Name	Section	Roll No.

CRPF PUBLIC SCHOOL, ROHINI, DELHI MID-TERM EXAMINATION (2025-26) MATHEMATICS (SET- A)

CLASS - XII

SOLUTIONS

Time Allowed: 3 hrs Maximum Marks: 80

General Instructions:

- **1.** This Question paper contains **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- **4. Section** C has **6 Short Answer** (**SA**)-type questions of 3 marks each.
- **5. Section D** has **4 Long Answer (LA)-type questions** of 5 marks each.
- **6. Section E** has **3 source based/case based/passage based/integrated units of assessment** (4 marks each) with sub parts.

	SECTION – A (MCQ) 1 Mark Questions		
Q1	(A) one-one but not onto		
Q2	(D) 11		
Q3	(A) identity matrix		
Q4	(B) -48		
Q5	(D) $\left[-\frac{1}{2}, \frac{1}{2}\right]$		
Q6	(C) $\frac{\pi}{3}$		
Q7	(B) 512		
Q8	(B) n × m		
Q9	(B) skew-symmetric matrix		
Q10	(B) 2		
Q11	(D) $-2\sqrt{2}$		
Q12	(C) $f(x)$ is continuous but not differentiable, at $x = 0$ and $x = 1$.		
Q13	(C) $-2\sqrt{\pi}$		
Q14	(B) Zero (0)		

Q15	(C)	$\frac{e^{x}}{x+6} + C$
Q16	(B)	$\frac{1}{2}$
Q17	(B)	4
Q18	(C)	at the corners of the feasible region

Assertion Reasoning Based Questions

Given below are two statements: one is labelled as **Assertion A** and other is labelled as **Reason R**. In the light of the above statements, choose the *most appropriate* answer from the options given below

(A) Both A and R are correct and R is the correct explanation of A

at the corners of the feasible region

- (B) Both A and R are correct but R is NOT the correct explanation of A
- (C) A is correct but **R** is not correct

(C)

(D) A is not correct but R is correct

Q19	(C)	Assertion (A) is true, but Reason (R) is false.
Q20	(A)	Both Assertion (A) and Reason (R) are true and Reason (R) is the
		correct explanation of the Assertion (A).

SECTION – B (Very Short Answer (VSA)-type questions) 2 Marks Each

Q21
$$\sin^{-1} \left[k \tan \left(2 \cos^{-1} \frac{\sqrt{3}}{2} \right) \right] = \frac{\pi}{3}$$

$$\Rightarrow \sin \sin^{-1} \left[k \tan \left(2 \times \frac{\pi}{6} \right) \right] = \sin \frac{\pi}{3}$$

$$\Rightarrow k \tan \left(\frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$$

$$\Rightarrow k \times \sqrt{3} = \frac{\sqrt{3}}{2} \qquad \therefore k = \frac{1}{2}.$$
Q22
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 \end{bmatrix} \qquad \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \end{bmatrix}$$

$$\Rightarrow A^2 = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} \qquad ...(i)$$

$$\text{Now, } 4A - 3I = 4 \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow 4A - 3I = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} \qquad ...(ii)$$

$$\text{From (i) and (ii), we get}$$

$$A^2 = 4A - 3I$$

Q23	$f(x)$ is continuous at $x = \frac{\pi}{2}$	
	$\Rightarrow \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) = f\left(\frac{\pi}{2}\right)$	
	$\Rightarrow \lim_{h \to 0} \frac{k \cos\left(\frac{\pi}{2} - h\right)}{\pi - 2\left(\frac{\pi}{2} - h\right)} = 3$	1
	$\Rightarrow \frac{k}{2} \lim_{h \to 0} \frac{\sin h}{h} = 3$	
	$\Rightarrow \frac{k}{3} = 3 \Rightarrow k = 6$	₹⁄2 */2
	OR	I
	$y = \tan^{-1}\left(\frac{1+\sin x}{\cos x}\right) = \tan^{-1}\left(\tan\left(\frac{x}{4} + \frac{x}{2}\right)\right)$	1
	$= \frac{\pi}{4} + \frac{\kappa}{2}$	1/2
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2}$	1/2
	ex 2	14
Q24	dr a , dh =	1/2
	$\frac{dr}{dt} = 3 \text{ cm/s} \text{and} \frac{dh}{dt} = -5 \text{ cm/s}$ $V = \pi r^2 h$	172
	$\Rightarrow \frac{dv}{dt} = \pi \left(2r\frac{dr}{dt}\right)h + \pi r^2 \frac{dh}{dt}$	
	$ \frac{dt}{dt} \Big _{t=4,h=7} = 4\pi \Big(2 \times 3 \times 7 + 4 \times (-5) \Big) = 4\pi \times 22 = 88\pi \text{ cm}^3/\text{s} $	1 1/2
	$dt J_{r=4,h=7}$ OR	9033
	$y = -x^3 + 3x^2 + 9x - 30$	
	Slope of the curve, $m = \frac{dy}{dx} = -3x^2 + 6x + 9$	1/2
	$\Rightarrow \frac{dm}{dx} = -6x + 6$	10
	dx	1/2
	For maximum/minimum slope, put $\frac{dm}{dx} = 0$	10507
	$\Rightarrow x=1$ d^2m	1/2
	As $\frac{d^2m}{dx^2} = -6 < 0$: m is maximum at $x = 1$	42-73
025	Maximum slope = $-3(1)^2 + 6(1) + 9 = 12$	1/2
Q25	Let $\cot x = t$, then $-\csc^2 x dx = dt$	
	$\therefore \int \frac{\sqrt{\cot x}}{\sin x \cos x} dx = \int \frac{\sqrt{\cot x}}{\cot x} \csc^2 x dx = -\int \frac{\sqrt{t}}{t} dt = -\int \frac{1}{\sqrt{t}} dt$	
	$=-2\sqrt{t}+C$	
	$=-2\sqrt{\cot x}+C$	
	SECTION – C (Short Answer (SA)-type questions) 3 Marks Each	
Q26	$\sec^2(\tan^{-1}3) + \csc^2(\cot^{-1}2) = 1 + \tan^2(\tan^{-1}3) + 1 + \cot^2(\cot^{-1}2)$	2
	$=1+3^2+1+2^2=15$	1

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right)$$

$$= \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) \times \frac{\sqrt{\sqrt{1+\sin x} + \sqrt{1-\sin x}}}{\sqrt{\sqrt{1+\sin x} + \sqrt{1-\sin x}}}$$

$$= \cot^{-1}\left(\frac{2+2\cos x}{2\sin x}\right) = \cot^{-1}\frac{1+2\cos^2\frac{x}{2} - 1}{2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$= \cot^{-1}\left(\cot\frac{x}{2}\right) = \frac{x}{2} \qquad \left[\cot^{-1}\left(\cot x\right) = \theta \forall \theta \in (0,\pi)\right]$$

$$\mathbf{Q27} \quad \text{Let } y = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}, \text{ where } u = x^{\max}, v = \frac{\sqrt{x^2+1}}{2}$$

$$u = x^{\max} \Rightarrow \log u = \tan x \log x, \text{ differentiating with respect to 'x', we get}$$

$$\Rightarrow \frac{1}{u}\frac{du}{dx} = \frac{\tan x}{x} + \sec^2 x \log x$$

$$\Rightarrow \frac{du}{dx} = u\left(\frac{\tan x}{x} + \sec^2 x \log x\right) = x^{\tan x}\left(\frac{\tan x}{x} + \sec^2 x \log x\right)$$

$$v = \frac{\sqrt{x^2+1}}{2} \Rightarrow \frac{dv}{dx} = \frac{2x}{4\sqrt{x^2+1}} = \frac{x}{2\sqrt{x^2}}$$

$$\Rightarrow \frac{dy}{dx} = x^{\max}\left(\frac{\tan x}{x} + \sec^2 x \log x\right) + \frac{x}{2\sqrt{x^2+1}}$$

$$\mathbf{Q28} \quad f'(x) = -6x^2 - 18x - 12$$

$$f'(x) = 0 \text{ gives } x = -2, -1$$

$$\sin \text{ of } f'(x) = -\frac{1}{2}$$

$$f'(x) = \sin \text{ in } (-2, -1)$$

$$f(x) \text{ is increasing in } (-2, -1)$$

$$f(x) \text{ is increasing in } (-\infty, -2) \text{ and } (-1, \infty)$$

$$\begin{aligned} \frac{Q29}{\left(x^{2}+4\right)(x^{2}+9)} dx &= \int \frac{(x^{2}+9)-9}{(x^{2}+4)(x^{2}+9)} dx \\ &= \int \left[\frac{(x^{2}+9)}{(x^{2}+4)(x^{2}+9)} - \frac{9}{(x^{2}+4)(x^{2}+9)} \right] dx \\ &= \int \frac{1}{(x^{2}+4)} dx - \frac{9}{5} \int \frac{1}{(x^{2}+4)} - \frac{1}{(x^{2}+9)} dx \\ &= \frac{1}{2} \tan^{-1} \frac{x}{2} - \frac{9}{5} \left[\frac{1}{2} \tan^{-1} \frac{x}{3} - \frac{1}{3} \tan^{-1} \frac{x}{3} \right] + c \\ &= -\frac{2}{5} \tan^{-1} \frac{x}{2} + \frac{3}{5} \tan^{-1} \frac{x}{3} + c \end{aligned}$$

$$\begin{aligned} &Q30 & |x^{3}-x| = |x(x-1)(x+1)| \\ &= \begin{cases} -(x^{2}-x), & if - 2 < x < -1 \\ x^{2}-x, & if - 1 < x < 0 \\ -(x^{2}-x), & if 0 < x < 1 \end{cases} \\ &= \left[\frac{x^{2}}{2} - \frac{x^{4}-1}{2} + \left[\frac{x^{4}}{2} - \frac{x^{2}}{2} \right]_{-2}^{0} + \left[\frac{x^{2}}{2} - \frac{x^{4}-1}{2} \right] - \left[\frac{1}{2} - \frac{x^{4}-1}{2} \right] - 0 \right] \\ &= \left[\left(\frac{1}{2} - \frac{1}{4} \right) - (2 - 4) \right] + \left[0 - \left(\frac{1}{4} - \frac{1}{2} \right) \right] + \left[\left(\frac{1}{2} - \frac{1}{4} \right) - 0 \right] \\ &= \frac{9}{4} + \frac{1}{4} + \frac{1}{4} = \frac{11}{4} \end{aligned}$$

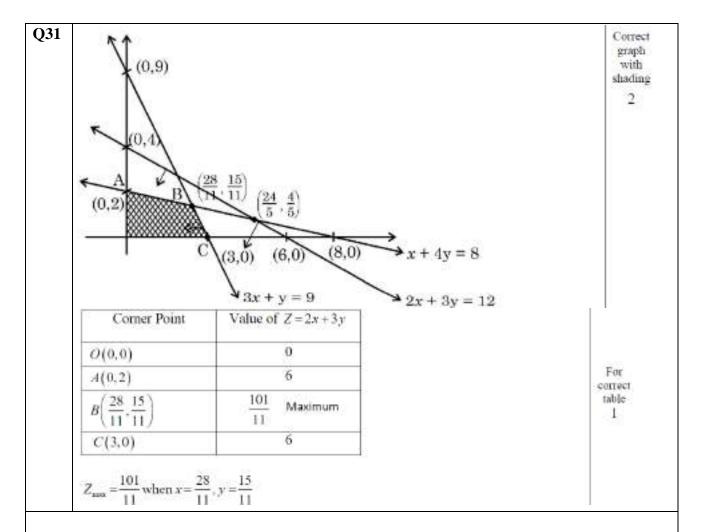
$$OR$$

$$I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx \qquad ...(i)$$

$$= \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^{2} x} dx \qquad ...(ii)$$

$$Adding (i) and (ii)$$

$$2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx \qquad ...(ii)$$


$$Adding (i) and (ii)$$

$$2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx \qquad ...(iii)$$

$$Put \cos x = t \Rightarrow -\sin x dx = dt$$

$$I = -\frac{\pi}{2} \int_{0}^{1} \frac{\sin x}{1 + t^{2}} dx = \frac{\pi^{2}}{1 + t^{2}} \end{aligned}$$

$$= \pi \left[\tan^{-1} t \right]_{0}^{1} = \frac{\pi^{2}}{4} = \frac{\pi^$$

SECTION - D (Long Answer (LA)-type questions) 5 Marks Each

Q32
$$|A| = 3(-3) - 2(-26) + 1(19) = 62 \neq 0 \Rightarrow A^{-1} \text{ exists.}$$

$$cofactor Matrix = \begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix}$$

$$adjA = \begin{bmatrix} -3 & 9 & 5 \\ 26 & -16 & -2 \\ 19 & 5 & -11 \end{bmatrix}$$

$$A^{-1} = \frac{1}{62} \begin{bmatrix} -3 & 9 & 5 \\ 26 & -16 & -2 \\ 19 & 5 & -11 \end{bmatrix}$$

	NAMES AND A STATE OF THE PROPERTY OF THE POST AND POST AN	I
	Given system of equations can be written as $A'.X = B$	
	where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 14 \\ 4 \\ 0 \end{bmatrix}$	
	where $X = y$, $B = 4$	
	Now, $A'.X = B \Rightarrow X = (A')^{-1}.B$	1/2
	[−3 26 19][14]	
	$\Rightarrow X = (A^{-1})' B = \frac{1}{9} - 16 = 5 = 4$	1/2
	$\Rightarrow X = (A^{-1})' \cdot B = \frac{1}{62} \begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix} \begin{bmatrix} 14 \\ 4 \\ 0 \end{bmatrix}$	10000
	## ### ### ### ### ### ### ### ### ###	
	$=\frac{1}{62} 62 = 1$	1
	$=\frac{1}{62}\begin{bmatrix} 62\\62\\62\end{bmatrix} = \begin{bmatrix} 1\\1\\1\end{bmatrix}$	10.0
	$\Rightarrow x=1, y=1, z=1$	
	OR	I
	[6 0 0]	7
	$BA = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$	2
		(55)
	Given system is	
	$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 20 \\ 8 \end{bmatrix}$	
	i.e., $BX = C$ say	
	so X = B ⁻¹ C	1
	$=\frac{1}{6}AC$	
	1 2 2 -4 [-1] [1]	150
	$=\frac{1}{6}\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 20 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1 1/2
	x = 1, $y = 2$, $z = 3$	1/2
Q33	(a)	
	$x\sqrt{1+y} + y\sqrt{1+x} = 0$	1
	O1 200 1000 1100 1100 1100	
	$\Rightarrow x\sqrt{1+y} = -y\sqrt{1+x}$	
	$\Rightarrow x^2(1+y) = y^2(1+x)$	1/2
	$\Rightarrow (x-y)(x+y) + xy(x-y) = 0$	
	$\Rightarrow (x-y)(x+y+xy)=0$	1
	$x \neq y \Rightarrow x + y + xy = 0$	
	$x \neq y \Rightarrow x + y + xy = 0$	
	$\Rightarrow y = \frac{\lambda}{1+x}$	1/2
		942
	dy = -1	
	$\Rightarrow \frac{dy}{dx} = \frac{-1}{(1+x)^2}$	1
	10-100 (C)	'

	(b)	
	$y = (\tan^{-1} x)^2$	
	$\Rightarrow \frac{dy}{dx} = 2(\tan^{-1} x) \times \left(\frac{1}{1+x^2}\right)$	
	$\Rightarrow (1+x^2)\frac{dy}{dx} = 2\tan^{-1}x$	
	$\Rightarrow (1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 2 \times \frac{1}{1+x^2}$	
	$\therefore (1+x^2)^2 \frac{d^2y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} = 2.$	
Q34	$f(x) = -\frac{3}{4}x^4 - 8x^3 - \frac{45}{2}x^2 + 105$	
	$f'(x) = -3x^3 - 24x^2 - 45x \text{ and } f''(x) = -9x^2 - 48x - 45$	(1)
	$f'(x) = 0 \implies x = 0 \text{ or } x^2 + 8x + 15 = 0$	
	F1 444 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	i.e., $x = 0, -3, -5$	(1)
	i.e., $x=0,-3,-5$ At $x=0,f''(0)<0\Longrightarrow 0$ is a point of local maxima	(1) (1)
		3,000

Let
$$I = \int \frac{(3\cos x - 2)\sin x}{5 - \sin^2 x - 4\cos x} dx$$

$$\Rightarrow I = \int \frac{(3\cos x - 2)\sin x}{5 - (1 - \cos^2 x) - 4\cos x} dx$$

$$\Rightarrow I = \int \frac{(3\cos x - 2)\sin x}{\cos^2 x - 4\cos x + 4} dx$$

Put $\cos x = t \Rightarrow \sin x dx = -dt$

$$I = -\int \frac{(3t-2)}{t^2 - 4t + 4} dt$$

Let
$$3t-2 = A \frac{d}{dt}(t^2-4t+4) + B$$

$$\Rightarrow$$
 3t - 2 = A(2t - 4) + B

On comparing the like terms, we get 2A = 3, B - 4A = -2

$$A = \frac{3}{2}, B = 4$$

So,
$$I = -\left[\frac{3}{2}\int \frac{(2t-4)}{t^2-4t+4} dt + \int \frac{4}{t^2-4t+4} dt\right]$$

$$\Rightarrow I = -\left[\frac{3}{2} \int \frac{(2t-4)}{t^2 - 4t + 4} dt + \int \frac{4}{(t-2)^2} dt \right]$$

$$\Rightarrow I = -\left[\frac{3}{2}\log\left|t^2 - 4t + 4\right| - \frac{4}{t - 2}\right] + c$$

$$\Rightarrow I = \frac{4}{\cos x - 2} - \frac{3}{2} \log \left| \cos^2 x - 4 \cos x + 4 \right| + c$$

Therefore,
$$I = \frac{4}{\cos x - 2} - \frac{3}{2} \log |5 - \sin^2 x - 4 \cos x| + c$$
.

OR

Let
$$I = \int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$

$$= \int \left(\sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}}\right) dx = \int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - (1 - \sin 2x)}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - (\sin x - \cos x)^2}} dx$$

Put $\sin x - \cos x = t \Rightarrow (\cos x + \sin x) dx = dt$

:.
$$I = \sqrt{2} \int \frac{dt}{\sqrt{1-t^2}} = \sqrt{2} \sin^{-1} t + C$$

$$=\sqrt{2}\sin^{-1}(\sin x - \cos x) + C$$

	SECTION – E (Case Study questions) 4 Marks Each	
Q36	$(i)R_i$	1
	$(ii)R_{\epsilon}$	1
	$(iii)(a)R_1$ and R_3	1+1
	OR	
	$(iii)(b)$ Required pairs to be added to make the relation R_1 as an equivalence relation are:	
	(1,1),(2,2),(3,3),(2,1),(3,1) and (2,3)	2
Q37	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	(i) Let x and y be the number of girl students and that of meritorious achievers respective. Then $3000x + 4000y = 180000$ i.e., $3x + 4y = 180$ and $x + y = 50$.	ely,
	Clearly, $\begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 180 \\ 50 \end{bmatrix}$	
	(ii) As $\begin{vmatrix} 3 & 4 \\ 1 & 1 \end{vmatrix} = 3 - 4 = -1 \neq 0$ so, the system of matrix equations so obtained is consistent	t.
	(iii) We have $ \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 180 \\ 50 \end{bmatrix} $	
	$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 180 \\ 50 \end{bmatrix}$	
	$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} 1 & -4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 180 \\ 50 \end{bmatrix} = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$	
	By equality of matrices, we get $x = 20$, $y = 30$.	
	The no. of scholarships given to the girl students is 20 and that of meritorious achieve OR	ers is 30
	(iii) We have $\begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 180 \\ 50 \end{bmatrix}$	
	$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 180 \\ 50 \end{bmatrix}$	
	$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} 1 & -4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 180 \\ 50 \end{bmatrix} = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$	
	By amplify of matrices may not at 20 yr 20	

By equality of matrices, we get x = 20, y = 30.

∴ The no. of scholarships given to the girl students is 20 and that of meritorious achievers is 30. When amount of scholarship is interchanged i.e., when the amount of scholarship given to each girl child is ₹4000 and that of meritorious achievers is ₹3000; then monthly expenditure incurred by the school will be ₹20 × 4000 + 30 × 3000 = ₹80000 + 90000 = ₹170000.

Q38	(t) Perimeter $(P) = 3x + 2y = 12$	\wedge	1
	(ii) Area (A) = $xy + \frac{\sqrt{3}}{4}x^2$	x x	
	$=x\left(\frac{12-3x}{2}\right)+\frac{\sqrt{3}}{4}x^2$	y y	
	$=6x-\frac{3}{2}x^2+\frac{\sqrt{3}}{4}x^2$	1.00	1
	$(iii)(a)\frac{dA}{dx} = 6 - 3x + \frac{\sqrt{3}}{2}x$	x	1/2
	For maximum light, $\frac{dA}{dx} = 0$		
	\Rightarrow 6-3x + $\frac{\sqrt{3}}{2}$ x = 0 \Rightarrow x = $\frac{12}{6-\sqrt{3}}$ m		1/2
	Also, $\frac{d^2A}{dx^2} = -3 + \frac{\sqrt{3}}{2} < 0$.: A is maximum when $x = \frac{12}{6 - \sqrt{3}}m$		5/2
	Now, $v = \frac{12 - 3x}{2} = 6 - \frac{3}{2} \left(\frac{12}{6 - \sqrt{3}} \right) = \frac{18 - 6\sqrt{3}}{6 - \sqrt{3}} m$		1/2
	OR		
	$(iii)(b)xy + \frac{\sqrt{3}}{4}x^2 = 50$		1/2
	$\Rightarrow y = \frac{50}{x} - \frac{\sqrt{3}}{4}x$		1
	Now, P = 3x + 2y		
	$=3x+2\left(\frac{50}{x}-\frac{\sqrt{3}}{4}x\right)m$		1/2