ANSWER KEY

1	(B)2
2	(C)-1
3	(D)c and a have same signs
4	(C)23
5	(B)
6	(D)
7	(C)
8	(D)
9	(A)
10	(D)
11(A)	If α and β are the zeros of $p(x) = (\alpha^2 + 16)x^2 + 16x + 8$ then
11(B)	$\alpha\beta = \frac{8a}{a^2 + 16} = 1 \implies a^2 + 16 = 8a \implies a^2 - 8a + 16 = 0 \implies (a - 4)^2 = 0 \implies a = 4$
	Or $\alpha + \beta = -\frac{b}{a} = \frac{-(-2)}{3} = \frac{2}{3}$, $\alpha\beta = \frac{c}{a} = -\frac{1}{3}$
	$(1-\alpha)(1-\beta) = 1 - (\alpha+\beta) + \alpha\beta = 1 - \frac{2}{3} - \frac{1}{3} = 0$
12	$\frac{4\pi^{2} - 4a^{2}x + a^{4} - b^{3} = 0}{4\pi^{2} - 2(a^{2} - b^{2})x - 2(a^{2} + b^{2})x + a^{4} - b^{3} = 0}$ $2\pi \left[2n - (a^{2} - b^{2})\right] - 2(a^{2} + b)\left[2n - (a^{2} - b^{2})\right] = 0$ $2\pi - 3(a^{2} + b^{2})\right] \left[2n - (a^{2} - b^{2})\right] = 0$ $7 = a^{2} + b^{2}, a^{2} - b^{2}$ $2 = a^{2} + b^{2}, a^{2} - b^{2}$ $2 = a^{2} + b^{2}, a^{2} - b^{2}$
13(A)	$S_{n} = 1170$ $2(2a+6-1)d) = 1170$ $2(2x+6-1)d) =$

OR

Sum of integers between 1 and 200 which any multiply of 3.

13(B) Sequence = 3, 6, 9, ... 198

a=3, d=3

$$S = \frac{n}{2}(a_1 + l_1) = \frac{66}{2}(3 + 198)$$

 $= 33 \times 201 = 6633$

14(A

Let the usual speed be x km/h and the usual time be t h. Distance D=xt.

From the two altered cases:

$$(x+6)(t-4) = xt$$
 \Rightarrow $-4x+6t-24 = 0$ \Rightarrow $-2x+3t-12 = 0$.

$$(x-6)(t+6) = xt$$
 \Rightarrow $6x-6t-36 = 0$ \Rightarrow $x-t-6 = 0$.

From x-t-6=0 we get t=x-6. Substitute into -2x+3t-12=0:

$$-2x + 3(x - 6) - 12 = 0 \Rightarrow -2x + 3x - 18 - 12 = 0 \Rightarrow x = 30 \text{ km/h}.$$

Then $t=x-6=24\,\mathrm{h}$, so the distance is

$$D=xt=30\times 24=720$$
 km.

Or

Let the number of chocolates in lot A be x and in lot B be y.

14(B) From the first selling method: ₹2 for 3 chocolates (so price per chocolate = 2/3 ₹) on lot A, and ₹1 each on lot B, total ₹400:

$$\frac{2}{3}x + 1 \cdot y = 400 \implies 2x + 3y = 1200.$$

From the second selling method: \P 1 each on lot A, and \P 4 for 5 chocolates on lot B (price per chocolate = $4/5 \P$), total \P 460:

$$1 \cdot x + \frac{4}{5}y = 460 \implies 5x + 4y = 2300.$$

Solve the linear system

$$\begin{cases} 2x + 3y = 1200, \\ 5x + 4y = 2300. \end{cases}$$

Eliminate x: multiply the first by 5 and the second by 2,

$$10x + 15y = 6000,$$
 $10x + 8y = 4600,$

subtracting gives 7y = 1400, so y = 200. Substitute in 2x + 3y = 1200:

$$2x + 600 = 1200 \implies 2x = 600 \implies x = 300.$$

Total chocolates = x + y = 300 + 200 = 500

	Mind Curve Mid Term Test Series 2025-26-X-Test 02
15	
	$\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} - 2\alpha\beta$ $\frac{\alpha^{2} + \beta^{2}}{\alpha^{2} \beta^{2}} - 2\alpha\beta$ $(x+\beta)^{2} - 2\alpha\beta - 2\alpha\beta = \frac{(5)^{2} - 2(4)}{(4)^{2}} - 2(4)$ $= \frac{25 - 8}{16} - 8$ $= \frac{17}{16} - 8 = \frac{17 - 128}{16} = -111$
	2, 2 ² 24B
	02B2
	$(\chi + \beta)^2 - 2\chi\beta = 2\chi\beta = (5)^2 - 2(4) - 2(4)$
	$\frac{\alpha^2\beta^2}{(4)^2}$
	$=\frac{25-8}{16}-8$
	$= \frac{17}{16} - 8 = \frac{17 - 128}{16} = \frac{-111}{16}$
16	(i)40 km/hr
	(ii)50 km/hr
	(iii)(A)15hrs
	(iii)(B)12hrs
17	(i)250
	(ii)110 rollers per year
	(iii)
	— To find in which year production was 1350: solve $a+(n-1)d=1350$:
	$250 + (n-1) \cdot 110 = 1350 \Rightarrow (n-1) \cdot 110 = 1100 \Rightarrow n-1 = 10 \Rightarrow n = 11.$
	So production reached 1350 rollers in the 11th year.
	— Production in the 8th year:
	$a_8 = a + 7d = 250 + 7(110) = 250 + 770 = \boxed{1020 \text{ rollers}}.$
18	× C (0.65)
	$A_{(3, 5)}^{(1, 6)}$
	4 (5, 4)
	3+ 2+ x+2y=13
	X' (1, 1) X
	-6-5-4-3-2-10 1 2 3 4 5 6 7 8 -1 + (0,-1)
	I the solution for the given of equations.
	ving word problems + - / "
	-5 bawallot ad at agas?
	s finding out the ages of two pre- nd of the other as w. Then W. weers age of I" per
	Area of triangle ABC= ½ x BCx AD= ½ x7.5x 3= 11.25 sq units.
19	
-	

Given $S_4 = 40$ and $S_{14} = 280$:

$$S_4 = \frac{4}{2}(2a + 3d) = 40 \implies 2a + 3d = 20,$$

$$S_{14} = \frac{14}{2}(2a+13d) = 280 \implies 2a+13d = 40.$$

Subtract the first equation from the second:

$$(2a+13d)-(2a+3d)=40-20 \implies 10d=20 \Rightarrow d=2.$$

Plug d = 2 into 2a + 3d = 20:

$$2a+6=20 \Rightarrow 2a=14 \Rightarrow a=7$$
.

Now form S_n :

$$S_n = \frac{n}{2} \big(2a + (n-1)d \big) = \frac{n}{2} \big(14 + 2(n-1) \big) = \frac{n}{2} (2n+12) = n(n+6).$$

Quick checks:
$$S_4=4(4+6)=4\cdot 10=40$$
 and $S_{14}=14(14+6)=14\cdot 20=280$

According to the given condition,

$$\Rightarrow$$
 mt_m = nt_n

$$\Rightarrow$$
 m{a + (m - 1) d} = n {a + (n - 1) d}

$$\Rightarrow$$
 ma + md(m - 1) = na + nd(n - 1)

$$\Rightarrow$$
 ma + m²d - md = na + n²d - nd

$$\Rightarrow$$
 ma + m²d - md - na - n²d + nd = 0

$$\Rightarrow (ma - na) + (m^2d - n^2d) - (md - nd) = 0$$

$$\Rightarrow a(m-n) + d(m^2 - n^2) - d(m-n) = 0$$

$$\Rightarrow a(m-n) + d(m+n) (m-n) - d(m-n) = 0$$

$$\Rightarrow (m-n)[a+(m+n-1)d]=0$$

$$\Rightarrow$$
 [a + (m + n - 1)d] = 0 ...[Dividing both sides by (m - n)]

$$\Rightarrow t(m+n)=0$$

Hence, the $(m + n)^{th}$ term of the given A.P. is zero

