x_1^2 + 2x_1 = 3x_2^2 + 2x_2$$
 (dividing 3 on both side)

$$3x_1^2 - 3x_2^2 + 2x_1 - 2x_2 = 0$$

$$\Rightarrow 3(x_1^2 - x_2^2) + 2(x_1 - x_2) = 0$$

$$3(x_1-x_2)(x_1+x_2)+2(x_1-x_2)=0$$

$$x_1 - x_2 = 0$$
 (OR) $x_1 + x_2 + 2 = 0$

Consider
$$x_1+x_2+2=0 \Rightarrow x_1=-x_2-2$$

As $x_1,x_2\in R+$ (non-negative real numbers), it $(x_1+x_2+2=0)$ can not be possible. So $x_1-x_2=0\Rightarrow x_1=x_2$

Hence it is one-one.

onto

Let
$$y=f(x)$$
 and $y\in[-5,\infty]$

So
$$y = 9x^2 + 6x - 5$$

$$9x^2 + 6x - 5 - y = 0$$

$$x=rac{-6\pm\sqrt{6^2-4 imes9 imes(-y-5)}}{2 imes9}$$
 (by using formula $x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ for quadratic equation $ax^2+bx+c=0$)

$$x = \frac{-6 \pm \sqrt{36 + 36(y + 5)}}{18}$$

$$\Rightarrow x = \frac{-6\pm6\sqrt{(y+6)}}{18}$$

x has two solution $x=\frac{-1-\sqrt{y+6}}{3}$ and $x=\frac{-1+\sqrt{y+6}}{3}$. We need to prove either one solution (x) exists for every $y\in[-5,\infty)$. In the solution $x=\frac{-1-\sqrt{y+6}}{3}$, x is the negative number for any y in the given range. Now we left with $x=\frac{-1+\sqrt{y+6}}{3}$. For y=-5, x=0 and any value greater then -5 x is always non negative real numbers. It proves that every value in the range $y\in[-5,\infty)$ there exists a value in domain $\to x\in R+$. Hence it is onto.

So the function is bijective (one-one and onto).

AN EDUCATIONAL INSTITUTE