Name	Section	Roll No
Name	Section	KUII 110

CRPF PUBLIC SCHOOL, ROHINI, DELHI MID-TERM EXAMINATION (2025-26) MATHEMATICS (SET- A) CLASS - XII

Time Allowed: 3 hrs Maximum Marks: 80

General Instructions:

- **1.** This Question paper contains **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- **4.** Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- **5. Section D** has **4 Long Answer (LA)-type questions** of 5 marks each.
- **6. Section E** has **3 source based/case based/passage based/integrated units of assessment** (4 marks each) with sub parts.

	SECTION – A	A (MCQ) 1 Mark Questions
Q1	 A function f: R₊ → R (who numbers) defined by f(x) = 4x (A) one-one but not onto (B) onto but not one-one (C) both one-one and onto (D) neither one-one nor on 	E 55
Q2	AND	= $\{x: x \in Z \text{ and } 0 \le x \le 10\}$ as $R = \{(x, y): x = y\}$ relation. The number of equivalence classes is : (B) 2 (D) 11
Q3	GOSTATO VENTA DE CONTRA DE	rder n, then A (Adj A) is a/an :

Q4	If A and B are square n	natrices both of order 3, such that		
	A = -3 and $ B = 2$, th	en 2AB is equal to:		
	(A) 48	(B) - 48		
	(C) -24	(D) - 12		
Q5	The domain of $f(x) = \cos^{-1}$	(2x) is:		
	(A) [-1, 1]	(B) $\left[0, \frac{1}{2}\right]$		
	(C) [-2, 2]	(D) $\left[-\frac{1}{2}, \frac{1}{2}\right]$		
Q6	The principal value of sin-	$1\left(\sin\left(-\frac{10\pi}{3}\right)\right)$ is:		
	(A) $-\frac{2\pi}{3}$	(B) $-\frac{\pi}{3}$		
	(C) $\frac{\pi}{3}$	(D) $\frac{2\pi}{3}$		
Q7	What is the total number of entry as $\sqrt{2}$ or $\sqrt{3}$?	of possible matrices of order 3×3 with each		
	(A) 9	(B) 512		
	(C) 615	(D) 64		
Q8	Let both AB' and $B'A$ be defined for matrices A and B . If order of A is $n\times m$, then the order of B is :			
	(A) $n \times n$	(B) $n \times m$		
	(C) m × m	(D) $m \times n$		
Q9	If A and B are square matri	ices of same order, then (AB ^T – BA ^T) is a		
	(A) symmetric matrix	(B) skew-symmetric matrix		
	(C) null matrix	(D) unit matrix		
Q10	1-71(3): S15			
	(A) $\frac{2}{x}$	(B) 2		
	(C) $\frac{\sqrt{1-x^2}}{\sqrt{1-4x^2}}$	(D) $1 - \kappa^2$		

Q11	If $x = \sin t$ and $y = \cos t$,	then $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$ is:	
	(A) - 1	(B) 2	
	(C) 2√2	(D) − 2√2	
Q12	 (A) f(x) is both continu (B) f(x) is differentiable (C) f(x) is continuous be 	, then which of the following is correct? yous and differentiable, at $x = 0$ and $x = 1$. The but not continuous, at $x = 0$ and $x = 1$. Yout not differentiable, at $x = 0$ and $x = 1$. You in unusually in the following is correct? You are the following is correct.	
Q13	The derivative of sin ((\mathbf{x}^2) w.r.t. \mathbf{x} , at $\mathbf{x} = \sqrt{\pi}$ is:	
	(A) 1	(B) -1	
	(C) $-2\sqrt{\pi}$	(D) $2\sqrt{\pi}$	
Q14	$\int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx \text{ is e}$	qual to :	
	(A) π	(B) Zero (0)	
	(C) $\int_{0}^{\pi/2} \frac{2\sin x}{1+\sin x\cos x} dx$	(D) $\frac{\pi^2}{4}$	
Q15	$\int \frac{x+5}{(x+6)^2} e^x dx \text{ is equa}$ (A) $\log (x+6) + C$	d to ;	
	(A) $\log (x + 6) + C$		
	(C) $\frac{e^x}{x+6} + C$	(D) $\frac{-1}{(x+6)^2} + C$	
Q16	If $\int_{0}^{a} \frac{1}{1+4x^2} dx = \frac{\pi}{8}$, then the value of 'a' is:		
	(A) $\frac{1}{4}$ (C) $\frac{1}{8}$	(B) $\frac{1}{2}$	
	(C) $\frac{1}{8}$	(D) 4	

A, y	20

The maximum value of Z = 3x + 4y subject to the constraints $x + y \le 1$,

(A) 3

(B) 4

(C) 7 (D) 0

O18

Q17

Of all the points of the feasible region of an LPP, for maximum or minimum values of objective function, the points lie:

- (A) inside the feasible region
- (B) at the boundary line of the feasible region
- (C) at the corners of the feasible region
- at the points of intersection of the feasible region with x-axis

Assertion Reasoning Based Questions

Given below are two statements: one is labelled as Assertion A and other is labelled as Reason R. In the light of the above statements, choose the *most appropriate* answer from the options given below

- (A) Both A and R are correct and R is the correct explanation of A
- (B) Both A and R are correct but R is NOT the correct explanation of A
- (C) **A** is correct but **R** is not correct
- (D) **A** is not correct but **R** is correct

Q19

Consider the function $f: R \longrightarrow R$, defined as $f(x) = x^3$.

Assertion (A): f(x) is a one-one function.

Reason(R): f(x) is a one-one function, if co-domain = range.

Q20

Assertion (A): f(x) = [x], x \in \mathbb{R}, the greatest integer function is not differentiable at x = 2.

Reason (R): The greatest integer function is not continuous at any integral value.

SECTION – B (Very Short Answer (VSA)-type questions) 2 Marks Each

Q21

Find value of k if

$$\sin^{-1}\left[k\tan\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)\right] = \frac{\pi}{3}.$$

Q22

and I is the identity matrix of order 2, then show that $A^2 = 4A - 3I$.

Q23	(1
Q23	(a) Find the value of k, so that $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$
	is continuous at $x = \frac{\pi}{2}$.
	OR
	(b) Find $\frac{dy}{dx}$, if $y = \tan^{-1}\left(\frac{1+\sin x}{\cos x}\right)$.
Q24	The radius of a cylinder is increasing at the rate of
	3 cm/s, and its height is decreasing at the rate of 5 cm/s. Find
	the rate of change of its volume, when radius is 4 cm and height
	is 7 cm.
	OR
025	Find the maximum slope of the curve $y = -x^3 + 3x^2 + 9x - 30$.
Q25	Evaluate: $\int \frac{\sqrt{\cot x}}{\sin x \cos x} dx$
	SECTION – C (Short Answer (SA)-type questions) 3 Marks Each
Q26	Evaluate:
	$\sec^2(\tan^{-1} 3) + \csc^2(\cot^{-1} 2)$
	OR
	Show that: $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}$, $x \in \left(0, \frac{\pi}{4}\right)$
Q27	Find $\frac{dy}{dx}$, if $y = x^{\tan x} + \frac{\sqrt{x^2 + 1}}{2}$.
Q28	Find the intervals in which the function f given by
	$f(x) = -2x^3 - 9x^2 - 12x + 1 \text{ is}:$
	(i) strictly increasing.
	(ii) strictly decreasing.
Q29	Find $\int \frac{x^2}{(x^2+4)(x^2+9)} dx$.
Q30	Evaluate:
	1 . 3
	$\int_{0}^{1} x^{3} - x dx$
	-2 OR

	Evaluate: $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$		
Q31	Solve the following LPP graphically:		
	Maximize $Z = 2x + 3y$		
	subject to the constraints $x + 4y \le 8$		
	$2x + 3y \le 12$		
	$3x + y \le 9$		
	$x\geq 0, y\geq 0.$		
	SECTION – D (Long Answer (LA)-type questions) 5 Marks Each		
Q32	If $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3 \end{bmatrix}$, find A^{-1} . Using A^{-1} , solve the given system of equations $3x + 4y + 7z = 14$; $2x - y + 3z = 4$; $x + 2y - 3z = 0$.		
	OR		
	If $A = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$, find BA and use this to solve		
	the system of equations: y + 2z = 8, x - y = -1,		
	2x + 3y + 4z = 20		
Q33	(a) If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, $-1 < x < 1$, $x \ne y$, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$		
	(b) If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 \frac{d^2 y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} = 2$		
Q34	Find all the points of local maxima and local minima of the function:		
	$f(x) = -\frac{3}{4}x^4 - 8x^3 - \frac{45}{2}x^2 + 105.$		

Q35

Find:

$$\int \frac{(3\cos x - 2)\sin x}{5 - \sin^2 x - 4\cos x} dx$$

OR

Evaluate: $\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$

SECTION – E (Case Study questions) 4 Marks Each

Q36

A class-room teacher is keen to assess the learning of her students the concept of "relations" taught to them. She writes the following five relations each defined on the set $A = \{1, 2, 3\}$:

$$R_1 = \{(2, 3), (3, 2)\}$$

$$R_2 = \{(1, 2), (1, 3), (3, 2)\}$$

$$R_3 = \{(1, 2), (2, 1), (1, 1)\}$$

$$R_4 = \{(1, 1), (1, 2), (3, 3), (2, 2)\}$$

$$R_5 = \{(1, 1), (1, 2), (3, 3), (2, 2), (2, 1), (2, 3), (3, 2)\}$$

The students are asked to answer the following questions about the above relations:

- (i) Identify the relation which is reflexive, transitive but not symmetric.
- (ii) Identify the relation which is reflexive and symmetric but not transitive.
- (iii) (a) Identify the relations which are symmetric but neither reflexive nor transitive.

OR

(iii) (b) What pairs should be added to the relation R₂ to make it an equivalence relation?

Q37

A scholarship is a sum of money provided to a student to help him or her pay for education. Some students are granted scholarships based on their academic achievements, while others are rewarded based on their financial needs.

	achi offer	evers ed m	ar a school offers scholarships to girl children and meritor based on certain criteria. In the session 2022 - 23, the sc conthly scholarship of ₹ 3,000 each to some girl students each to meritorious achievers in academics as well as sports.	hool and
	In all, 50 students were given the scholarships and monthly expenditure incurred by the school on scholarships was ₹ 1,80,000. Based on the above information, answer the following questions:			
	(i)	Exp	ress the given information algebraically using matrices.	1
	(ii)		ck whether the system of matrix equations so obtained is sistent or not.	1
	(iii)	(a)	Find the number of scholarships of each kind given by the school, using matrices.	2
			OR	
	(iii)	(b)	Had the amount of scholarship given to each girl child and meritorious student been interchanged, what would be the monthly expenditure incurred by the school?	
Q38 A window is in the form of a rectangle surmounted by an equilatriangle on its length. Let the rectangular part have length and breat and y metres respectively.				
	Base	d on t	he given information, answer the following questions :	
	(i)	If th x an	ne perimeter of the window is 12 m, find the relation between d y.	1
	(ii)		ng the expression obtained in (i), write an expression for the of the window as a function of x only.	1
	(iii)	(a)	Find the dimensions of the rectangle that will allow maximum light through the window. (use expression obtained in (ii))	2
			OR	
	(iii)	(b)	If it is given that the area of the window is 50 m^2 , find an expression for its perimeter in terms of x.	2