Roll No. 35

MID TERM EXAMINATION (2025-2026) CLASS X

SUBJECT : MATHEMATICS

Time: 3 Hours

M.M.: 80

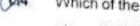
General Instructions:

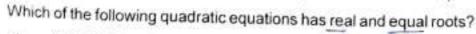
- 1. This question paper contains 38 questions. All questions are compulsory.
- 2 This question paper is divided into five Sections-A, B, C, D and E.
- Section A (Q1-Q18) are Multiple Choice Questions (MCQ) and Questions 19 and 20 are 3. Assertion-Reason based questions of 1 mark each.
- Section B (Q21-Q25) are Very Short Answer (VSA) type questions carrying 2 marks each. 4
- Section C (Q26-Q31) are Short Answer (SA) type questions carrying 3 marks each. 5
- Section D (Q32-Q35) are Long Answer (LA) type questions carrying 5 marks each. 6
- Section E (Q36-Q38) are Case Study Based Integrated questions carrying 4 marks each. 7 Internal choice is provided in 2 marks question in each case study.
- There is no overall choice. However, an internal choice has been provided in 2 questions of 8. Section B, 2 question of Section C, 2 questions of Section D and 3 questions 2 marks in Section E.
- Draw neat diagrams wherever required. Take π = 22.7 unless stated otherwise. 9
- 10. Use of calculators is not allowed.

SECTION-A

This section consists of 20 questions of 1 mark each.

91	In a right triangle ABC, right angled at A, if sin B = 1/4, then what is the value of sec B2
1	9. Then what is the value of sec R2


- b) $\sqrt{\frac{15}{4}}$
- c)


Find the greatest number which divides 281 and 1249, leaving remainders 5 and 7 respectively.

- 23
- -b) 276
- c) 138
- d) 69

If
$$\alpha$$
 and β are the zeroes of the polynomial $3x^2 + 6x + k$, such that $\alpha + \beta + \alpha\beta = \frac{-2}{3}$, then find the value of k .

- c)

 $(x+1)^2 = 2x + 1$. a)

b) $x^2 + x = 0$

C) $x^2 - 4 = 0$

d) $x^2 + x + 1 = 0$

5/ Fin	d the distance t	betwee	n the points (0	2√5)	and (-2 √5 .0)		
. a)	2 J10 units	b)	4 √10 units	c)	2√20 units	d)	0
Inth	ne given figure,	AB PC) If AB = 6 cm,	PQ = 2	cm and OB = 3	cm, the	en find the length of
			4	1/9	/s		
a)	9 cm	b)	3 cm	c)	4 cm	-d)	1 cm
a)	$\theta + \cos \theta = \sqrt{2}$.b)	2	c)	3	d)	4
Onv	valking x m tow op changes from	ards a	tower in a horiz	zontal	ine through its	Aller Fall	he angle of elevation
a)	(3√2) x m	b)	(2√3) x m	. c)	$\frac{\sqrt{3}}{2}$ x m	d)	$\frac{2}{\sqrt{3}} \times m$
	e system of equ e of k	ations	3x + y = 1 and	(2k-1):	x + (k-1)y = 2k+	1 is inc	consistent, then find
a)	-1	b)	0	c)	1	d)	2
I II LO	CM(x, 18) = 36	and HO	CF (x, 18) = 2,	then w	hat is the value	of x?	
a)	2	b)		· c)	(1-426)	d)	5
Find	the common o	differen	ce of the A.P.	1 (2x)	(1-4)(1-8x) (2x) (2x)		
	-2x				2	d)	2x
Point of P.	t P divides the li	ine seg	ment joining A(4, –5) a	and B(1, 2) in the	e ratio 5	5.2. Find the coordin
a)	$\left(\frac{5}{2}, \frac{-3}{2}\right)$	b)	$\left(\frac{11}{7}.0\right)$.c)	$\left(\frac{13}{7}.0\right)$	d)	$\left(0,\frac{13}{7}\right)$
AB ²	C ~ ΔPQR 1 PQ2 = 4 9, th	f AM a	and PN are a	altitude	es of AABC a	ind ΔP	QR respectively.
	3 2			C)	4 9	d) 2	3
athema	atics		Por.				

	2002-80	7	763	7	4x² – 3x	3 7	277.500.4401	3	
	, a)	3	(D)	-3	C)	7	• d)	$-\frac{1}{7}$	
@15	Find	and the same						/= p have infinitely many	
_	a)	-6 only	b)	±6	.c)	6 only	d) ar	ny real no. except ±6	
Q16)	Find	the roots of t	he equa	tion x ² – 3x –	m(m+3)	= 0, where m	is a co	nstant	
	a)	m, m+3	b)	-m, m+3	C)	m, -(m+3)	* d)	-m, -(m+3)	
01/	If cos	$\theta = \frac{12}{13}$, find	the valu	e of (5 cosed	c θ − 4 ta	an θ).		E Daven	
,	a)	39	b)	60	c)	31			
218	Two A other	P.s have the is –8. Find the	e same d ne differe	ommon diffe nce betweer	rence. their 4	The first term of term	of one A	P. is –1 and that of the	
	a)	1	b)	7	+c)	7	d)	9	
Direct	ions (Q19-Q20):	Assertic	n-Reason			55.50	27	
n ques R). Ch	stion n	umbers 19 a the correct o	nd 20, a ption:	statement of	Assert	ion (A) is follo	wed by	a statement of Reason	
)	Both A	and R are t	rue, and	R is the corre	ect expl	anation of A			
						xplanation of	۵.		
		ue, but R is		*		-pranadoli Oli			
		se, but R is t							
						lways similar.		s are equal	
20 A								(2, 3), then the value of	
P	easo	2.377.37	entre of a	a circle is the	midpo	int of each ch	ord of ti	he circle.	
95									

Th

Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $\frac{-3}{2}$.

Find the value of k, for which one root of the quadratic equation $kx^2 - 14x + 8 = 0$ is six times the other.

X/Mathematics

Q23. Prove that $5\sqrt{3} + 2$ is an irrational number, given that $\sqrt{3}$ is irrational.

Q24. Evaluate:
$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

OR

Find an acute angle
$$\theta$$
 when
$$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$$

Q25. Determine k so that k² + 4k + 8, 2k² + 3k + 6, 3k² + 4k + 4 are three consecutive terms of A.P.

OR

If the 10th term of an A.P. is 52 and the 17th term is 20 more than the 13th term, find the A

SECTION C

This section consists of 6 questions of 3 marks each.

- , Two people are 16 km apart on a straight road. They start walking at the same time. If the walk towards each other with different speeds, they will meet in 2 hours. Had they walked the same direction with same speed as before, they would meet in 8 hours. Find their walking speeds.
- Q27. Find the ratio in which P(4,m) divides the line segment joining the points A(2,3) and B(6,-3). Hence, find 'm'.

OR

If (a,b) is the mid-point of the line segment joining the points A(10,-6) and B(k,4) lies a-2b=18. Find the value of k and the distance AB.

28. State and prove Basic Proportionality Theorem.

Q29 Prove that:
$$\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta$$

OR

If cosec
$$\theta = x + \frac{1}{4x}$$
, prove that : $\csc \theta + \cot \theta = 2x$ or $\frac{1}{2x}$

- Q38. Is it possible to design a rectangular park of perimeter 80 m and area 400 m²? If so, find
- Q31. A tree breaks due to storm and broken part bends so that the top of the tree touches to ground making an angle 30° with it. The distance between the foot of the tree to the powers the top touches the ground is 8 m. Find the height of the tree.

SECTION D

This section consists of 4 questions of 5 marks each.

- The 3rd and the 14th terms of an A.P. are (-9) and (35) respectively. Which term of this A.P. is 5 times the 6th term? (Show working) q.
 - Q33. Find the roots of the equation

$$\frac{1}{2x-3} + \frac{1}{x-5} = 1, x \neq \frac{3}{2}, 5$$

by using quadratic formula.

Of:

ed

:Ror

3,-3

es 0

and its

es the

pont

OR

A train travelling at a uniform speed for 360 km would have taken 48 min less to travel the same distance if its speed were 5 km/hr more. Find the original speed of the train.

A pole 6 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point P on the ground is 60° and the angle of depression of the point P from the top of the tower is 45°. Find the height of the tower and the distance of point P from the foot of the tower. (Use $\sqrt{3} = 1.73$)

OR

From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.

E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Q35 Show that $\triangle ABE \sim \triangle CFB$.

SECTION E

This section consists of 3 case-study based questions of 4 marks each.

Q36. Shruti's father gave her some money to buy kiwi from

the market for rupees $p(x) = x^2 - 28x + 160$

Where α , β are the zeroes of p(x).

Based on the above information, answer the

following questions:

Find the value α and β where $\alpha < \beta$.

[1]

Find a quadratic polynomial, whose zeroes are $\frac{1}{4}$ and -1. Lin

[1]

If sum of zeroes of $q(x) = kx^2 + 2x + 3k$ is equal to their product, then what is the value (iii) of k?

OR

Write the polynomial whose zeroes are $(3 + \sqrt{2})$ and $(3 - \sqrt{2})$.

[2]