DAV PUBLIC SCHOOL KAILASH HILLS

FIRST TERMINAL EXAMINATION 2025 -26 CLASS XI - MATHEMATICS

Time Allowed: 3 hours

Maximum Marks: 80

[1]

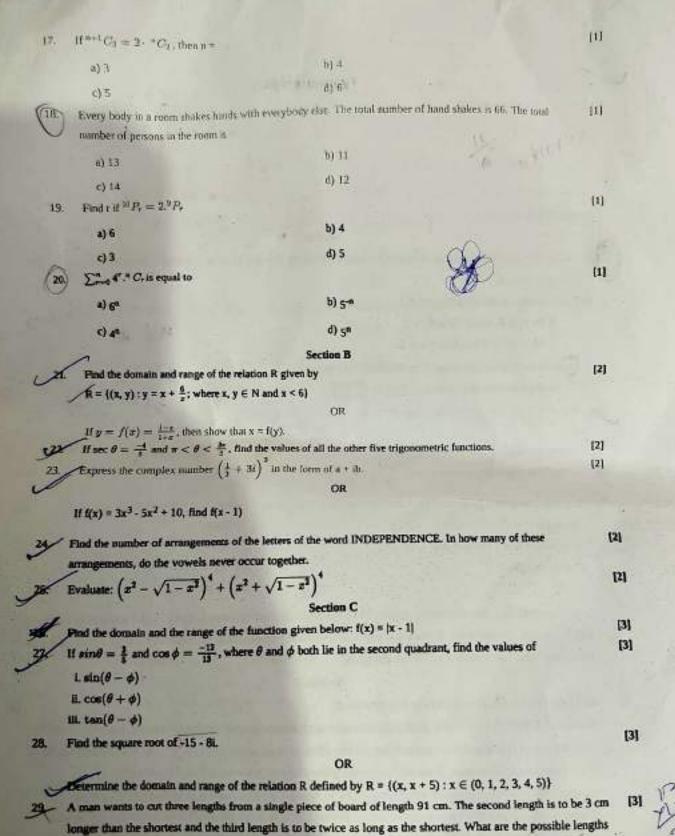
General I

a) (-1, 1)

a) $2 \sin \theta$

c) sin 28

c) R - (-1, 1)


 $\sqrt{2+\sqrt{2+2\cos 4\theta}} = ?$

instructions:		
1. This Question paper contains - five section	s A, B, C, D and B. Each section is compulsory. H	owever, there are
internal choices in some questions.		
2. Section A has 18 MCQ's and 02 Assertion	Reason based questions of 1 mark each.	
3. Section B has 5 Very Short Answer (VSA)	-type questions of 2 marks each.	
4. Section C has 6 Short Answer (SA)-type q	uestions of 3 marks each.	
5. Section D has 4 Long Answer (LA)-type of	uestions of 5 marks each.	
6. Section E has 3 source based/case based/p	assage based/integrated units of assessment (4 mai	rks each) with sub
parts.		
	Section A	
The number of non-empty subsets of the set	(1, 2, 3, 4) is:	[1]
a) 14	b) 16	
c) 17	A) 15	3
Two finite sets have m and a elements. The to	al number of subsets of the first set is 56 more than t	the total [1]
number of subsets of the second set. The value	s of m and n are	1 12 4
a) 7.4	b) 6, 4	
c) 3, 3	d) 6,3	
be domain of function $f: \mathbb{R} \to \mathbb{R}$ defined by	$f(x) = \sqrt{x^3 - 3x + 2} \text{ is}$	(11)
a) [2, ∞]	b) (-∞,1]∪(2,∞)	
a/-m1	d) [1, 2]	
on (A) = m and n (B) = n. Then the total no	umber of non-empty relations that can be defined	from A to B is [1]
100	b) m ⁿ - 1	
a) m"		
c) n ^m - 1	d) 2 ^{mn} - 1	[1]
e range of the function $f(x) = \frac{s}{ s }$ is		
A/1 11	-b) R-(0)	

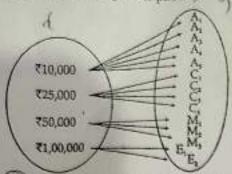
d) {-1, 2}

b) 2 cos θ

Prcos 28

OR

of the shortest board if the third piece is to be at least 5cm longer than the second?


Pind $\sin \frac{\pi}{2}$, $\cos \frac{\pi}{2}$ and $\tan \frac{\pi}{2}$ in the $\tan x = -\frac{1}{2}$, x in quadrant II. In, how many ways can the letters of the word PERMUTAIONS be arranged if the 131 (ii) words start with P and end with S . Pramatettako (ii) vowels are all together (iii) there are always 4 letters between P and S? Prove that $\sin^2\left(\frac{\pi}{8} + \frac{\pi}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}\sin \pi$ Find a, b and a in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375 131 respectively. 729 Section D i. Let R be the relation on the set Z of all integers defined by $R = \{(x, y): x - y \text{ is divisible by } n\}$. Prove that [5] $L(X, y) \in R$ \Rightarrow $(y, x) \in R$ for all $x, y \in Z$. b. $(x, y) \in R$ and $(y, z) \in R$ \Rightarrow (x, z) \in R for all x, y, z \in Z. (ii) Find the domain and range of the function $f(x) = \frac{x^2-9}{x-3}$. III. Find the domain of the function $f(x) = \frac{x^2+3x+5}{x^2+x-6}$. 33/ Prove that: $\sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ = \frac{1}{16}$. Prove that $\cos 2x \cdot \cos \frac{\pi}{2} - \cos 3x \cdot \cos \frac{9\pi}{2} = \sin 5x \cdot \sin \frac{5\pi}{2}$ Find the modulus and argument of $z = \frac{(1+t)^{2t}}{(1-t)^t}$. A group consist of 4 girls and 7 boys. In how many ways, a team of 5 members be selected, if the team has [5] L no girl? ii. at least one boy and one girl? iti. at least 3 girls? OR In an examination, a question paper consists of 12 questions divided into two parts i.e., part I and part II containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions? Section E Read the text carefully and answer the questions: [4] A Relation R from A to B can be depicted pictorially using arrow diagram, in arrow diagram, we write down the elements of two sets A and B in two disjoint circles. Then we draw arrow from set A to set B whenever (A, B) E R. An example of information depicted through an arrow diagram is shown below. For example: A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M) and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000 and ₹ 1,00,000 to the people who work in the categories A, C, M and E respectively. Here A1, A2, A3, A4 and A5 are Assistants; C1, C2, C3, C4

いいいいから

are Clerks; M1, M2, M3 are Managers and E1, E2 are Executive Officers then the relation R is defined by xRy,

3 700

where x is the salary given to person y-

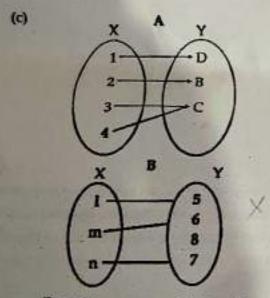
(a) If the number of elements in set A and set B are p and q then the number of functions from A to B are:

a) 209-1

b) qp

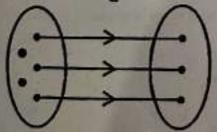
c) pq

Jd7 2P9


(b) If the number of elements in set A and set B are p and q, then the number of relations from A to B are

alson

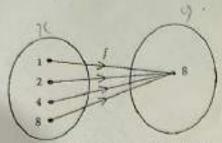
b) 2P2


c) 2pq+1

d) 2pq-1

Domain

Co-domain


Which among the above figures shows a Relation between the two non - empty sets?

a) A, B, C

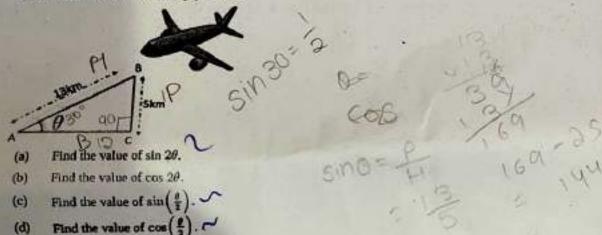
b) B, C

c) A, C

d) A, B

The relation defined in the above arrow diagram from set A to set B is:

Axis a factor of y


b) x = 2y

c) x is a square of y

d) x is a square root of y

37. Read the text carefully and answer the questions:

An airplane is observed to be approaching a point that is at a distance of 13 km from the point of observation and makes an angle of elevation of θ and the height of the airplane above the ground is 5km. Based on the above information answer the following questions.

38. Read the text carefully and answer the questions:

One evening, four friends decided to play a card game Rummy, Rummy is a card game that is played with decks of cards. To win the rummy game a player must make a valid declaration by picking and discarding cards from the two piles given. One pile is a closed deck, where a player is unable to see the card that he is picking, while the other is an open deck that is formed by the cards discarded by the players. To win at a rummy card game, the players have to group cards invalid sequences and sets.

In rummy, the cards rank low to high starting with Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Ace, Jack, Queen, and King each have 10 points. The remaining cards have a value equal to their face value. For example, 5 cards will have 5 points, and so on.

Four cards are drawn from a pack of 52 playing cards, then:

- (a) In how many ways can four cards are drawn from a pack of 52 playing cards?
- (b) In how many ways can four cards are drawn from a pack of 52 playing cards such that all 4 cards are from

[4]

[4]

1364

same suit?

(c) In how many ways can four cards are drawn from a pack of 52 playing cards such that 2 cards are Ace?

In how many ways can four cards are drawn from a pack of 52 playing cards such that all are club cards?

13C4